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Abstract. We describe a theoretical proposal of a nanofibre-based trap for a
Rb2 molecule prepared in the metastable state (1)3Σ+

u . The trapping potential
results from the combination of a travelling and a standing-wave fields, both
carried by the fundamental guided mode HE11 of the fibre. We show that,
with an experimentally realistic choice of laser frequencies and powers, one can
implement a ≈ 200 µK-deep well at ≈ 140 nm from the fibre surface accomodating
for ≈ 500 translational molecular states.
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1. Introduction

For the past twenty years, an important effort has been devoted to the development of
quantum light-matter interfaces which are instrumental for future quantum networks
[1]. In 2002, K. Hakuta and coauthors first suggested that a stretched optical fibre,
whose radius at its waist is less than the wavelength of the guided light, could be
a valuable candidate for such a platform. The strong evanescent component of the
guided field can indeed couple to neighbouring particles [2] and be used, e.g., to
optically trap single cold atoms in the close vicinity of the fibre [3]. The storage [4, 5]
and Bragg reflection [6, 7] of guided photons could also be demonstrated in arrays
of such trapped atoms along a silica nanofibre. Optical nanofibres moreover appear
as promising and versatile setups for the investigation of new non-linear quantum
optical effects involving cold atoms, and for applications in quantum computation,
communication and simulation [8].

Though less extensively explored than atoms, molecular systems have, however,
started to be considered for their potential applications in quantum technologies [9].
It has long been known that a qubit of information can be typically stored in two low-
lying long-lived energy eigenstates of a molecule [10, 11, 12, 13, 14], while alternative
approaches resort to vibrational or spin degrees of freedom [15, 16]. Recently, a
theoretical scheme was put forward to robustly encode quantum information in the
rotational states of individual molecules [17]. In view of their rich internal structure,
ultracold polar molecules trapped in arrays of optical tweezers were also reckoned as a
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promising tool for quantum simulation of many-body physics [18] and robust storage
and transmission of quantum information [19, 20, 21]. The parallel preparation of five
NaCs molecules was recently achieved in such a structure which offers full internal
and motional state control [22].

In the present work, we take the first step towards building a platform for quantum
technologies which combines the potentialities of nanofibres and free single molecules
– we note that an optical-nanofibre-based interface was already implemented for
single organic molecules embedded within a crystal [23]. More precisely, our goal
here is to theoretically investigate how to trap the diatomic molecule Rb2 in the
vicinity of a silica optical nanofibre. The electronic structure of the Rb2 molecule has
been the subject of several theoretical studies [24, 25], stimulated by the possibility
to photoassociate and manipulate cold molecules. The ground state (1)1Σ+

g and
the metastable state (1)3Σ+

u both correlate in the asymptotic limit to a pair of
atoms in their ground state, 5s 2S 1

2
. In particular, the metastable state (1)3Σ+

u

was experimentally produced in a free-space photoassociation scheme involving the
excited state 3Πg which correlates to the asymptotic limit 5s 2S 1

2
+5p 2P 1

2
[24]. It was

also suggested that the photoassociation process may be made more efficient through
coupling to a photonic crystal [26]. Here, we show that the Rb2 molecule prepared
in its metastable state (1)3Σ+

u can be optically trapped in the vicinity of an optical
nanofibre by the combination of a travelling and a standing-wave fields both carried
by its fundamental guided mode HE11.

Our article is structured as follows. In section 2, we present the system, recall
basic equations and provide useful molecular data. In section 3, we present our
numerical results, provide the frequencies and intensities of the trapping fields as
well as the shape and depth of the resulting trapping potential. We also discuss the
interest and limitations of our results – in particular we justify why the Casimir-Polder
force acting on the molecule may be safely neglected. Finally, we conclude in section 4,
and give perspectives of our work. Complementary information is given in appendices.

2. Presentation of the system

We consider the situation represented in figure 1. A diatomic molecule Rb2 is located
in the vicinity of a silica optical nanofibre of radius a = 200 nm, axis (OZ) and whose
optical index is n1 = 1.45 for the frequencies of the laser beams we shall consider
below. The centre of mass of the molecule, G, is at the distance R from the fibre axis
and the space- and molecular-fixed Cartesian frames are denoted by (OXY Z) and
(Gxyz), respectively.

