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It is sometimes desirable to delve further into how the inputs affect the output in design

optimization and uncertainty analysis. Surrogate models such as Gaussian Process Regression

and support vector regression are useful for such tasks and can be further enhanced by

introducing advanced post-processing methods. This paper investigates Shapley Additive

Explanation (SHAP) as a tool to aid surrogate-assisted data-driven analysis. In particular,

surrogate-enabled SHAP analysis allows visualization of the input-output relationship in a

meaningful way using summary SHAP plots and SHAP dependence plots. Some important

information that can be extracted and visualized from SHAP includes the importance of input

variables (i.e., global sensitivity analysis), nonlinearity level, and level of interactions. The

benefits of Shapley values for engineering analysis using surrogate models are demonstrated in

three engineering test problems.

I. Introduction
Global sensitivity analysis (GSA) is an important field in which the objective is to quantify the relative impact of

input variables and their interactions on the output [1, 2]. GSA is widely used in uncertainty analysis, although other

domains, such as design optimization and exploration, also take advantage of GSA. For example, designers can obtain

better information regarding which variables should be prioritized when optimizing a system with GSA. Similarly, in

uncertainty analysis, GSA helps engineers determine which variables should be controlled to reduce uncertainties in the

output. Variance-based sensitivity analysis techniques (primarily Sobol indices) are arguably the most widely used

methods due to their intuitiveness [3, 4]. In modern practice, GSA is frequently performed using surrogate models to

reduce the computation cost for estimating sensitivity indices. Polynomial chaos expansion (PCE) [5] is one of the most
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†Associate Professor, Faculty of Mechanical and Aerospace Engineering, Institut Teknologi Bandung.
‡Lecturer, Faculty of Mechanical and Aerospace Engineering, Institut Teknologi Bandung.
§Associate Professor.
¶Professor.

D
ow

nl
oa

de
d 

by
 P

ra
m

ud
ita

 P
al

ar
 o

n 
Ja

nu
ar

y 
31

, 2
02

3 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

02
3-

03
32

 

 AIAA SCITECH 2023 Forum 

 23-27 January 2023, National Harbor, MD & Online 

 10.2514/6.2023-0332 

 

 AIAA SciTech Forum 



widely used surrogate models for handling a GSA task [6]. Besides PCE, other popular models for GSA include Kriging

and support vector regression [7–9]. Beyond GSA, sometimes there is a need to take a peek inside the constructed

surrogate models, aiming to understand the inside of the input-output relationship better. For example, one might want

to know the nonlinearity level or the nature of the interaction between variables in such a relationship.

Analyzing the importance of variables is also central to one of the current subjects of interest in machine learning:

explainability [10, 11]. In this regard, explainability is particularly important for black-box machine learning models,

which expressions are too complex to decipher. Such complexity is in contrast to simple but interpretable models such

as linear regression or logistic regression. Interpretable models, as the name suggests, provide a form that helps gain

insight and is also easily understood by a human. The main drawback of simple models is their limited predictive power,

which is why complex models are desirable in many applications. It is then common to apply post hoc explanations to

interpret complex black-box models.

Several tools to help interpret black-box models have been developed, such as partial dependence plot [12], individual

conditional expectation (ICE) [13], and local interpretable model-agnostic explanations (LIME) [14]. The techniques

mentioned above work by dissecting the black-box model into a post hoc explanation that works at either a global or

local level (i.e., to a single prediction level). For example, PDP depicts the marginal effect of an input on the prediction

of a model to show the relationship between the input and the output. Of interest in this paper is the SHapley Additive

exPlanation (SHAP) [15], which is based on the Shapley values from game theory [16]. SHAP is convenient since

it reveals several essential pieces of information at once. Moreover, some fast methods exist for calculating SHAP

for several machine learning models, such as random forest and gradient boosting. However, despite the potential of

SHAP for engineering design or uncertainty analysis, to the best of our knowledge, there are only a few papers that

deploy SHAP for engineering problems (e.g., see [17, 18]). In this regard, SHAP can be utilized with commonly used

surrogate/machine learning models in engineering, e.g., Kriging and PCE.

Often, there are situations when it is desirable to visualize the input-output relationship in either design optimization

or uncertainty analysis. For example, in design exploration, one wants to investigate how specifically changing an

input variable would impact the performance of the design. Unfortunately, direct visualization is impossible for

high-dimensional input spaces, which is why specialized techniques are required for visual analysis. Examples of

statistical machine learning and data mining techniques that have been applied to handle such tasks include self-organizing

map [19, 20], active subspace [21, 22], and proper orthogonal decomposition [23]. Typical questions include: how

strong is the relationship between inputs and output? How nonlinear is the input-output relationship? How does a single

variable interact with other variables? GSA metrics such as Sobol indices can answer some of these questions. However,

users can be better informed if these questions are answered visually. For example, if a function is nonlinear, we want to

know how specifically the inputs affect the output. Tools from the interpretable ML field can then be of great advantage

to aid such an endeavor.
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In this paper, we investigate the use of SHAP to aid data-driven analysis using surrogate models, with applications

toward design optimization and uncertainty analysis. Due to its model-agnostic nature, SHAP can work with any

supervised machine learning model. A surrogate model is essentially a supervised machine learning, either as an

interpolation or regression technique, in which SHAP can be conveniently applied to reveal important insight. This

paper aims to introduce SHAP as an additional instrument for helping design exploration and uncertainty analysis.

