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Abstract. In this article, a stochastic individual-based model describing Darwinian evolution
of asexual, phenotypic trait-structured population, is studied. We consider a large population
with constant population size characterised by a resampling rate modeling competition pressure
driving selection and a mutation rate where mutations occur during life. In this model, the
population state at fixed time is given as a measure on the space of phenotypes and the evolution
of the population is described by a continuous time, measure-valued MARKOV process. We
investigate the asymptotic behaviour of the system, where mutations are frequent, in the double
simultaneous limit of large population (K — +o00) and small mutational effects (o — 0)
proving convergence to an ODE known as the canonical equation of adaptive dynamics. This
result holds only for a certain range of o parameters (as a function of K') which must be small
enough but not too small either. The canonical equation describes the evolution in time of the
dominant trait in the population driven by a fitness gradient. This result is based on an slow-
fast asymptotic analysis. We use an averaging method, inspired by KUrTz [57], which exploits
a martingale approach and compactness-uniqueness arguments. The contribution of the fast
component, which converges to the centered FLEMING-VIOT process, is obtained by averaging
according to its invariant measure, recently characterised in [18].

Keywords. Adaptive dynamics, Canonical equation, Individual-based model, Measure-
valued MARKOV process, Slow-fast asymptotic analysis, Averaging method, Centered FLEMING-
VIOT process.

MSC subject classification. Primary 60B10, 60G44, 60G57, 92D10, 92D25, 92D40; Sec-
ondary 60F10, 60G10, 60J35, 60J60, 60J68.

1 Introduction

In this article we study, at the individual level and in the interplay between ecology and Dar-
winian evolution, a population model, structured by a 1—dimensional quantitative phenotypic
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trait. The Darwinian evolution is based on three basic mechanisms. Firstly, heredity which
allows the transmission of the individual phenotypic characteristics from one generation to an-
other. Secondly, a source of variation in the individual phenotypic characteristics: in our case
it is only mutations. Finally, a selection mechanism which can result from interaction between
individuals in the population such as competition. Our model is an individual-based model (in
short, IBM) which involves a finite and asexual population with constant population size in which
each individual’s birth, death and mutation events are described. IBMs were first introduced
in ecology as a tool to describe local interactions or complex phenomena at the individual level
[73, 12} 13}, B3, (2] 28]. Ecological studies using IBMs are mainly numerical and the models are
mostly posed in discrete space as systems of interacting particles [73] and more rarely in con-
tinuous space [12], 13, 33]. Many IBMs (with non-constant population size) have been proposed
and studied in the context of Darwinian evolution by the biology community [68] 31 [4T] and the
mathematical community [16, 17, 5]. Others are dispersal models in spatially structured popu-
lations where the trait is viewed as a spatial location and mutations as dispersal [12], T3] (62 [46].
Other models, structured in age, were developed in [22] and studied mathematically in [74] [82],
or structured in age and traits in [42], 66, [67].

We consider an IBM with fixed population size, so that births and deaths occur simultane-
ously in so-called resampling (or swap phenomenon) events. The mutation and resampling rate of
an individual depends on its phenotype. When a mutation occurs, the new mutant trait is close
to its parent’s one yielding a slow variation of the trait. In population genetics, the WRIGHT-
FISHER model (and its extensions with selection, mutation or immigration), CANNINGS model or
the MORAN model are interested in the evolution of allele frequencies according to various mech-
anisms [38]. In [43, 27, 26, 37], the authors construct the FLEMING-VIOT process as a scaling
limit of large population from the MORAN process. Several extensions exist, including frequency-
dependent selection, recombination, other reproduction mechanisms [39, [51]. In particular, the
last article provides a bridge between population genetics and eco-evolutionary models. Others,
based on KERMACK-MCKENDRICK’s model, are interested in epidemiological questions [70, [71].

The aim of this article is to describe the evolutionary dynamics of the dominant trait, at
the population level, on a long time scale, as a solution to an ordinary differential equation (in
short, ODE) called Canonical Equation of the Adaptive Dynamics (in short, CEAD). Canonical
equations are well-known tools in evolutionary biology, used to predict the evolutionary fate
of ecological communities. More precisely, such equations describe the evolution of dominant
traits in a biological population as driven by mutations and a fitness gradient which describes
the strength of selection that pushes the population to locally increase its fitness [85] 611, 8T] B30].

Fitness measures the selective value of a given individual in a given environment including
the population under consideration itself. This individual can be any (fictitious) mutant individ-
ual that can be born in the population at the time under consideration. The way to construct
a fitness landscape depends on the ecological context [69]. For continuous time homogeneous
MARKOV models as studied below, it is the instantaneous growth rate (birth rate minus death
rate) of the individual considered in the environment considered. If we further assume that the
population constituting the environment is in a stationary state, then we can consider that the
fitness of a given mutant individual in this population governs the possibility of invasion of the
descendants of this mutant in the population.

The canonical equation has been studied and derived in different contexts such as game
theory [54] and quantitative genetics [6I]. In the branch of evolutionary biology called adap-
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tive dynamics [59), [72, 65], the CEAD has been introduced heuristically in [30]. The theory of
adaptive dynamics studies the links between ecology and Darwinian evolution, more precisely, it
investigates the effects of the ecological aspects of population dynamics on the evolutionary pro-
cess, and so describes the population dynamics on the phenotypic level instead of the genotypic
level. The theory of adaptive dynamics is based on biological assumptions of rare and small
mutations and of large population under which the CEAD was proposed.