A laser beam of frequency ω1 is sent through the nanofibre and excites the

fundamental guided mode HE
(X)
11 travelling along (OZ) and quasi-linearly polarized

along (OX), of electric field positive-frequency component E
(+)
1 . Another pair of

counter-propagating laser beams induces a standing-wave in the fundamental guided

mode HE
(X)
11 at frequency ω2 < ω1, whose electric field positive-frequency component

is denoted by E
(+)
2 . Explicit expressions for E

(+)
1,2 can be found in Appendix A. These

fields have a substantial evanescent component outside the fibre which interacts with
the molecule. The resulting optical potential writes

U = −
∑
j=1,2

[
E

(+)
j

]∗
·α (ωj) ·E(+)

j (1)
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Figure 1: A diatomic Rb2 molecule is located in the vicinity of an optical nanofibre
of radius a = 200 nm. The distance from the molecular centre of mass to the fibre
axis is denoted by R. Inside the fibre, the refractive index is n1 = 1.45 (silica in the
transparency window), outside it is n2 = 1 (vacuum). The axis of the nanofibre is
arbitrarily chosen as the Z-axis. The space-fixed Cartesian and cylindrical basis unit
vectors (eX , eY , eZ) and (eR, eΘ, eZ) are introduced in inset (a). The position vector
of the molecular centre of mass, G, is ReR (Θ). The molecule-fixed frame Cartesian
basis unit vectors (ex, ey, ez) and Euler angles (θ, φ, χ) are represented in inset (b),
as defined in [28], pp.78-80.

where α (ω) denotes the molecular dynamic polarisability tensor at frequency ω defined
relatively to the state of the molecule.

The analytical expressions of the spherical components of the molecular
polarisability tensor, αµν (µ, ν = −1, 0, 1), are provided in Appendix B as sums over
transitions between the states under consideration, here the rovibrational states –
denoted by |φn〉 – associated to the (1)3Σ+

u electronic state and the rovibrational
states, |φn′〉, associated to other excited electronic states, see equation (B.1). Here
n and n′ stand for complete sets of quantum numbers including, among others, Λ,
the projection of the electronic orbital angular momentum onto the body-fixed z
axis (we recall that Λ = 0 for a Σ electronic state, Λ = ±1 for Π states), as
well as v and J the vibrational and rotational quantum numbers, respectively. In
practice, we restricted ourselves to the two perpendicular (Λ − Λ′ = ±1) transitions
(1)3Σ+

u → (1)3Πg and (1)3Σ+
u → (2)3Πg, and the two parallel (Λ−Λ′ = 0) transitions

(1)3Σ+
u → (1)3Σg and (1)3Σ+

u → (2)3Σg. We included 500 vibrational states in the
calculations. The corresponding electronic transition dipole moments are given in
[25]. In the present case, because of the geometry of the molecule, only three spherical
components of the polarisability tensor are non zero : α−11, α1−1 and α00. From them,



Nanofibre-based trap for Rb2 molecule 4

the three diagonal Cartesian components of the polarisability tensor are obtained:
αXX = αY Y = − 1

2 (α1−1 + α−11), αZZ = α00. These Cartesian components provide
a simple geometrical interpretation of the results.

It is known that the best representation of the Rb2 molecule is provided
by Hund’s case (b) [26, 27]. Then additional quantum numbers – the total
angular momentum J , M its projection on the Z axis as well as N , the total
angular momentum exclusive of spins – are necessary to fully characterize the
molecular state. In this case, the polarisability of the ground rovibrational state∣∣(1)3Σ+

u , v = 0, J = 1, N = 0,M = 0,±1
〉

is independent of M and purely scalar
(neither vector nor tensor components). The scalar part given by

αsc =
1

3

∑
µ=−1,0,1

(−1)µαµ−µ

is shown on fig. 2 as a function of ω. The polarisability goes through divergences in
resonance bands associated to the transitions between rovibrational states supported
by the 3Σg and 3Πg potentials. For the sake of comparison, we also plotted the
approximate analytical form given by equation (8) in [29]. The latter was obtained
from a fit of another numerical calculation performed with different quantum chemistry
data. In particular, the numerical simulation in [29] took more excited electronic states
into account. Except in the resonance bands – where the fit is anyway not expected
to be valid – we observe a good agreement between our results and those of [29]. This
suggests that the restricted set of electronic states considered in our calculations is
sufficient to get accurate values for the polarisability.

We note that the polarisability is positive for frequencies lower than those in
the resonance band and negative above, as expected from the presence of factors
1/(ω2

n′n−ω
2) in equation (B.1). Below we shall take advantage of this property to

design a bichromatic optical trapping potential.
Although it is not adapted to the molecule at stake, we shall also consider Hund’s

case (a). In this limit, polarisability has specific alignment properties and recovers
its full tensorial character. The projection of the spin angular momentum onto the
molecular-fixed z axis, Σ = 0,±1, now becomes a good quantum number and so does
the total angular momentum projection, Ω = Λ + Σ. The wavefunction has specific
rotational properties which reflect in the polarization alignment properties. Treating
the particular Hund’s case (a) goes beyond a purely textbook-like exercise since it
will allow us to draw general conclusions on how the trapping of a molecule by an
anisotropic electric field is influenced by its alignment properties.