II. Surrogate modeling
A surrogate model is essentially a supervised machine learning model. That is, given a vector of input variables

𝒙 = {𝑥1, 𝑥2, . . . , 𝑥𝑚}𝑇 , where 𝑚 is the input dimensionality, and a label 𝑦 = 𝑓 (𝒙), a surrogate model works by

approximating the relationship between the input and the output. The first step in building a surrogate model

is to provide the experimental design X = {𝒙 (1) , 𝒙 (2) , . . . , 𝒙 (𝑛) }𝑇 , where 𝑛 is the sample size, and the responses

𝒚 = {𝑦 (1) , 𝑦 (2) , . . . , 𝑦 (𝑛) } = { 𝑓 (𝒙 (1) ), 𝑓 (𝒙 (1) ), . . . , 𝒙 (𝑛) }. The black-box function 𝑓 (𝒙) is evaluated through either a

numerical model or physical experiment. In this paper, we focus on data from numerical models to create a surrogate

model. The input domain is defined as 𝛀, where 𝛀 =
∏𝑚

𝑖=1 Ω𝑖 and Ω𝑖 is the marginal input for the 𝑖-th variable.

This paper only briefly explains GPR and SVR since we focus on the interpretability of a surrogate model. Readers

are referred to more specific literature on GPR (e.g., [24, 25]) and SVR (e.g., [26–28]) for more details. We use KADAL,

an in-house surrogate modeling code, to build the GPR and SVR model.

A. Gaussian Process Regression

The main ingredient of GPR is the assumption that the black-box function is a realization of the following stochastic

process:

𝑌 (𝒙) = 𝜇𝐺𝑃 (𝒙) + 𝑍 (𝒙), (1)

where 𝜇𝐺𝑃 (𝑥) is the mean function and 𝑍 (𝒙) is a zero-mean Gaussian process. For simplicity, we assume that 𝜇𝐺𝑃 (𝑥)

is constant in the in the entire input space, i.e., 𝜇𝐺𝑃 (𝑥) = 𝜇𝐺𝑃 .

GPR assumes that the responses are correlated with each other. Let us denote two points in the input space, 𝒙 and 𝒙′,

which responses are correlated to a degree. The correlation is modeled by the kernel function 𝑘 (𝒙, 𝒙′; 𝜽) = corr(𝑦, 𝑦′; 𝜽),

where 𝜽 = {𝜃1, . . . , 𝜃𝑚} is the length scales. In this regard, the length scale indicates the degree of correlation between

the responses. This paper uses the squared-exponential kernel function to model the correlation between input points.

Our implementation uses the squared-exponential kernel to model the correlation between responses at input points.

Construction of a GPR model requires several information. First, an 𝑛 × 𝑛 correlation matrix 𝑹 is constructed,

with its (𝑖, 𝑗)-th component is as follows: 𝑅𝑖 𝑗 = 𝑘 (𝒙 (𝑖) , 𝒙 ( 𝑗 ) ; 𝜽), where 𝒙 (𝑖) , 𝒙 ( 𝑗 ) ∈ X. It is also necessary to build a

correlation vector 𝒓 (𝒙) = {𝑘 (𝒙, 𝒙 (1) ; 𝜽), . . . , 𝑘 (𝒙, 𝒙 (𝑛) ; 𝜽)}𝑇 , especially for making a prediction. GPR then predicts the

3

D
ow

nl
oa

de
d 

by
 P

ra
m

ud
ita

 P
al

ar
 o

n 
Ja

nu
ar

y 
31

, 2
02

3 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

02
3-

03
32

 



response at an arbitrary location using the following expression:

𝑦̂(𝒙) = 𝜇𝐺𝑃 + 𝒓𝑇𝑹−1 (𝒚 − 1𝜇𝐺𝑃), (2)

Hyperparameter optimization aims to find the best set of hyperparameters (including length scales) that optimizes

a certain objective function. The most common approach for hyperparameter optimization is to maximize the

log-likelihood function, written as:

ln L(𝜽) = −𝑛
2

ln(2𝜋) − 𝑛

2
ln(𝜎2

𝐺𝑃) −
1
2

ln( |𝑹 |) − (𝒚 − 1𝜇𝐺𝑃)𝑇𝑹−1 (𝒚 − 1𝜇𝐺𝑃)
2𝜎2

𝐺𝑃

, (3)

where 𝜎2
𝐺𝑃

is the process variance. Let us define the vector of hyperparameters 𝜸 = {𝜽 , 𝜇𝐺𝑃 , 𝜎
2
𝐺𝑃

}. First, 𝜇𝐺𝑃 is

estimated as

𝜇̂𝐺𝑃 = (1𝑇𝑹−11)−11𝑇𝑹−1𝒚. (4)

Notice that an analytical formulation exists for estimating 𝜎2
𝐺𝑃

if the GPR exactly interpolates the model. However,

no such formulation exists for regressing GP, which is why the process variance should be tuned together with the

lengthscales using a numerical optimization procedure. Our implementation uses the covariance matrix adaptation

evolution strategy [29] and local hill climbing to optimize the hyperparameters.