Two mathematical approaches were developed to give a proper mathematical justification of
this theory: a deterministic one, and a stochastic one. All these approaches are based on the use
of IBMs and different combinations of the three previous biological assumptions and consider
a parameter scaling under which the population distribution over the trait space concentrates
to DIRAC masses, i.e. to subpopulations in which all the individuals have the same trait. The
canonical equation corresponds to the motion of DIRAC masses. Let us introduce three param-
eters corresponding to the different biological assumptions: p for the mutation probability, o
for the mutation size and K for the population size. In the sequel, we denote px := p(K) and
ok = o(K) to emphasise the dependence of K.

In the deterministic approach, [46] first establishes that, under the asymptotic of large popu-
lation (K — 400), the IBM converges in law to a deterministic process which is a weak solution
of a partial differential equation. Then by adding the small mutation assumption (¢ — 0) and an
appropriate time scaling 1/0, [32] [78], [64] establish the convergence to a version of the canonical
equation different from the one of [30] and described by a HAMILTON-JACOBI equation with
constraint.

The stochastic approach was developed in [16, 20]. In [I6] it is proved that the IBM con-
verges, for finite dimensional distributions, under the double simultaneous asymptotic of large
population (K — +00) and rare mutation (px — 0) to a stochastic process: the TSS for Trait
Substitution Sequence introduced in [68, Section 6.4]. This is a pure jump MARKOV process
in the trait space where the population is at all times monomorphic and where the jumps de-
scribe the invasion and then the fixation of a mutant y in a monomorphic resident population of
trait . By adding the small mutation assumption (o — 0) to the TSS, its convergence to the
canonical equation proposed in [30] is established in [20]. The time scale involved in observing
the canonical equation phenomenon is 1/K a%(pK. Extensions of these results were obtained in
[19] for chemostat models, in [35, [66] for age-structured populations models, in [63] for spatial-
structured populations models and [2] which studies the simultaneous application of the three
limits (K — +o00,pg — 0,05 — 0) in order to determine precisely the range of parameters lead-
ing to the canonical equation. Note that another approach, studied in [23] [36], consider models
of large population (K — +00) scaling with rare-but-not-too-rare mutations (with power-law
mutation rates pg := K~% — 0). This specific mutational scale implies that negligible subpopu-
lations of size KP, 8 € (0,1) may have a strong contribution to evolution. A similar scaling was
also studied in [34] 15, 21], 1] with fixed mutation size. Building on these works, [76] recently
proposed a derivation of a CEAD assuming small mutations.

Despite their success, the proposed approaches are criticised by biologists [83, [79]. Among
the biological assumptions of adaptive dynamics, the assumption of rare mutations is the most
critised as unrealistic [83]. The rate of molecular mutation is relatively well known and gener-
ally involves several nucleotide substitutions per generation. The adaptive dynamics response is
based on the fact that only non-synonymous mutations (changing phenotypes) producing viable
individuals should be taken into account [I] [68, Section 6.4]. Since only a small fraction of DNA
codes for proteins and many mutations produce non-functional proteins, and thus non-viable
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individuals, it is not unreasonable to assume that mutations are rare, but probably not as rare
as assumed in the stochastic approach [16, 20, [2]. Another criticism of stochastic approaches
is that the phenomenon of the canonical equation takes place on a too long evolutionary time
scale. In order to solve these problems, we propose to apply a double simultaneous asymptotic
of small mutations (cx — 0) and large population (K — +00), but frequent mutations (p = 1).
After conveniently scaling the population state, this leads to a slow-fast dynamics where the
phenomenon of the canonical equation is visible on a time scale 1/K O'%{. So, there is some con-
sistency between the previous stochastic approaches developed in [20} 2] and ours: it is exactly
the same canonical equation. However in our situation, the CEAD is visible on a shorter evolu-
tionary scale than theirs, and therefore is biologically more reasonable. Note however that the
restrictions on ok in [2] are in a completely different regime than ours (o > K —1/2 as opposed
to o < K72 here). Hence it is possible to choose px in [2] in such a way that the CEAD
appears on a faster time scale than in our work, where the fastest scale is in K3.

As the mutation size parameter is small, the population distribution tends to be close to a
DIRAC mass. Our aim is to describe the evolution of the support of this DIRAC mass on a large
time scale. The mean trait appears as the natural slow component. It will be proved to act on
the time scale 1/K O'%{. In our case, the fast component acts on the time scale K and is given
by the dynamics of the centered and dilated distribution of traits corresponding to a discrete
version of the centered FLEMING-VIOT process [18]. Since the centered FLEMING-VIOT process
is ergodic [I8], we expect the centered and dilated distribution of traits to stabilise on the slow
time scale, hence the distribution of traits should stabilise to a DIRAC mass. Therefore, the
dynamics of the dominant trait corresponds to that of the mean trait.