3. Numerical results and discussion

In this section, we present the numerical results we obtained. First, we specify the
physical parametres we considered for the laser fields and the molecular polarisability
tensor components at the relevant frequencies. We then analyse the trapping potentials
we calculated for the molecule treated in either Hund’s cases (a) or (b) and specify
their main features. Finally, we discuss some possible limitations and perspectives of
our calculations.
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Figure 2: Full line : Scalar polarisability of Rb2((1)3Σ+
u ) as a function of field

wavenumber, from our numerical simulation. Dashed line : the scalar polarisability
from the analytical fit given by equation (8) in [29]. The two vertical dashed-dotted
lines correspond to the wavenumbers of the two fields used to trap the molecule.

System parametres

Table 1 provides the parametres of the travelling and standing-wave fields:
the (absolute) frequency, ω, the adimensioned wavevector in vacuum, ka, the
adimensioned propagation constant, βa, solution of the characteristic equation (A.3),
the (adimensioned) parametres ha and qa as defined in equation (A.1), the parametre
s as defined in equation (A.2), the amplitude, A, and power, Π, in atomic units.
Note that the standing-wave field intensity is periodic in Z and the period is given by
π/β2 ≈ 530 nm.

On the other hand, Table 2 shows the non-vanishing components of the molecular
polarisability tensor for the Rb2 molecule prepared in the metastable state (1)3Σ+

u at
the laser frequencies ω1,2. The values were numerically calculated in the two limiting
Hund’s cases (a) and (b). In the latter case, it is restricted to its scalar component
and it does not depend on the value of M = 0,±1. These results can be interpreted
in terms of the alignment properties of the molecular states, as we shall now see. The
molecular polarisability results from the combined contributions of Σ→ Σ and Σ→ Π
transitions, whose moments are respectively parallel and orthogonal to the molecular
axis. To be more explicit, the space-fixed Cartesian components of the polarisability
are given by [30]

αii = aiα‖ + (1− ai)α⊥ (2)
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Travelling field Standing-wave field

ω ω1 = 14319 cm−1 ω2 = 9244 cm−1

ka k1a ≈ 1.79938 k2a ≈ 1.16164
βa β1a ≈ 2.03575 β2a ≈ 1.18227
ha h1a ≈ 1.62297 h2a ≈ 1.19467
qa q1a ≈ 0.952109 q2a ≈ 0.219907
s s1 ≈ −0.856465 s2 ≈ −0.971884
A A1 ≈ 2.54951× 10−6 a.u. A2 ≈ 8× 10−7 a.u.
Π Π1 ≈ 6.80693× 10−6 a.u. Π2 ≈ 4.30252× 10−6 a.u.

Table 1: Physical parametres of the trapping laser fields (see main text for the
definition of the quantities listed here).

where i = X,Y, Z, α‖,⊥ denote the respective contributions of Σ → Σ and Σ → Π
transitions, and the ai’s quantify the degree of alignment of the molecular axis ez with
respect to the space axes for a given space-fixed molecular state |φsn〉 (see Appendix
B)

ai = 〈φsn| (ei.ez)
2 |φsn〉 (3)

with the obvious relation
∑
i ai = 1. If the molecular were laid isotropically in space,

one would have ai = 1
3 . Deviation from this value is therefore indicative of anisotropy

in the molecular layout. The alignment parametres extracted from the polarizabilities
in Table 2 using equation 2 are given in the same table. As expected, only the
Hund’s case (b) state, N = 0, is fully isotropic. Note that the alignment parametres
ai’s can also be obtained directly from equation 3 by integration over the angles
(θ, φ) (figure 1), since the states |φsn〉 depend on these angles through the symmetric
top rotational wavefunctions |JΩM〉 (equation B.3), which are known analytically as
Wigner rotation matrix elements (see [28], equation (3.125), p. 105). The alignement
parametres extracted from the polarisability tensor coincide with those obtained by
direct analytical angular integration.

Trapping potential

Figure 3 shows contour plots of the two-lobe trapping potential U we obtained in
Hund’s cases (a) (subfigures a, b, and c), and (b) (subfigure d) as a function of (X,Z)
for Y = 0 (left column) and (X,Y ) for Z = 0. This is complemented by figure 4 which
shows the behaviour of U as a function of R when Θ = 0 and Z = 0 (subfigure a),

Θ when Z = 0 and R is set to the value R
(s)

min which minimizes the potential when

Θ = 0 and Z = 0 for the state s considered (subfigure b), and Z when R = R
(s)

min and

Θ = 0 (subfigure c).
For the specific Hund’s case (b), a potential minimum Umin ≈ −4 mK is obtained

for R ≈ 1.7a ≈ 340 nm, Θ = 0, π and Z = νπ/β2 with ν ∈ Z (subfigure 3 d). In this

case, the trapping potential is given by : U = −
∑
j=1,2 α

(j)
sc

∣∣∣E(+)
j

∣∣∣2, where α
(j=1,2)
sc

denote the scalar polarizabilities at the travelling and standing-wave field frequencies,

respectively. Since α
(1)
sc ≈ −α

(2)
sc (see Table 2), one has U ≈ −α(2)

sc

(∣∣∣E(+)
2

∣∣∣2 − ∣∣∣E(+)
1

∣∣∣2)
and the trap is located in the region of space where

∣∣∣E(+)
2

∣∣∣2 − ∣∣∣E(+)
1

∣∣∣2 is maximal.
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ω1 ω2

αsc = −3000.92
α‖ = −1034.53
α⊥ = −3984.11

αsc = 2998.83
α‖ = 6804.32
α⊥ = 1096.07

Hund’s case (a)