B. Support Vector Regression

In contrast to GPR, in which a kernel defines the correlation, SVR uses a kernel function to perform mapping into

high-dimensional space. To grasp the concept of SVR, let us begin with the linear SVR that makes a prediction using

the vector of coefficients 𝒘𝑆𝑉 and the bias term 𝑏, reads as

𝑓 (𝒙) = 𝒘𝑇
𝑆𝑉𝒙 + 𝑏. (5)

SVR trains the coefficients and the bias by minimizing the so-called 𝜀-insensitive loss function. The definition 𝜀 is such

that the loss function penalizes points outside the 𝜀 boundary.

There are various versions of SVR depending on the penalization type. In this paper, we use the 𝐿2-SVR which

reads as

L𝜀
2 =


0 if

�� 𝑓 𝑆𝑉𝑅 (𝒙) − 𝑦)
�� < 𝜀(�� 𝑓 𝑆𝑉𝑅 (𝒙) − 𝑦)

�� − 𝜀)2 otherwise
(6)

As one can see from Eq. (6), the 𝐿2-SVR uses a quadratic penalty in the formulation. After defining the penalization
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type, an SVR model is constructed by solving the following minimization problem:

min
1
2
| |𝒘 | |2 + 𝐶

2

𝑛∑︁
𝑖=1

(𝜉𝑖 + 𝜉∗𝑖 )2, (7)

subject to 𝑦 − 𝒘𝑇𝒙𝑖 − 𝑏 ≤ 𝜀 + 𝜉𝑖 , (8)

𝒘𝑇𝒙𝑖 + 𝑏 − 𝑦𝑖 ≤ 𝜀 + 𝜉∗𝑖 , (9)

𝜉𝑖 , 𝜉
∗
𝑖 ≤ 0, (10)

where 𝜉𝑖 and 𝜉∗
𝑖

are slack-variables and 𝐶 is the regularization parameter.

Central to nonlinear SVR is the "kernel trick," which allows an SVR to construct a nonlinear prediction using the

mapping function Φ(.). The prediction then reads as

𝑓 (𝒙) = 𝒘𝑇
𝑆𝑉Φ(𝒙) + 𝑏 =

𝑛∑︁
𝑖=1

(𝛼𝑖 − 𝛼∗𝑖 )Φ(𝒙𝑖)𝑇Φ(𝒙𝑖) + 𝑏. (11)

The high-dimensional product Φ(𝒙𝑖)𝑇Φ(𝒙𝑖) is accomplished by the kernel function 𝑘 (𝒙, 𝒙′; 𝜽). We can then write the

prediction of a nonlinear SVR as

𝑓 (𝒙) =
𝑁∑︁
𝑖=1

(𝛼𝑖 − 𝛼∗𝑖 )𝑘 (𝒙 (𝑖) , 𝒙) + 𝑏. (12)

The training process in SVR is accomplished by solving the following dual form:

min
1
2


𝜶

𝜶∗


𝑇 

𝑲̃ −𝑲̃

−𝑲̃ 𝑲̃



𝜶

𝜶∗

 +

𝜺 − 𝒚

𝜺 + 𝒚


𝑇 

𝜶

𝜶∗

 (13)

subject to:


1

−1∗



𝜶

𝜶∗

 =


0

0

 , 𝛼, 𝛼
∗ ≤ 0. (14)

where 𝛼 and 𝛼∗ are Lagrange multipliers, 𝑲̃ = 𝑲 + (1/𝐶)𝑰 is a modified Gram matrix, 𝑲 is the original Gram matrix,

with its (𝑖, 𝑗)-th components is 𝐾𝑖 𝑗 = 𝑘 (𝒙 (𝑖) , 𝒙 ( 𝑗 ) ; 𝜽), and 𝑰 is an 𝑛 × 𝑛 identity matrix. The set of hyperparameters in

SVR includes 𝐶, 𝜽 , and 𝜀, which need to be optimized to maximize the predictive power of SVR. This paper uses the

squared-exponential function as the kernel for SVR.

C. Using a surrogate model in practice

The surrogate model can then be deployed to serve engineering purposes, such as to aid optimization, uncertainty

analysis, or reliability analysis. For example, the calculation of statistical moments using Monte Carlo simulation

in uncertainty analysis now only needs to call 𝑓 (𝒙) in lieu of the actual function. The surrogate model, particularly
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GPR, is also helpful in Bayesian optimization that performs simultaneous exploration and exploitation of the design

space [30, 31]. Finally, a surrogate model can uncover useful patterns or insights as a cheap approximation of the true

relationship. Unfortunately, such information is often hidden by the highly complex expression of the model. Thus, an

additional tool is needed to create a curtain to take a peek inside the model.

Most of the explanation tools in the interpretable machine learning literature are model-agnostic. Therefore, any

surrogate model is explicable through the application of such tools. Although kernel-based methods are versatile and

capable of approximating highly non-linear functions, they are not directly interpretable to humans. The next section

explains SHAP, which acts as a post hoc explanation technique to dissect the surrogate model.