The reason for not considering the same IBM as in [16, 20, 2] is because it involves three time
scales, a slow one corresponding to the dynamics of the mean trait acting on the evolutionary
time scale 1/Ko?%, a fast one corresponding to the dynamics of the centered, dilated distribu-
tion of traits acting on the evolutionary time scale K and a very fast one corresponding to the
population size dynamics acting on the ecological time scale 1. For simplicity, we focus here on
a model with constant population size to reduce the number of time scales to two. We expect
our results to extend to general IBMs as in [16] 20, 2] and we leave this for future works.

To prove convergence in the framework of slow-fast dynamics (also called stochastic singular
perturbations), different techniques can be used.

Firstly, the method of the perturbed test function initially proposed by PAPANICOLAOU,
STROOCK and VARADHAN in [75] identifies the generator of the limit process with a mar-
tingale approach whose idea is the following. If we consider a family of stochastic processes
((X*,Y?)).5( of generator L® where X¢ is the slow component and Y¢ is the fast component
in the form Y¢(¢) = Y (t/¢) where Y is a MARKOV process, the slow-fast problem consists in
identifying the limit process of X¢ using ergodicity properties of the fast dynamics. Assuming
that the family (X®)_., is tight, we consider X a limiting value. We can expect to characterise
X with a martingale problem derived from the martingale problem of (X¢,Y*) provided that
the solution to this problem is unique. We would then obtain the convergence of X*® to X in law.
However, for multiscale singular problems, the convergence of Lé¢ ((X7,Y)) when ¢ — 0, for a
test function ¢ depending only on the X component, does not (in general) take place because
it contains diverging terms in €. To overcome this difficulty, firstly the idea is to decompose the
generator L in the following form L® = %L1 + Lo where L; is the infinitesimal generator of the
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MARKOV process Y in the variable y and Lg the operator of the slow component depending on
slow and fast variables. Secondly, the idea is to perturb the initial test function ¢(z) into a test
function ¢°(x,y) := p(z) + epi(x, y) such that

) _ _
LFp® = [EL1 + LO} (¢ +ep1) = (Lipr + Lop — Loyp) + Loy + Loy (1)

because of L1¢ = 0 and where L is the operator of the limit slow component averaged by the
unique invariant probability measure of the limit fast component Y. Provided that ¢; solves the
PoISSON equation (with respect to L; and the variable y)

Lip1 + Lop — Loy = 0, (2)

we deduce that Lf¢® = Loy + O(g). Then, ¢°(z,y) — @(x) and Lf¢®(x,y) — Lop(z) when
€ — 0 as expected.

The perturbed test function method has been extended in [I0, 68, [59] and in the books
[44, Section 6.3], [60]. Many other references apply the perturbed test function strategy in
various settings: in finance [45] in transport problems as in [75] or in [25] where the tightness
of the fast component is established using its occupation measure. Similar methods are used
in homogenisation [75} [7, [77] (see also [6] which exploits spectral and semi-group properties in
addition), and in stochastic stability and control [60].

Finally, an important method is the stochastic averaging, in a generic framework, that was
proposed by KURTZ in [57]. Many approaches [3, 67, 53, 24], 149, 14} |4} 8] including ours, are based
on it. The main idea consists in exploiting the occupation measure I'® of the fast component Y*
which is formally defined for all ¢ > 0, for any Borelian B by

r (0.0 % B) = | "1 (V2 ds,

and to establish the convergence of the couple (X, I'°) when ¢ — 0 using compactness-uniqueness
arguments. Proceeding in this way allows us to escape the difficulties created by the fluctuations
of the fast component and avoids to obtain tightness result of the “slow-fast” couple (X¢,Y¢).
The proof can be divided into four steps.

The first one consists in establishing uniform tightness of the sequence of laws of the couple
(X¢&,T¢). The second one consists in establishing a martingale problem for any limiting value of
the family of laws of the couple. The third one is based on establishing the uniqueness of the
limiting value of I'* expressed in terms of the limit X of X¢ which is given. The characterisation
of the limiting value I' of ' is usually based on ergodicity arguments. Finally, the last step is
to establish the uniqueness of the martingale problem for the slow component limit X when I'
is given as above.

The KURTZ approach seems to be better adapted to our situation than the perturbed test
function method. Indeed, it is delicate to find the good class of test function ¢ satisfying and
the computations are difficult because of the moment terms (see Section . In addition, the
remainder terms generated by are difficult to control and the fast component Y¢ does not take
the form Y'(t/¢). However, KURTZ’s approach can neither be implemented directly because of
difficulties inherent to our model described in Section[2] Therefore, our result required a complete
reworking of the classical arguments. In particular, in our case, we do not have uniform moment
estimates but only a uniform control, in probability, of the second moment of the fast variable up
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to a stopping time 7% where the diameter of the support of the fast component becomes large.

This paper is organised as follows. In Section[2] we define our trait structured IBM, state the
central theorem about the CEAD characterising the limit model which consists of an ODE ruling
the dynamics of the limit slow component. We establish in this section the sketch and outline of
the main proof and the difficulties encountered. We give also some prospects that let us believe
that we can improve our main result by relaxing some assumptions. The rest of this paper
is devoted to prove the central theorem of Section [2} In Section [3| some approximations of the
infinitesimal generator of the slow-fast process are proved. In Section |4l we establish estimates of
moments, in particular of the sixth and second order moment up to time 7%. We also prove the
convergence of 7% to +o00 when K — +oo exploiting coupling arguments between the moment
of order 2 and a certain biased random walk for which large deviations estimates are established.
In Section [5, we prove the tightness of the couple “slow-occupation measure fast” in the torus
case. In Section[6] we establish, in the torus case, the uniqueness of the limit occupation measure
which is described by the unique invariant probability measure of the centered FLEMING-VIOT
process. This result is used in Section [7] to characterise the limit slow component as the unique
solution of the CEAD with values in the torus. Thanks to the non-explosion of this ODE and
choosing the torus large enough we are able to conclude the proof of our main result given in
Section [21

2 A trait structured IBM

Let us describe the microscopic model which models population evolution, in a Darwinian sense,
at the individual level.