(M,Σ) =

{
(0,±1)
(±1, 0)

αXX = αY Y = −2804.28
αZZ = −3394.20

αXX = αY Y = 3379.37
αZZ = 2237.73

aX = aY = 0.4 aZ = 0.2

(M,Σ) = (0, 0)
αXX = αY Y = −3394.20

αZZ = −2214.36
αXX = αY Y = 2237.73

αZZ = 4521.02
aX = aY = 0.2 aZ = 0.6

(M,Σ) =

{
(1,±1)

(−1,±1)

αXX = αY Y = −3099.24
αZZ = −2804.28

αXX = αY Y = 2808.55
αZZ = 3379.37

aX = aY = 0.3 aZ = 0.4

Hund’s case (b)
M = 0,±1
N = 0

αXX = αY Y = αZZ = −3000.92 αXX = αY Y = αZZ = 2998.83
aX = aY = aZ = 1/3

Table 2: Scalar, parallel, perpendicular polarizabilities and non vanishing space-fixed
Cartesian components of the molecular polarisability tensor {αXX , αY Y , αZZ} in the
Hund’s cases (a, b) for different (M,Σ) and N quantum numbers. The alignment
parametres aX , aY , aZ are also given. The molecule is in the state (1)3Σ+

u , v = 0, J =
1. The polarizabilities are in atomic units.

Approximating the potential around its minimum by three independent
harmonic oscillators along X, Y and Z axes, i.e. U (X,Y, Z) ≈ Umin +
1
2

(
kXX

2 + kY Y
2 + kZZ

2
)
, we numerically find the following values for the spring

constants kj=X,Y,Z and associated energies ~ωj ≡ ~
√

kj
m

kX ≈ 9.5 mK · a−2 ~ωX ≈ 26 µK

kY ≈ 1.0 mK · a−2 ~ωY ≈ 9 µK

kZ ≈ 17.5 mK · a−2 ~ωZ ≈ 35 µK

Figure 5 shows 3D views (subfigure a) and contour plots (subfigure b) of the two
lobes of the trapping potential around Z = 0. There, the boundary of the trap
was arbitrarily fixed at −3.8 mK, which corresponds to a trap depth of 200 nK.
For this choice, tunnel effect between different lobes was numerically checked to be
negligible and each lobe can accomodate for about 500 translational bound states of
the molecule. The dimensions of the trap along X, Y and Z are respectively found to
be approximately 0.4a = 80 nm, 1.3a = 260 nm and 0.3a = 60 nm.

Hund’s case (a) leads to qualitatively similar results as case (b). Now, as shown in
Table 2, the molecular polarisability tensor takes three different values corresponding
to three groups of (M,Σ) components, each group being associated to a specific
alignement parameter aZ . For each of these state manifolds, the general shape of
the trap is the same as for Hund’s case (b) but the position of the minimum differs
in R, as can be seen in figures (3,4). The shape of the optical trap experienced by
the molecule in its different states results from the combined effects of its alignment
properties and the anisotropy of the electric field. The potential can indeed be written
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U = V + aZW, with

V ≡ 1

2

∑
j=1,2

{(
α

(j)
‖ − α

(j)
⊥

) ∣∣∣E(+)
j,Z

∣∣∣2 − (α(j)
‖ + α

(j)
⊥

) ∣∣∣E(+)
j

∣∣∣2}

W ≡ 1

2

∑
j=1,2

(
α

(j)
‖ − α

(j)
⊥

)(∣∣∣E(+)
j

∣∣∣2 − 3
∣∣∣E(+)

j,Z

∣∣∣2)
where E

(+)
j,Z denotes the Z component of the field E

(+)
j . When W > 0 (< 0), the

potential increases (decreases) with aZ . This observation allows us to explain the

ordering of the curves in Fig. 4 (c). Around the trap minimum Z = 0, R = R
(s)

min
and Θ = 0, W is found to be positive from inspection of the electric fields and U
increases with aZ : the smallest trap minimum is hence obtained for Hund’s case (a)
(M,Σ) = (0,±1) , (±1, 0) characterized by aZ = 0.2, while the largest one is observed
for Hund’s case (a) (M,Σ) = (0, 0) characterized by aZ = 0.6. By contrast, around

Z = π
2β2

, R = R
(s)

min and Θ = 0, W is negative and U decreases with aZ : the order
of the curves is therefore inverted with respect to the previous case.