III. Shapley Additive Values for Surrogate Modeling

A. Preliminaries

Define [1 : 𝑚] := {1, 2, . . . , 𝑚} and the corresponding subset 𝑢 as 𝑢 ⊆ [1 : 𝑚]. Let us also define {−𝑢} = [1 : 𝑚] \𝑢

as the complement of 𝑢. Further, for an index 𝑢, denote Ω𝑢 as the subset of the 𝛀 where Ω𝑢 =
∏

𝑖∈𝑢 Ω𝑖 . Such a

definition is important because we need to calculate the model’s prediction when only the variables indexed in 𝑢 are

involved.

Using the language of function decomposition, the prediction of a surrogate model can be seen as the sum of the

contributions of individual variables and their interactions (or, using game theory jargon, "coalitions"):

𝑓 (𝒙) =
∑︁

𝑢⊆[1:𝑚]
𝑓𝑢 (𝒙𝑢), (15)

where 𝑢 ⊆ [1 : 𝑚] includes both the empty set ∅ and all non-empty subsets, and 𝑓𝑢 (𝒙𝑢) is the prediction of the model

using the subset of variables as indexed in 𝑢.

B. Shapley values

Define a "game" with 𝑚 players and a value function val(.) that returns a real value to the individual players or

their combinations thereof. All possible coalitions between players are defined in the subset of [1 : 𝑚]. Let us define

𝑢 ⊆ [1 : 𝑚] as the subset of input variables and the corresponding value function as val(𝑢). The Shapley value for a

player 𝑗 is written as follows:

𝜙 𝑗 =
1
𝑚

∑︁
𝑢⊆{− 𝑗 }

(
𝑚 − 1
|𝑢 |

)−1
(val(𝑢 ∪ { 𝑗}) − val(𝑢)). (16)

Consider a coalition 𝑢 that excludes 𝑗 . The definition of (val(𝑢 ∪ { 𝑗}) is the gain obtained when 𝑢 and 𝑗 are involved in

the coalition. It is then easy to see that the term inside the bracket on the right-hand side of the equation is the marginal
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contribution of player 𝑗 to the specific coalition 𝑢. Notice that the marginal contribution is calculated for all possible

coalitions 𝑢 ⊆ {− 𝑗}, for the marginal contributions to be summed out after being multiplied by the weight. Eq.( 16) can

be interpreted as follows. The Shapley value for a player 𝑗 is defined as the sum of the marginal contribution of player 𝑗

to all possible coalitions divided by the number of coalitions excluding 𝑗 of this size. The sum is then divided again by

the number of players to obtain the Shapley value of player 𝑗 .

One important and desirable property of Shapley value is efficiency, which states that the sum of Shapley values for

all players equals the value of the grand coalition (i.e., all variables are involved) val( [1 : 𝑚]). The Shapley value can

then be interpreted as the individual contributions of the players to the grand coalition. Notice that we have not defined

the "game" and the "player." Let us now put it into a context; that is, the "game" is the prediction of a surrogate model,

and the "players" are the input variables. The value of the grand condition is then the prediction of the surrogate model,

that is, val( [1 : 𝑚]) = 𝑓 (𝒙). The following section explains SHAP, which uses the principle of Shapley value to explain

a supervised machine learning model.

C. SHAP

There are several methods that use the principle of Shapley values (e.g., Shapley effects in GSA [32, 33]).Of interest

in this paper is the SHAP that decomposes the prediction of an interpolation/prediction at any instance, in contrast

to Shapley effects that work globally. Therefore, SHAP can explain why a machine learning model makes a certain

prediction for any point in the input space. In addition, SHAP can also explain the model on a more global scale by

using the information from multiple instances.

Let us formally define SHAP directly within the context of a predictive model. Consider a single vector of input 𝒙

and the corresponding prediction of the model, 𝑓 (𝒙). The following decomposition is the fundamental building block

of SHAP:

𝑓 (𝒙) = 𝜙0 +
𝑚∑︁
𝑗=1

𝜙 𝑗 (𝒙), (17)

where 𝜙0 is the prediction of the model without involving any variables (i.e., empty set), and 𝜙 𝑗 is the contribution of the

𝑗-th input to the prediction at 𝒙. It is common to define 𝜙0 = E[ 𝑓 (𝒙)], or as the mean of the responses of the training

set/experimental design. From a pragmatical viewpoint, 𝜙0 is the prediction made without any information regarding

the input variables. The sum of the Shapley values (i.e., SHAP) equals the difference between 𝑓 (𝒙) and 𝜙0. In this

sense, 𝜙 𝑗 then represents the contribution of the input 𝑗 to the main prediction. A variable that contributes positively to

the mean will have a positive SHAP value and vice versa.

Using Eq. (16), the calculation of SHAP for an arbitrary point 𝒙 in the input space is written as

𝜙 𝑗 (𝒙) =
1
𝑚

∑︁
𝑢⊆{− 𝑗 }

(
𝑚 − 1
|𝑢 |

)−1 (
𝑓𝑢∪{ 𝑗 } (𝒙𝑢∪{ 𝑗 }) − 𝑓𝑢 (𝒙𝑢)

)
, (18)
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where for a coalition 𝑢, 𝑓𝑢∪{ 𝑗 } (𝒙𝑢∪{ 𝑗 }) is the prediction of the model involving all variables in the index 𝑢 ∪ { 𝑗}, while

𝑓𝑢 (𝒙𝑢) involves only the variables indexed in 𝑢. In this regard, the term inside the bracket on the right-hand side of

Eq.( 18) is the marginal contribution of variable 𝑗 to the model’s prediction on the coalition 𝑢 (which excludes 𝑗).