2.1 Parameters and assumptions of the model

We consider a discrete population of constant size in continuous time in which the survival and
reproductive capacity of each individual is characterised by a continuous quantitative phenotypic
trait € R, i.e. an overall characteristic subject to selection such as body size at maturity. The
individuals reproduce asexually during their lives, i.e. the reproduction scheme is assumed clonal
simultaneously with death of another individual, with frequency-dependent rates. FEach birth of
an individual occurs simultaneously with the death of another individual in the population.

We are interested in approximating the long-term dynamics of a large population. We assume
that the number of individuals alive at each time ¢ > 0 is always equal to K. Let us denote by
x1(t), -+ ,xx(t), the phenotypic trait values of these individuals at time ¢. A mutation occurs
during life at the individual level at rate 1: in this sense mutations are considered frequent.
Each mutation has an amplitude of the order of magnitude ox € (0,400). Small ox means
mutations have a small phenotypic effect, i.e. evolution acts slowly on the individual phenotypic
characteristics. The state of the population at time ¢, can be described by the finite point
measure on R rescaled by K

where J, is the DIRAC measure at x.



For all z,y € R, let us introduce the following biological parameters:

o b(z,y) € Ry is the resampling rate, i.e. the rate of simultaneous birth of an individual
holding trait y and death of an individual holding trait x and it can be interpreted as
modeling a competitive pressure driving selection.

o f(z) € R4 is the rate of mutation of an individual holding trait .

e m(x,dh) is the mutation law of the scaled mutation step h, born from an individual with
trait z, where the mutant trait is given by y := z + oxh € R. It is a probability measure
on R.

Let us also introduce the following notations, used throughout this paper:

o f(x):= b?:i%’ the ratio between the mutation rate and the resampling rate in a monomor-
phic population with trait x, which can be interpreted (in the scaling limit considered

below) as the mean number of mutations between two resampling events.

o Fit(y,z) := b(x,y) — b(y,x) is the adaptive value or fitness of a mutant individual with
trait y in the population of (K — 1) individuals of trait . The fitness can be interpreted
as the initial growth rate of a mutant individual y in a resident monomorphic population
with trait «.

Indeed, the total birth rate of a mutant individual y in this population is b(z,y)(K —1) and
the total death rate of a mutant individual y in this population is b(y,z)(K — 1). Hence,
the (initial) growth rate of the mutant population is Fit(y, z)(K — 1).

Let M;(R) be the set of probability measures on R, endowed with the topology of weak
convergence making it a Polish space [9]. For a measurable real bounded function f, and a
measure v € M;(R), we denote (f,v) := [ f(z)v(dz). We denote by id the identity function.
We denote also N := {0,1,2,---} and N* := N\ {0}. If 7 is an interval of R, then for all £ € N,
q € N*, we denote by €*(Z4, R) the space of functions of class €* from Z¢ to R and by € (Z9,R)
the space of functions of class €*(Z7, R) with bounded derivatives. Finally, we define for all
K € N*,

1 K
M1 k(R) = {K Z Oz,

=1

(Ti)1<ick € RK}

the set of probability measures on R of K atoms of mass 1/K.
Assumptions. Let us denote by (A) the following two assumptions:

(A1) The maps b :JR2 — Ry, and 6 : R — Ry are respectively in %2 (R?,R) and 62 (R, R)
and there exists 0 < b,b,0,0 < oo such that:

b<b()<b,  and  9<6() <O

(A2) (a) There exists A, € (0,400) such that the law m(x,dh) is absolutely continuous
with respect to the LEBESGUE measure on R with density m(z, h) centered and satisfies

Ve e R, V|h| > A, m(z,h) =0.
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(b) For all a € R, for all ¢ € N, we denote by

:/ \h|*m (o, h) dh
R

the /" moment of the mutation law. We assume for £ € {2, 4,6} that my is LiPSCHITZ and there
exists my, My € (0,400) such that for all @ € R, m, < my(a) < my.

Let us now give the infinitesimal generator LX of the Mj x(R)—valued MARKOV process

vE = (VtK ) >0 describing the ecological dynamics of the population with resampling. The

generator LX is defined for any bounded measurable map ¢ from M k(R) to R, by
v = & [ o) [ vlaniey) |o(v-E+ %) - o)
= R €z Yy)olr,y KK

+K/R€( dx/mxh (V—5+W)—¢(V)]dh.

K
The first term describes the resampling event of one individual by another and the second
term describes the effect of mutations over the lifetime of individuals.

(3)

2.2 Main result

The main result of this article is the following theorem. For all v € M;(R), let us denote by
Diam (Supp v) the diameter of the support of v.