Since for j = 1, 2, α
(j)
‖ > α

(j)
⊥ , the term W directly reflects the anisotropy

of the trapping fields. Note that, for our specific choice of laser frequencies
and amplitudes, the term W (R,Θ, Z) is dominated by the standing-wave field

contribution for R ≈ R
(s)

min, Θ ≈ 0, Z ≈ 0 or π
2β2

. The form of the standing-
wave field in equation A.4 therefore defines the sign of W. For Z = 0 the

standing-wave field is indeed purely transverse, hence W
(
R

(s)

min,Θ = 0, Z = 0
)
≈

1
2

(
α

(2)
‖ − α

(2)
⊥

) ∣∣∣E(+)
2

∣∣∣2 > 0. Conversely, it is purely longitudinal for Z = π
2β2

and

hence W
(
R

(s)

min,Θ = 0, Z = π
2β2

)
≡ −3

2

∑
j=1,2

(
α

(j)
‖ − α

(j)
⊥

) ∣∣∣E(+)
j,Z

∣∣∣2 < 0. To put it

in a nutshell, aligning the molecule axis with the strong field axes favours trapping.

Discussion

We finish this section with a few remarks. First, we underline that, in the analysis
above, we did not take into account the Casimir-Polder interaction between the
molecule and the nanofibre. We can give a rough estimate of the associated energy shift
through approximating the fibre by a half dielectric space – this crude approximation
is all the better as the molecule is closer to the fibre and overestimates the Casimir-
Polder shift induced by the presence of the fibre. Denoting by D the distance of the
molecule centre of mass from the surface of the half-space (we assume the X axis is
orthogonal the medium surface), one gets the following expression for the Casimir-
Polder shift δEn of the state |φsn〉 in the nonretarded regime [31]

δEn = − 1

4πε0

1

16D3

n2
1 − 1

n2
1 + 1

∑
n′ 6=n

(4)

(
|〈φsn|dsY |φsn′〉|2 + |〈φsn|dsZ |φsn′〉|2 + 2 |〈φsn|dsX |φsn′〉|2

)
where dsi (i = X,Y, Z) denotes the space fixed transition dipole vector (Appendix B).
With |〈φsn|dsi |φsn′〉| ≈ 4 au (see figure A1 in [29] and figure 7 in [25]) and D ≈ a = 200
nm, one finds δEn ≈ 6 µK which is completely negligible with respect to laser-
induced trapping potential.
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Figure 3: Contour plots of the trapping potential U (X,Y, Z) (in mK) as a function of
(X,Z) for Y = 0 (left column) and (X,Y ) for Z = 0 (right column) for Hund’s cases
(a) (subfigures a,b,c) and (b) (subfigure d). In the left column, we restricted the Z
range to one period of the potential, i.e. one period of the standing-wave guided field
(π/β2) ≈ 530 nm.
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(a)

2 3 4 5
R/a

-4

-2

2

4

6

8

U(mK)

Hund (a), (M,Σ)=(0,±1),(±1,0)
Hund (a), (M,Σ)=(0,0)
Hund (a), (M,Σ)=(1,±1),(-1,±1)
Hund (b),M=0,±1

(b)

1 2 3 4 5 6
Θ

-4.5

-4.0

-3.5

-3.0

-2.5

-2.0

-1.5
U(mK)

Hund (a), (M,Σ)=(0,±1),(±1,0)
Hund (a), (M,Σ)=(0,0)
Hund (a), (M,Σ)=(1,±1),(-1,±1)
Hund (b),M=0,±1

(c)

-1.0 -0.5 0.5 1.0
Z/a

-4

-2

2

U(mK)

Hund (a), (M,Σ)=(0,±1),(±1,0)
Hund (a), (M,Σ)=(0,0)
Hund (a), (M,Σ)=(1,±1),(-1,±1)
Hund (b),M=0,±1

Figure 4: Trapping potential U (R,Θ, Z) (in mK) for Hund’s cases (a,b) as a function

of (a) R for Z = 0 and Θ = 0, (b) Θ for R = R
(s)

min and Z = 0, (c) Z for R = R
(s)

min
and Θ = 0. Here R

(s)

min denotes the value of R for which the trapping potential is

minimal when Θ = 0 and Z = 0 for the state s (defined by the Hund’s case and M,Σ),
as determined on figure (a).
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(a)

(b)