Although the formulation looks simple, the calculation of SHAP is time-consuming since it is necessary to construct

2𝑚 models. Such a requirement comes from the necessity to calculate the value function for all possible permutations.

Therefore, the SHAP is usually estimated using approximation techniques, most notably KernelSHAP, which fits a

weighted local linear model at the query point [15].

D. Aggregated SHAP values

A metric for global sensitivity is obtained by averaging the absolute SHAP values, written as

Avg (𝜙) = 1
𝑛𝑚𝑐𝑠

𝑛𝑚𝑐𝑠∑︁
𝑖=1

𝜙(𝒙 (𝑖) ) (19)

where 𝑛𝑚𝑐𝑠 is the number of random samples for calculating Avg (𝜙). It is a common practice to compute the

averaged SHAP values using only the training data set. For design optimization and uncertainty analysis purposes,

it is preferable to use as many samples as possible to compute Avg (𝜙). To that end, we generate an external set

X𝑚𝑐𝑠 = {𝒙 (1) , 𝒙 (2) , . . . , 𝒙 (𝑛𝑚𝑐𝑠 ) }, where 𝑛𝑚𝑐𝑠 ≫ 𝑛 to estimate Avg.(𝜙). The distribution of X𝑚𝑐𝑠 is the same as that

of the training set (i.e., 𝛀).

In machine learning literature, SHAP is commonly used together with tree-based models, e.g., random forest or

gradient boosting. However, such models are not suitable for simulation-based engineering problems. The reason

why techniques such as GPR and SVR are preferred is that they provide smooth predictions. It is correct that SHAP

is unsuitable if there is a strong dependency between the input variables [34]. Fortunately, most engineering design

problems feature a set of independent variables.

E. Presenting SHAP values

There are several ways to present and visualize SHAP values to users. The information presented depends on how

the SHAP values are visualized. In this regard, SHAP can be presented for a single prediction or at a more global level

by showing the values for multiple predictions. However, in this paper, there is little interest in the SHAP values for a

single prediction. Instead, we have more interest in displaying the information at a single predictor (i.e., input variable)

or a more global level. First, one can compute and show the averaged SHAP values to determine the most important

variables. Although it is a common practice to calculate the averaged SHAP values using only the training samples, we

recommend using an external sampling set consisting of a large amount of samples for such a purpose. The reason is

that the limit and the upper bounds of the input variables, or the distributions, are typically known in the first place.
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The SHAP summary plot depicts multiple useful information in a single plot. Notice that variables in the summary

plot are usually sorted according to their importance as measured by the averaged SHAP values, in which the uppermost

variable in the plot is the most important one. The correlation between input variables and the corresponding SHAP

values is visible in the summary plot. However, it is better to visualize such information in a single dependent plot.

The SHAP summary plot is primarily useful to visualize the impact of all variables on the output simultaneously.

Nevertheless, observing the interaction and degree of nonlinearity from the SHAP summary plot is relatively difficult,

which is where independent dependence plots are more useful.

The SHAP values for one particular variable can be shown with respect to the input value of the variable in the form

of a scatter plot. Such a dependency plot is useful since it reveals multiple information regarding that particular variable

in a single plot, including the level of nonlinearity and possible interactions with other variables. Interactions appear as

scattered dots for a particular value of the input variable. The dots in SHAP dependence plot are usually colored by the

input values of the other variable. The coloring will show a noticeable pattern if there is a strong interaction between the

two variables.

In the next section, the functionality of SHAP visualization is demonstrated in multiple forms on various engineering

problems. The SHAP is compared with the Morris elementary effect (EE) method [35, 36]. Morris’ method yields the

mean and standard deviation of the elementary effect, which gives information on the global sensitivity and nonlinearity

to the user. In this paper, we use UQLab to calculate the Morris EE [37].

IV. Computational Results and Discussions

A. Wing weight function

The wing weight problem is an analytical function that models a light aircraft wing. The output of interest is the

wing’s weight which is affected by ten input variables listed in Table 1. The expression for the wing weight function

reads as

𝑓 (𝒙) = 0.036𝑆0.758
𝑤 𝑊0.0035

𝑓 𝑤

(
𝐴

𝑐𝑜𝑠2 (Δ)

)0.6
𝑞0.006𝜆0.04

(
100𝑡𝑐
𝑐𝑜𝑠(Δ)

)−0.3
(𝑁𝑧𝑊𝑑𝑔)0.49 + 𝑆𝑤𝑊𝑝 . (20)

It is difficult to guess the true complexity of the problem by looking at Eq.(20). However, there is an impression that

Eq.( 20) is highly nonlinear, given the presence of power and trigonometric terms. An SVR model with 𝑛 = 500 is

built to fit the function. The model yields 𝑅2 = 1 and 𝑅𝑀𝑆𝐸 = 7.3 × 10−3, which accuracy is more than sufficient for

knowledge discovery.