Theorem 2.1. Assume (A) and for all K € N*, o € (0,400), for some o € R, for all
te{1,2,3},
<id, l/é(> = o, and <(id —20)% v} > C3 Ko (4)

for some C3, > 0. Assume that K — 400, o — 0 such that
Je>0, VO >0, K 198K «gp <« K49, (5)

Then, for the SKOROHOD topology, the sequence of the mean trait processes

() ) e

converges in law in D (R4, R) when K — +oo, oxg — 0, to the unique deterministic process
(Gt)i=o € €O (R, R) with initial condition (o := g, which is solution to the Canonical Equation
of Adaptive Dynamics (CEAD):

. . m
§ = 01 Fit(y, y) x ﬁ(y)Qz(y)
In addition, we have the following support concentration property : for ollT > 0,
1
sup Diam (Supp vE ) < = 6
te[0.T] t/Ko?, K ( )

holds with probability which tends to 1 when K — +oo.
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The canonical equation is composed of two terms. The first term: the fitness gradient,
describes the strength of selection that pushes the population to increase its adaptive value
locally. The second term describes the effect of mutations. Note that (FD describes, in some

v

sense, when K — 400, the convergence of the population distribution ) to a DIRAC
mass.

K
t/Ko?,

Remark 2.2. (i) We conjecture that the assumption ox <K K=+ given by is too re-

strictive and that it can be weakened by o < K ~(3+e) . This conjecture is supported by
the discussion in Section [2.3.5] below.

(ii) We actually prove Theorem (see Section under a slightly weaker assumption than
the left bound of : for a universal constant Cy depending only on b,0, m and not on K,

Je >0, Ke00log(K) 5« —(2Fe),
(iii) Assumption (A2)(a) is only used in Section and could be weakened with some tail
bounds (typically exponential) on m(x,-).

The aim of the rest of the paper is to prove Theorem [2.1]

2.3 Sketch and outline of the proof

Note that, the convergence result of Theorem takes place on the time scale 1/K U%(. The idea
of the proof is based on slow-fast asymptotic analysis techniques developed by KurTz [57]. Let
us begin by introducing the slow and fast dynamics involved in our model, then the difficulties
encountered and finally the outline of the proof.

2.3.1 Slow-fast asymptotic analysis

Let a,a € R and B(R) the BOREL o—field on R. Let us define respectively by 7, and hg, the
translation operator of vector o and the homothety of ratio a. For all z € R, for all A € B(R),

(ha o Toz) ﬁ 5$ (A) = 5a(:r:+o¢) (A) and (TO& o hfl) ﬁéI(A) = 6a$+04 (A)

Note that for all K € N*, any v € M i (R) has all its moments finite. We define for all K € N*,
1k (R) the set of centered probability measures of Mj x(R). From the population process

<1/K 2 ) , we introduce two evolutionary dynamics:
t/ Ko, >0
e The slow dynamics, with value in R, corresponds to that of the mean trait defined by
K. [/ K
z; = <1d, Vt/Ka§<>'

o The fast dynamics, with value in M ;- (R), corresponds to that of the centered and dilated
distribution of traits defined by

1 K
K .__ K =
e = (ha;ﬁ o) e, = ¢ 20 (witaF); @

tKo'K

Note that v = (TZK , © hoK\/?> T
K
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For all £ € N and v € M;(R), we denote by M, (v) := <\id]é , V> the ¢*" moment of the measure
v. Let us consider for all £ € N*,

M) = {n e Mi(R) \ My (1) < oo, (id, ) = 0

and the convention My (p) = +oo if p ¢ Mi’z(]R). Let us denote by B(E,R) the set of BOREL
functions on the metric space FE.

In the following, for all K € N*, we study the couple of processes ((th , s )) Denoting

0
L% the infinitesimal generator of the process ((th , ,utK )) +>0» computed in Proposition 3.1, we

will check the following assertions, proved respectively in Propositions [3.2] and [3-3]

(i) If we consider a function f : (z,u) — f(2) € €2(R,R), the generator LK satisfies the
following decomposition

LEf (2, 1) = LsLow f (z,0) + O (% * Mém

FoiVEMs (1) ®)

where the operator Lgiow, of the limit slow component, is defined from %bl(R, R) to
B (R x M{*(R),R) by

LsLow f (2, 1) = f'(2)Ma () 91 Fit (2, 2). (9)

(ii) If we consider a function F, : (z,u) — Fu(u) = F ((p,p)) with F € €3(R,R) and
¢ € 2 (R,R), the generator LE satisfies the following decomposition

0(z)ma(z)

LNF, (2,1) =
v K203

z 1 3 M.
Ly Fp(z, 1) + 0 (\/E + ok KT M; (u) + jé”))] (10)
)

where [’l):\‘Vc is the generator of the centered FLEMING-VIOT process with resampling rate

A(z) = e(ggfg)(z), as studied in [I8] and whose definition is recalled below. For all F' €

%2(R,R) and g € €2 (R, R),

!

EhveFy () = F (g, ) ( (o) + A [0 ) M) —2(g' < id, )] )

+AF (g, 1)) [(9% 1) = (g, 1) + (g )" M (1) = 2 (g, ) {g x idl, )] .