1.5 1.6 1.7 1.8 1.9 2.0

-0.5

0.0

0.5

X /a

Y
/a

1.5 1.6 1.7 1.8 1.9 2.0

-0.5

0.0

0.5

X /a

Y
/a

1.5 1.6 1.7 1.8 1.9 2.0

-0.5

0.0

0.5

X /a

Y
/a

1.5 1.6 1.7 1.8 1.9 2.0

-0.5

0.0

0.5

X /a

Y
/a

1.5 1.6 1.7 1.8 1.9 2.0

-0.5

0.0

0.5

X /a

Y
/a

Figure 5: Trap obtained in Hund’s case (b). (a) Three-dimensional plots of the
two lobes (left) and upper lobe (right) of the trap located around Z = 0. (b)
Two-dimensional cuts of the upper lobe in the planes (from left to right) Z/a =
0, 0.05, 0.1, 0.15, 0.1535. The trap boundary is arbitrarily fixed at U = −3.8 mK and
one lobe has approximate extensions 0.4a = 80 nm along X, 1.3a = 260 nm along
Y and 0.3a = 60 nm along Z. The potential accommodates for an array of identical
two-lobe traps periodic along Z with period π/β2 ≈ 530 nm.

We also want to emphasize that, in Hund’s case (b), the molecule prepared in any
of the states with magnetic numbers M = 0,±1 will be submitted to exactly the same
trapping potential. Translational motion of the molecule in the trap will therefore
cause no dephasing between the different M components. A qutrit of information
can hence be safely encoded on those states. In the same way, in case (a), two
manifolds, each of which comprises four states, can be used to safely store two qubits
of information. This is promising for future quantum technology uses of free molecule-
nanofibre interfaces.

4. Conclusion

This article presented a theoretical proposal of a two-colour optical trap for a
diatomic molecule, Rb2, prepared in the metastable state (1)3Σ+

u implemented in
the fundamental guided mode of a silica optical nanofibre. The envisioned setup
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was described in detail, including trapping laser beam frequencies, amplitudes and
polarizations as well as molecular tensor polarisability. Different Hund’s cases were
investigated and the influence on trapping efficiency of alignment of the molecule with
respect to the nanofibre axis was analyzed.

Combining the richness of molecular state space with the potentialities of
nanofibre-based setups, including chiral quantum optics, is very promising for, e.g.,
quantum simulation. The present article is a very preliminary step towards achieving
such a molecule-nanofiber platform.

Future works shall be devoted to the more detailed investigation of effects we have
neglected or dismissed here, for sake of simplicity, such as the hyperfine structure
of Rubidium [27]. Other molecular species shall also be considered as well as the
interactions between two molecules trapped in neighbouring sites.

Appendix A. Fundamental guided mode of the fibre

In this appendix we recall the expression of quasi-linearly polarized electric field of
the fundamental guided mode HE11 of an optical nanofibre of radius a and optical
index n1. We refer to figure 1 for the definition of Cartesian and cylindrical coordinate
frames.

The electric field at frequency ω decomposes into its positive- and negative-

frequency parts, respectively denoted by E(+)e−iωt and E(−)eiωt, i.e. E = E(+)e−iωt+

E(−)eiωt, with E(−) ≡
[
E(+)

]∗
. The positive-frequency component at point

M (R,Θ, Z) of the field quasi-linearly polarized along X takes the following form
(for R > a), expressed in the Cartesian frame,

E
(+)

HE(X)

11

(R,Θ, Z) = iAeifβZ
(
hJ1 (ha)

qK1 (qa)

)

×

 (1− s)K0 (qR) + (1 + s)K2 (qR) cos 2Θ
(1 + s)K2 (qR) sin 2Θ

−if 2q
β K1 (qR) cos Θ


XY Z

where f = ± stands for the propagation direction, A is a real amplitude, (Jl,Kl)

denote the lth Bessel function of the first kind and lth modified Bessel function of the
second kind, respectively, and

h ≡
√
k2

0n
2
1 − β2, q ≡

√
β2 − k2

0n
2
2, k0 ≡

ω

c
(A.1)

s ≡

[
1

(ha)
2 +

1

(qa)
2

] [
J ′1 (ha)

haJ1 (ha)
+

K ′1 (qa)

qaK1 (qa)

]
(A.2)

Finally, β is known as the propagation constant and the solution of the eigenvalue
equation [32, 33]

J0 (ha)

haJ1 (ha)
= −n

2
1 + n2

2

2n2
1

K ′1 (qa)

qaK1 (qa)
+

1

(ha)
2 (A.3)

−

√√√√[n2
1 − n2

2

2n2
1

K ′1 (qa)

qaK1 (qa)

]2

+

(
β

n1k

)2
[

1

(qa)
2 +

1

(ha)
2

]2
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Figure A1: Intensity distribution in a transverse plane of the fundamental guided

mode HE
(X)
11 quasi-linearly polarized along (OX).

The amplitude A can be related to the the power of the laser beam, Π, as follows

Π = A2 × 4πa2

µ0c

β

k
×



(
1 + s2 + h2

β2

) [
J2

0 (ha) + J2
1 (ha)

]
− 2

(ha)2
(1 + s)

(
1 + s+ h2

β2

)
J2

1 (ha)

+
(
hJ1(ha)
qK1(qa)

)2

 (
1 + s2 − q2

β2

) [
K2

1 (qa)−K2
0 (qa)

]
+ 2

(qa)2
(1 + s)

(
1 + s− q2

β2

)
K2

1 (qa)




The intensity distribution of this field in a transverse plane is plotted in figure A1.