The result from EE analysis is shown in Fig. 1. Shown in these figures are the mean and standard deviation of the

distributions, denoted as 𝜇𝑀𝑅 and 𝜎𝑀𝑅, respectively. Also shown is the mean of the distribution of the absolute values

𝜇∗
𝑀𝑅

, which is useful for analyzing the strength of the input variables. Notice that the EE information is extracted from

the SVR model and not directly from the wing-weight function. As expected, the EE method does not fully reveal
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Table 1 Variables used in the wing weight function.

Variables Variable Name (unit) [lower, upper bound]
𝑆𝑤 Wing area (ft2) [150, 200]
𝑊 𝑓 𝑤 Weight of fuel in the wing (lb) [220, 300]
𝐴 Aspect ratio [6, 10]
Δ Quarter-chord sweep (degrees) [-10, 10]
𝑞 Dynamic pressure at cruise (lb/ft2) [16, 45]
𝜆 Taper ratio [0.5, 1]
𝑡𝑐 Airfoil thickness to chord ratio [0.08, 0.18]
𝑁𝑧 Ultimate load factor [2.5, 6]
𝑊𝑑𝑔 Flight design gross weight (lb) [1700, 2500]
𝑊𝑝 Paint weight (lb/ft2) [0.025, 0.08]

(a) 𝜇𝑀𝑅 vs 𝜎𝑀𝑅 (b) 𝜇∗
𝑀𝑅

vs 𝜎𝑀𝑅

Fig. 1 Summary plots of Morris’ elementary effects for the wing weight function.

the nonlinearity of the wing-weight function. According to sample means, EE shows that 𝑁𝑧 , 𝐴, 𝑡𝑐, 𝑆𝑤 , and𝑊𝑑𝑔 are

the five variables that contribute most to the aircraft’s weight. EE also indicates that 𝑁𝑍 , 𝐴, and 𝑡𝑐 have the highest

sample standard deviation among the ten variables, indicating strong nonlinearity and/or interactions. EE also correctly

identified that Δ, 𝜆,𝑊𝑝 ,𝑊 𝑓 𝑤 and 𝑞 contribute only a little to the weight function. The airfoil thickness-to-chord ratio

has negative 𝜇𝑀𝑅, indicating that increasing 𝑡/𝑐 leads to decreased wing weight (due to heavier internal structure).

Regardless, it is difficult to distinguish which one is most dominant from EE: nonlinearity or interactions. Therefore,

it can be seen that EE only shows partial information to the user. EE is useful on its own, but its capability to reveal

information is relatively limited.

The averaged SHAP values calculated from X𝑚𝑐𝑠 (10000 samples) are shown in Fig. 2. The averaged SHAP values
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Fig. 2 Averaged SHAP values estimated from the SVR model for the wing weight function.

(a) Six most important variables (b) Four least important variables

Fig. 3 SHAP dependence plots for the wing weight function. The left and right figures show the six most
important and the four less influential variables, respectively. Notice the different scales on the 𝑦-axis.

indicate that 𝑁𝑧 , 𝐴, 𝑡𝑐, 𝑆𝑤 , and𝑊𝑑𝑔 significantly dominate the change in the wing-weight function. On the other hand,

the impact of the other variables is much smaller. In terms of the input importance, the observation from SHAP agrees

well with Morris’ method. However, EE only informs whether the input non-linearly affects the output or interacts with

other variables without any information regarding the level of nonlinearity and interaction.

Most importantly, SHAP can simultaneously display the non-linearity and interaction in single or multiple plots.

Fig. 3 depicts the SHAP dependence plots for the wing weight function. The inputs are shown in their normalized

values (i.e., [0, 1]) to allow simultaneous visualization of multiple variables within a single plot. Fig. 3a shows the
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six most influential variables, while Fig. 3b is for the rest of the variables, which are significantly less influential than

the others. Only 200 samples are shown to avoid too cluttered plots. It can be seen from Fig. 3 that the impact of all

variables on the weight is mostly linear or slightly nonlinear at best. The only exception is the quarter-chord sweep (Δ)

which nonlinearly affects the wing weight in a quadratic fashion, but its contribution is relatively insignificant.

The interactions between input variables are small and unimportant since the SHAP values are slightly scattered

for only a few variables. For example, the scattered values in the SHAP for 𝑁𝑧 indicates the slight nonlinear effect

or interactions. Interestingly, SHAP uncovers that the wing-weight function is relatively simple, despite the complex

expression in Eq.(20). The expression in Eq.(20) is also not easily decipherable by humans and might give a wrong

impression of the complexity, while visualization from SHAP is easier to comprehend. SHAP also shows the correlation

between input variables and the wing’s weight. Variables 𝑁𝑧 , 𝐴, 𝑆𝑤 , and 𝑊𝑑𝑔 positively correlate with the wing’s

weight, which makes sense. In addition, the SHAP plot also reveals that all variables but Δ monotonously affect the

output of interest. The knowledge obtained from SHAP analysis matches the actual knowledge regarding the wing

weight function. For example, keeping the wing area small is important to avoid an excessively heavy wing. To take

another example, it also makes sense the paint weight𝑊𝑝 do not significantly affect the weight, compared to the flight

design gross weight𝑊𝑑𝑔.