From and , note that the fast component <;¢I[§02 t) 0= <<h L °T_(ia VtK>> ﬁuf)
K t> o VK ’ t>0

moves on the evolutionary time scale K whereas the slow component (zggi t>t>0 = (<id, UtK >) 0

moves over a much longer evolutionary time scale 1/K 0%(. The different time scales involved in
this model can be represented as in Figure It follows that the fast component will be the first
to stabilise in its equilibrium state. Note that the operator of the slow component @ depends
on the fast variable through the second-order moment M (). This is a standard difficulty in
slow-fast analysis, usually solved by assuming that once the fast component is stabilised in its

10/[70;
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Figure 2.1: Different time scales involved in our individual-based model

expected in the original time scale of the process (l/tK ) 0

equilibrium state, My (1) can be characterised in terms of the slow component leading to an
autonomous slow dynamics in the limit K — +oo0.

As the fast limit component is driven by a centered FLEMING-VIOT process, we expect that
it will inherit ergodicity properties as stated in [I8, Section 4|. This reference establishes the
existence of a unique invariant probability measure 7 for the centered FLEMING-VIOT process
and characterises it. In particular, we expect that the averaging principle applied to the drift
coefficient in @ will lead to the averaged drift

B (2t) ma (2t)

OFit (2, 21) / My (p) FA(Zt)(dN) = M .

= 01 Fit (z,
M (R) 27 () 1Fit (21, 2¢)

where (2¢),5 is the limit slow component (see [I8, Corollary 4.16] for the computation of the
integral). Formally, by replacing My (1) by its mean value [y, gy M2 (1) ) (dp) in @), we
obtain that (see details in Section @

pB(z)ma(2)

Lceapf(z,u) = f'(2)01Fit(z, 2) 5

and we recognise the generator of the announced CEAD.

2.3.2 An example

The goal of this section is to illustrate numerically the phenomenon of the CEAD. We have per-
formed numerical simulations of the process vX for a simple model from the biological literature.
The simulation is based on the IBMPopSim package developed by GIORGI ET AL in [50].

The biological model is adapted from Kispi1 [56] for which the trait space is X := [0,4] (and
not R as previously) and the parameters are:

1
1+ 1.2exp(—4(z —y))’

O(x) =1, c(x,y):=1 b(x,y) = (4 —y) X c(z,y) (12)

and m (z,dh) is a Gaussian distribution N (z,0%) conditional on the mutant trait remaining
in X.

Let us recall that b(z,y) is a resampling rate, i.e. the rate of simultaneous death of an
individual with trait x and birth of an individual with trait y and it can be interpreted as
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modelling a competitive pressure driving selection. Here, it is composed of two terms which
both have a biological interpretation. Note that the first term ¢(x,y) depends only on = — y
and tends to 0 when « — y — 400 and to 1 when z — y — —oo. So, this function models an
asymmetric competition in favour of high traits: z feels little competition from a smaller trait
1y, but strong competition from a higher trait y. Since the second term 4 — y only depends on
the reproducing trait and is favourable to small traits, evolution is expected to select an optimal
trait.

We consider the previous model with three scaling parameters: K (for the population size)
and o (for the size of mutation) as in Section and a parameter px giving the probability of
mutation at each birth event. This amouts to replace in Sectionthe mutation kernel m(z, h)dh
by pgkm(x,h)dh + (1 — pk)éz(dh). We performed simulations of KISDI’s model, starting with
a monomorphic initial condition of trait 1 and varying the parameters K, pg and ox. Some of
these simulations are presented in the following figures and show a wide variety of evolutionary
behaviours.

Note that, when K and ox are not too large and px not too small, the population evolves
according to a relatively stable general scenario as in Figures and it initially remains
concentrated around the trait value equal to 1 that progressively moves towards a trait z* close
to 3.5 corresponding to the optimal trait value of this population, in the sense that it is best
adapted to survive and reproduce. Once this point is reached, the population stabilises in its
steady state. In other words, Figures[2.4 and [2.5] show the long-term behaviour of the mean trait
of the population, i.e. the one of the slow component. Figure [2.6| shows the behaviour of the fast
component by zooming in the initial dynamics of Figure[2.5] Note that Figure [2.2]illustrates the
approach developed by [20].

a5
|

30
|

2.5
|

Traits
2.0

1.5

1.0

T T T T T T T
0 50000 100000 150000 200000 250000 300000

Time

Figure 2.2: Numerical simulation of the trait
distribution of the microscopic model with
parameters and K = 300, px = 0.00003,
orx = 0.05.

Traits
i) in
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20
|

1.8

1.0

Time

Figure 2.3: Numerical simulation of the trait
distribution of the microscopic model with
parameters and K = 300, px = 1, ok
= 0.05.
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Figure 2.4: Numerical simulation of the trait
distribution of the microscopic model with
parameters and K = 300, px = 1, og
= 0.001.

Traits
20 24 in 35
|

1.8

1.0

T T T T
0 20000 40000 60000

Time

Figure 2.5: Numerical simulation of the trait
distribution of the microscopic model with
parameters and K = 300, px = 1, og
= 0.0005.
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Figure 2.6: Numerical simulation of the trait distribution of the microscopic model with param-

eters and K =300, px =1, oxg = 0.0005.