When two counter-propagating fields travel in the fundamental guided mode
quasi-linearly polarized along (OX) they create a standing-wave whose electric field
positive-frequency component writes

E
(+)

HE(X)

11 ,sw
(R,Θ, Z) = 2iA

(
hJ1 (ha)

qK1 (qa)

)
(A.4)

×

 [(1− s)K0 (qR) + (1 + s)K2 (qR) cos 2Θ] cos (βZ)
(1 + s)K2 (qR) sin 2Θ cos (βZ)

2q
β K1 (qR) cos Θ sin (βZ)


XY Z

Appendix B. Molecular polarisability tensor

The dynamic polarisability at frequency ω of an atomic or a molecular system prepared
in a quantum state |φsn〉 is generally a tensor α whose spherical components are given
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by (equation (2.2) of ref. [34]):

αµν(φsn, ω) =
∑
n′

2ωn′n

~(ω2
n′n − ω2)

〈φsn|dsν |φsn′〉〈φsn′ |dsµ|φsn〉 (B.1)

where µ, ν = −1, 0, 1 label spherical components, n and n′ refer to sets of quantum
numbers characterising the initial |φsn〉 and final |φsn′〉 states of the transitions at
frequency ωn′n. Whereas these transitions involve only electronic excitations in atomic
systems, they involve vibrational and rotational ones as well in the diatomic molecular
case which we focus on in this appendix.

The superscript s emphasizes that the initial and final states as well as the
spherical components of the transition dipole operator dsµ are defined with respect to
the space-fixed frame (figure 1). Molecular data, however, like transition dipoles, are
known in the body-fixed frame. It is therefore necessary to perform a transformation
between space-fixed and body-fixed frames to calculate the polarisability tensor. The
space-fixed components can be expressed in terms of the body-fixed ones using [28],
equation (3.103):

dsµ =
∑

m=−1,0,+1

D1 ∗
µm(φ, θ, χ)dbm (B.2)

where the superscript b refers to the body-fixed components (figure 1). Similarly,
space-fixed molecular wavefunctions must be expressed in terms of body-fixed ones.
This task is easier if we can approximate the molecular states by Hund’s limiting cases
(ref. [35], p. 100). Below we consider Hund’s cases (a) and (b), which are the most
common.

Hund’s case (a) wavefunctions are labelled by the set of quantum numbers
n = (Λ, S,Σ, v, J,Ω,M) (ref. [28], p. 298). In this case, electrostatic interaction is
strong enough so that the z component Λ of the electronic orbital angular momentum
is an approximate good quantum number. Similarly, the spin-orbit coupling is strong
enough in this case so that the z component Σ of the electronic spin S is also an
approximate good quantum number. v is the vibrational quantum number, J the
total angular momentum, Ω = Λ + Σ and M its components on the body-fixed z and
space-fixed Z axes, respectively. The space-fixed molecular wavefunction can thus be
written:

|φsn〉 = |φbn〉|JΩM〉 (B.3)

where |JΩM〉 is a symmetric top rotational wavefunction (see [28], equation (3.125),
p. 105) and |φbn〉 the body-fixed molecular one. This in turn can be decomposed into
orbital, spin and vibrational components (see [28], equation (2) p. 298):

|φbn〉 = |ΛvJ〉|SΣ〉 (B.4)

where |ΛvJ〉 is the product of the electronic state Λ and of the vibrational state v
supported by the electronic potential associated to Λ. It may (slightly) depend on
the rotational state J of the molecule. Then inserting equations (B.2, B.3, B.4) into
equation (B.1), we obtain

〈φsn|dsν |φsn′〉〈φsn′ |dsµ|φsn〉 = δν−µ δS′S δΣ′Σ δM ′M+µ (B.5)

× (−1)µ(2J + 1)(2J ′ + 1)× |〈ΛvJ |dbΛ−Λ′ |Λ′v′J ′〉|2

×
(

J 1 J ′

−M −µ M ′

)2(
J 1 J ′

−Λ− Σ Λ− Λ′ Λ′ + Σ′

)2
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where n′ denotes the set of quantum numbers (Λ′, S′,Σ′, v′, J ′,Ω′,M ′) which label the
excited states of the transitions appearing in equation (B.1). The 3-j coefficients are
known analytically (ref. [28], equation (2.25) p. 49) and the body-fixed transition
dipole matrix elements 〈ΛvJ |dbΛ−Λ′ |Λ′v′J ′〉 are known from quantum chemistry
calculations.