B. Piston simulation function

The next problem is a simple analytical piston simulation function with seven input variables [38]. The problem is

widely used in UQ and GSA literature to benchmark various methods. The piston simulation function describes the

circular motion of a piston within a cylinder, with the output of interest being cycle time 𝐶 (the time for completing one

cycle) in seconds. There are seven input variables for this problem as listed in Table 2. The equation for the piston

simulation function is written as

𝐶 (𝒙) = 2𝜋
√︄

𝑀

𝑘 + 𝑆2 𝑃0𝑉0
𝑇0

𝑇𝑎
𝑉2

, where

𝑉 =
𝑆

2𝑘

(√︂
𝐴2 + 4𝑘

𝑃0𝑉0
𝑇0

𝑇𝑎 − 𝐴
)

𝐴 = 𝑃0𝑆 + 19.62𝑀 − 𝑘𝑉0
𝑆

(21)

As one can see from Eq.(21), the problem involves a chain of nonlinear functions. The first impression when seeing

Eq.(21) is that the function is highly nonlinear. For this problem, a GPR model with Gaussian kernel and 𝑛 = 500

samples is fitted. The accuracy of the built SVR is 𝑅2 = 0.999 and 𝑁𝑅𝑀𝑆𝐸 = 0.0066, which is already highly accurate

for the model to be reliable in terms of the extracted knowledge.

The summary plots of the Morris’ EE for the piston simulation function are shown in Fig. 4. The plots identified that

the strongest variable is 𝑆, followed by 𝑉0, 𝑚, and 𝑘 , with the contribution of the rest of the variables are not significant.
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Table 2 Variables used in the piston simulation function

Variables [lower, upper bound]
Piston weight (𝑚) [30,60] kg

Piston surface area (𝑆) [0.005,0.020] m2

Initial gas volume (𝑉0) [0.002, 0.010] m3

Spring coefficient (𝑘) [1000, 5000] N/m
Atmospheric pressure (𝑃0) [90000, 110000] 𝑁

m2

Ambient temperature (𝑇𝑎) [290, 296] K
Filling gas temperature (𝑇0) [340, 360] K

(a) 𝜇𝑀𝑅 vs 𝜎𝑀𝑅 (b) 𝜇∗
𝑀𝑅

vs 𝜎𝑀𝑅

Fig. 4 Summary plots of Morris’ elementary effects for the piston simulation function.

Increasing 𝑆 and 𝑘 tends to decrease the cycle time, while it is the opposite for the other variables. We can also see

that 𝑘 and 𝑚 have similar values of 𝜇∗
𝑀𝑅

, but the former has a higher standard deviation. This indicates that the effect

of 𝑘 is more nonlinear than 𝑚, or 𝑘 interacts stronger with other variables. Again, EE does not reveal how the inputs

specifically affect the behavior of the cycle time.

The averaged SHAP values for the piston simulation function are shown in Fig. 5. It can be seen that the most

important variable is piston surface area, followed by initial gas volume, piston weight, and spring coefficient (the

ranking is similar to that of the EE). The impact of the other three variables are significantly less than the first four

variables. Fig. 6 depicts the SHAP dependence plot for all the seven variables, normalized to [0, 1]7, within a single plot.

Starting from the less influential variables, we observe that the effects of the ambient temperature (𝑇𝑎) and filling gas

temperature 𝑇0 are significantly smaller than the other, as evidenced by their extremely small SHAP values. However, it

is difficult to observe the non-significance of 𝑇𝑎 and 𝑇0 from the piston simulation equation as shown in Eq. (21). It can

be seen that the piston weight 𝑚 and initial gas volume 𝑉0 positively correlate with the cycle time, with the increment in

13

D
ow

nl
oa

de
d 

by
 P

ra
m

ud
ita

 P
al

ar
 o

n 
Ja

nu
ar

y 
31

, 2
02

3 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

02
3-

03
32

 



Fig. 5 Average SHAP values estimated from the GPR model for the piston simulation function.

Fig. 6 SHAP dependence plots for the piston simulation extracted from the GPR model.

piston surface 𝑆 significantly decreasing the cycle time. Another interesting observation is how the spring coefficient 𝑘

affects the cycle time. The increase in spring coefficient generally decreases the cycle time, but it strongly interacts

with the other variables, as seen from the highly dispersed SHAP values. Therefore, the high standard deviation of 𝑘 is

mainly due to the interaction with the other variables rather than nonlinearity. Similarly, the SHAP values of the piston

surface area also show evidence of weak interaction with other variables.

C. Re-entry trajectory problem

The last problem is the stochastic re-entry trajectory analysis of an Apollo type with seven input parameters. The

problem is an uncertainty quantification problem in which the input parameters are assumed to be normally distributed
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as shown in Table 3. We use the falling range, which is defined as the flight distance in the horizontal direction (see

Fig. for the schematic), as the output of interest to be approximated. The aerodynamic quantities are calculated using

a modified Newtonian impact theory, with the capsule modeled with a mesh of triangle facets. More details on this

problem can be found in Tokunaga et al. [39].