13/70)



2.3.3 Difficulties encountered

The slow-fast analysis relies on a stochastic averaging result that exploits tightness arguments.
The classical approach to prove tightness of sequences of laws [5], [46] requires to have uni-
form pathwise estimates on the moments of the process. In our situation, we note the pres-
ence of moments in and . However, we could not establish control in expectation of
supg<i< M2 (,uf( ) for all T" > 0 because of the long time scale which does not allow to exploit
the martingale problem associated to the decomposition of My (uf{ ) This is an important dif-
ference, for example with [67] which studies similar forms of processes (individual-based models).
Instead, we will first use fine pathwise estimates and expectation bounds on My (,utK ) up to the
stopping time 75 defined for all K € N* by

TR = #APK (13)

where

7K . — inf {t >0 ‘ M, (u{() > Kf“} (14)

with & > 0 given in Theorem [2.I] and where

1
7K . — inf {t >0 ‘ Diam (Supp ,uf) > 3+e} (15)
oK™

which allows to control the diameter of the support of the centered and dilated distribution of
the traits 4. An important difficulty arises in Lemma from the presence of third order
moment in the DOOB semi-martingale decomposition of My (u{( ):

My (1) = 02 (1) = [ {20 (o6,21) M (1) = 0 (1) ma ()} s

1 t 1 K 3 K K7
+I(20’%(/0 O<K+O'KKM2 (M8)+UKK2M3 (,U,s ))dS+Mt

Pid2,1

K,P, . . . . . . . .
where (Mt ldQ’I) is a local-martingale. This leads to introduce the stopping time 7% which
0

guarantees that the error term in M3 (,uf( ) remains under control. This leads to a new difficulty:
establishing that 7% tends to +o00 in probability when K — +o0o0. To prove this, we use pathwise
estimates on M (,uf( ) up to time 7K to estimate the different transitions of Mo (,uf( ) between
thresholds of the form 31K and 31K % and to construct a coupling between these transitions
and biased random walks. This allows us to use large deviations results on random walks and
estimates on the exit from an attracting domain (see e.g. [47, 29]) to prove that the stopping
time 75, defined by , converges to +oco in probability when K — +o0o. This in turn implies
that 7% — 400 in probability when K — 400 (see Section for a discussion of the method
used for this step).

The implementation of the slow-fast method of Kurtz [57] is done in two steps. To establish
the tightness of the sequence of laws of the slow component, we exploit criteria developed by
ETHIER-KURTZ [40, Theorems 3.9.1 and 3.9.4] by restricting ourselves to the torus case. This
strategy allows to overcome the difficulty related to the verification of the compact containment
condition, on the real line, of the slow component stopped at the stopping time 7. The second
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step consists in characterising each accumulation point of the sequence of laws of the slow dy-
namics and the occupation measure of the fast dynamics. For this, we need to check that any
measure v in M; (M;(R)) satisfying

| Eheolun(am =0 (16)
M (R)

for a certain class F of functions ¢ must be 7*. Equation suggests to take F as the set of
functions of the form F,(u) := F ({p, ). However, the last property seems hard to prove for
this choice of F. Instead, we adapt a result of DAWSON [26, Theorem 2.7.1] that applies to the
set F of so-called polynomial functions of the form

Pra)i= [ [ £ (e iz plday) - p(da)

However the duality property used by DAWSON in [26] does not hold in our case. In [I§], it is
proved only a weak duality relation involving stopping times. This difficulty will be solved by
proving that the measure ~ in gives mass only to measures having its first four moments
finite. This will allow us to characterise the limit fast component and hence the limit slow
component on the torus, as solution to an ODE. Since this ODE is non-explosive, we choose the
torus large enough to conclude the proof on the real line.

2.3.4 Outline of the proof

In Section[3] we begin by giving in Proposition[3.I]an approximation of the infinitesimal generator
of the slow-fast process ((th, “l{())@() for a class of test functions on R x M‘{’K(R), large enough
to be convergence determining and we characterise martingales associated to our process. We
give also martingale problems of the slow-fast process for polynomials in g where the main results
are given in Lemma for bounded test functions and Lemmas and for unbounded test
functions. In Section [d, we prove some moment estimates. In Section we give estimates of
the moment of order 6. The most important result is given by Lemma because consequences
are useful for all results in Section [f] as well as in Theorem [5.I] In Section [1.2] we establish
some inequalities on Mo (uf( ) and we control its bracket that we will use in Section |4.3]to prove
P—a.s. that Mo (,utK) takes superlinear (of the order of K¢1°&(K)) long time before hitting K®.
The fact that 7% — 400 in probability when K — oo is proved in Section using the
technical Lemma Section [£4] is dedicated to prove this lemma by constructing a coupling
between the moment of order 2 and a biased random walk. The rest of the proof deals with the
compactness-uniqueness argument associated to our slow-fast problem. Firstly, in Section |5 we
establish uniform tightness of the sequence of laws of ((zK ,ITK )) Kens Stopped at time 7K in the
torus case where I' designates the occupation measure of the process p€. The main result of
section is given by Theorem [5.I} In Proposition [6.3] of Section [6] we identify and characterise
in a unique way the limiting distribution of the fast component on the torus. Section [6.1] is
devoted to proving this result by exploiting the key Lemma [6.4] whose proof is given in Section
In Lemma of Section we proceed similarly for the slow component. Thanks to the
uniqueness on the torus of the limit slow component, we deduce in Section [7.2] the announced
result of Theorem 2.1
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2.3.5 Prospects
In the first part of this section, we explain the origin of exponent 2 in the inequality o5 < K~ (21
of Assumption . In the second part, it is explained how Assumption may be improved into

the assumption o < K —(3+¢) by using estimates for moments of order 2¢. Finally, in the last
part of this section, we explain the difficulties in obtaining these moment estimates. 3Note that
the assumption o <« K~ 2 is the best we can expect because of the error term ox K2 in .