If rotational interaction is significant, Hund’s case (b) is more appropriate. In
this approximation scheme, Σ is no longer a good quantum number. By contrast
the norm of the total angular momentum without spin, N = J − S, becomes a good
quantum number, and so is its projection onto the body-fixed frame z axis, Λ, as
it was in Hund’s case (a) (ref. [35], p. 103). Finally, in Hund’s case (b) the set
of good quantum numbers is : n = (Λ, S,N, v, J,M) and the corrresponding basis
is obtained by recoupling the states |JΩM〉 and |SΣ〉 (ref. [35], 3.2.4b p. 103 and
equation (3.2.61) p. 130) :

|JMSNΛ〉 =

+S∑
Σ=−S

〈JΩ, S − Σ = Λ− Ω|JSNΛ〉|JΩM〉|SΣ〉 (B.6)

which involves a Clebsh-Gordan coefficient. This equation can be used with equation
(B.1) to compute Hund’s case (b) polarisability and we obtain :

〈φsn|dsν |φsn′〉〈φsn′ |dsµ|φsn〉 = δµ−νδS′SδM ′M+µ(−1)2M+µ (B.7)

× (2N + 1)(2N ′ + 1)(2J + 1)(2J ′ + 1)|〈ΛvJ |dbΛ−Λ′ |Λ′v′J ′〉|2

×
{

1 J ′ J
S N N ′

}2(
N 1 N ′

−Λ Λ− Λ′ Λ′

)2(
J 1 J ′

−M −µ M ′

)2

where the quantity in curly brackets is a 6-j coefficient (ref. [28], equation (4.8) p.
145).
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[13] M. Ortner, Y. L. Zhou, P. Rabl, and P. Zoller, Quantum Inf. Process. 10, 793 (2011).
[14] J. A. Blackmore et al, Quantum Sci. Technol. 4, 014010 (2018).



Nanofibre-based trap for Rb2 molecule 16

[15] C. M. Tesch and R. de Vivie-Riedle, Phys. Rev. Lett. 89, 157901 (2002).
[16] J. J. Baldov́ı, S. Cardona-Serra, J. M. Clemente-Juan, L. Escalera-Moreno, A. Gaita-Ariño, and

G. Mı́nguez Espallargas, Europhys. Lett. 110, 33001 (2015).
[17] V. V. Albert, J. P. Covey, and J. Preskill, Phys. Rev. X 10, 031050 (2020).
[18] A. Micheli, G. K. Brennen and P. Zoller, Nat. Phys. 2, 341 (2006).
[19] S. Burchesky et al, Phys. Rev. Lett. 127, 123202 (2021).
[20] K. K. Ni, T. Rosenband and D. D. Grimes, Chem. Sci. 33, 6830 (2018).
[21] P. D. Gregory et al, Nat. Phys. 17 1149 (2021).
[22] J. T. Zhang et al, Quantum Sci. Technol. 7, 035006 (2022).
[23] S. M. Skoff, D. Papencordt, H. Schauffert, B. C. Bayer, and A. Rauschenbeutel, Phys. Rev. A

97, 043839 (2018).
[24] M. A. Bellos, D. Rahmlow, R. Carollo, J. Banerjee, O. Dulieu, A. Gerdes, E. E. Eyler, P. L.

Goulda and W. C. Stwalley, Phys. Chem. Chem. Phys. 13, 18880-18886 (2011).
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[26] J. Pérez-Ŕıos, M. E. Kim and C.-L. Hung, New J. Phys. 19, 123035 (2017).
[27] C. Strauss, T. Takekoshi, F. Lang, K. Winkler, R. Grimm, J. Hecker Denschlag and E. Tiemann,

Phys. Rev. A, 82, 052514 (2010).
[28] R. N. Zare, Angular Momentum: Understanding Spatial Aspects in Chemistry and Physics,

Wiley (1988).
[29] M. Deiß, B. Drews, J.H. Denschlag, N. Bouloufa-Maafa, R. Vexiau and O. Dulieu, New J. Phys.

17, 065019 (2015).
[30] M. Deiß, B. Drews, B. Deissler, J.H. Denschlag, Phys. Rev. Lett. 113, 233004 (2014)
[31] S. C. Eberlein and S.-T. Wu, Phys. Rev. A 68, 033813 (2003).
[32] D. Marcuse, Light Transmission Optics, Krieger, Malabar, FL (1989).
[33] A. W. Snyder and J. D. Love, Optical Waveguide Theory, Chapman and Hall, New York (1983).
[34] J. Berroir, A. Bouscal, A. Urvoy, T. Ray, and J. Laurat, Phys. Rev. Research 4, 013079 (2022).
[35] H. Lefebvre-Brion and R.W. Field, The spectra and dynamics of diatomic molecules, Elsevier

(2004).


	1 Introduction
	2 Presentation of the system
	3 Numerical results and discussion
	4 Conclusion 
	Appendix A Fundamental guided mode of the fibre
	Appendix B Molecular polarisability tensor