Table 3 Stochastic input variables used in the re-entry trajectory analysis problem

Variables Variable names (unit) [Mean value, Standard deviation]
ℎ Altitude (m) [80000,7000]
𝑉 Velocity (m/s) [7140,200]
𝛼 Attitude angle/angle of attack (deg) [180, 5]
𝑚 Mass (kg) [5762, 576]
¤𝑞 Pitch rate (deg/) [0, 20]
𝐼 Moment of inertia (kg.m2) [7150, 715]
𝛾 Path angle (deg) [15, 5]

Fig. 7 A schematic depiction of the Apollo-type capsule re-entry trajectory analysis problem [39].

A GPR model with 1000 samples was constructed to extract the SHAP and EE values. Despite the large sample size,

we found the coefficient of determination between the prediction and the actual falling range is only 0.952 (we expected

around 0.99). However, the obtained accuracy is deemed sufficient for SHAP and EE analysis to uncover the general

trend. To further verify this, the histograms of the falling range from the actual simulation and the GPR model closely

resemble each other, giving us confidence in the extracted SHAP values.

First, the Morris’ EE summary plots are shown in Fig. 9. The significantly strong contribution of the attitude angle

𝛼 is obvious from the summary plot. Moreover, the EE summary plots also reveal that the overall impact of attitude

angle is decreasing the falling range. Notice that the EE summary plots give the impression that increasing all the other

variables lead to an increased falling range. However, as shown in the SHAP analysis soon, this turns out to be incorrect

for the path angle 𝛾.
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Fig. 8 Histograms of falling range from the actual simulation and the GPR model

(a) 𝜇𝑀𝑅 vs 𝜎𝑀𝑅 (b) 𝜇∗
𝑀𝑅

vs 𝜎𝑀𝑅

Fig. 9 Summary plots of Morris’ elementary effects for the re-entry trajectory analysis problem.

SHAP proved to be useful for performing knowledge discovery in the context of this problem because we obtained

additional useful information. The computed averaged SHAP values are shown in Fig. 10. The result shows that the

attitude angle plays a prominent role in determining the falling range, followed by the path angle. The next important

variables are altitude ℎ and velocity 𝑉 , with the remaining variables contributing little to the variation in the falling

range. The SHAP dependence plot shows clear trends (see Fig. 11), especially how the attitude angle affects the falling

range. That is, the increase in attitude angle decreases the falling range, with a slight but visible nonlinear trend. The

SHAP dependence plot for the path angle shows that increasing and decreasing the path angle from its nominal value

leads to a decrease in the falling range (although the impact is less significant than that of the attitude angle); It is worth
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Fig. 10 Averaged SHAP values estimated from the GPR model for the re-entry trajectory analysis problem.

(a) Three most influential variables (b) Four less influential variables

Fig. 11 SHAP dependence plots for the re-entry trajectory analysis problem. The left and right figures show the
three most influential variables and the four less influential variables, respectively. Notice the different scales on
the 𝑦-axis and the standardized 𝑥-scale.

noting that such a variation is not visible from the EE summary plot. It can also be observed that the increase in altitude

ℎ and velocity𝑉 yields a higher falling range. As for the mass, increasing the mass leads to only an insignificant increase

in the falling range. Interactions between variables exist, primarily those between the three most influential variables

(namely, 𝛼, 𝛾, and ℎ). Lastly, the effect of pitch rate ¤𝑞 and moment of inertia 𝐼 on the falling range is negligible.

SHAP clearly shows its advantage over Morris’ EE analysis on the re-entry trajectory problem. Although Morris’ EE
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analysis is still useful on its own to provide a quick interpretation of the result (especially to show the relative strength of

the input variables), it does not reveal important trends, such as the non-monotonous relationship between the path

angle and the falling angle.

V. Conclusions and future works
This paper demonstrates the application of SHAP with surrogate modeling for aiding visualization and analyzing

input-output relationships in an informative way. Despite its wide application in a general machine learning context, the

use of SHAP is still not widespread in the engineering domain. In this paper, we demonstrate the applicability of SHAP

for helping data-driven engineering analysis and design. SHAP allows users to observe and see several important trends

intuitively, which is useful for exploratory analysis in the context of design, optimization, or uncertainty analysis.

The usefulness of SHAP as a tool to explain surrogate models is demonstrated on a ten-variable wing-weight

function, seven-variable piston simulation function, and seven-variable re-entry trajectory analysis problem. The results

show that SHAP can uncover and visualize how the inputs change the output of interest, which greatly aids engineers in

gaining important insight into the problem. In addition, SHAP also shows the magnitude of importance and how the

input variables specifically interact with each other. We contrasted SHAP with Morris’ elementary effect, in which the

latter only gives information on the presence of nonlinearity and interaction without further detailed information. SHAP

is also a versatile post-processing tool because it is a model-agnostic method; that is, it can be used with any surrogate

model.

The KernelSHAP algorithm can still be slow, especially for a large sample size. For future works, analytical or

fast calculation of SHAP is necessary to accelerate the analysis problem (especially in the context of the GPR and

SVR model). Another interesting research direction is to compare SHAP with other interpretability techniques or

established methods in global sensitivity analysis, e.g., Sobol indices. Finally, studying SHAP for individual points in

multi-objective optimization is also one potential future research direction.
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