(a) Origin of the exponent 2 in Assumption (@) On the one hand, as for all ¢ > 0 and

2
K € N*, Diam (Supp,u{()2 < (2 max {\m\ ‘x € Supp,utK}) < 4K M (,u{(), we deduce that

~ ~ ) 1
IF’(%K <7'K/\T) <]P’(EIt<T/\TK,D1am(Suppu{<) > 3,Jra)
UKK 2

1
~K K
<P<3t<T/\T 7M2(/J’t)>40_%<[{4+5>

On the other hand, note that thanks to the definition of the stopping time 7%,
P(3t<T AR My (uf) > K°) =0.
Hence, Assumption implies that P (%K <7EAT ) = 0 for K large enough. Using this

relation, we prove in Section that P (TK < T) <P (?K <T ATE ) Hence, to establish that

7K — 400 when K — 400 in probability, we need to prove that

K—+o00 K—+4o00 0<t<TATE

lim ]P’(?K gTMK) = lim P( sup My (uff) >K€> =
as established in Section [4.4]

(b) Improvement of Assumption (@) with moments of order 2¢. Assume now that o <
K—(5+e), Then, there exists £ € N*, £ > 0 such that

vC > 0, KCloelK) « 5, « K~ (3+35+578) (17)
and we consider the stopping times
78 = inf {t > O‘MQ (uf() > Kg}

and

1
ﬂffs := inf {t =0 ‘ Diam (SupputK) > 3+} :
UKK 2

Using now that for all ¢ > 0, for all K € N*, for all £ € N*, Diam (Supp ,utK)% < 220K My (uf(),
we deduce that

~ . 1
P (Elt < T AFE, Diam (Suppuf) > M)
UKK 2

1

~K K

< P(Ht <T AT Mo () > W) :
0K
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which is zero for K large enough by . As previously, if we can prove for all T' > 0 that

lim P(FE <TAFE)= lim P sup Moy (E) > K° | =0, 18
( bis X blS) K100 (()gthI/)\i—gs 20 (,ut ) ) ( )
then, we can conclude as before.

(¢) Difficulties encountered. The main difficulty consists in proving . For this we could

seek for an extension of Lemma (4.2 to the framework of moments of order 2¢. Lemma [1.2] relies
on the inequality for all t > 0, K large enough,

3M (kepeic) + 3My (lu't/\TK) Ms <Mt/\TK) + 2M2 (/'Lt/\TK>

4
< S0y () + 70 (i) M () + 2088 (o)

Oy thil s 3
T K% /o <4M6 (Hinzr) +3My (Mf) M, (,uf) + §M§’ (,uf) - Cg) ds + Mart, ;5

for some constants C1,C2 > 0 and where (Mart;,;x ), is a martingale. However a similar
calculation does not seem to be successful for moments of order 8 or more.

3 Infinitesimal generator approximation

Let us begin this section by giving the generator of the couple of process (zK T ) Then, we
give an approximation of the previous formula for a class of test functions which is convergence
determining. Finally, we give an extension to this result in the case of polynomials in .

3.1 Generators and martingales

For all K € N*, let us introduce the filtration (]—"tK )~ defined by FE =0 (zf kK

sgt).

Proposition 3.1. The infinitesimal generator of the R x M{ x (R)—valued MARKOV process
( K K) defined for all bounded measurable function ® from R X M§ x(R) to R, is given by

LED (2, ) = M/R,u(dx)/Ru(dy)b (O’K\/E.T—FZ,UK\/E?J—FZ)
x[@(z—i—al(f( .’L’)Tyxﬁ [,u—i(+i(}> q)(z,u)]
—|—KI§%(/RM(dx)9 (UK\/Ex—i-z)/Rm(aK\/Ex—i—z,h)
> —@(z,,u)] dh.

0, n

T+ ——=

X |® | z+ UK\/:h, Y P v
K2 T K32 K K

Moreover, for all K € N*, for all bounded measurable function ® from R X M‘{K(R) to R, the

following process (MtK’q))DO defined by

t20

ME® = @ (ol ) — @ (o) - [ 50 (2t as (19)
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s a (}—tK)go —martingale, square integrable, with quadratic variation:

K t
(M) = 7/ dS/Nf(daz)/ pE(dy)b (oxVEz + 25, ok VEy + 21)
0 R R

t KU%{
oxVE PR 2
x| 25+ = (y—x),fyi—(zﬁ{uf—Jr D—fb(zgf(,uf)}

K K
+K2/tds/,u§(dx)9 (UKVK$+Z§)/m(UKVK.%'+Z§,h)
Koz Jo R R
8, 2
oxVKh Kk _ 0z THUR K K
[l e 58] et ]

Note that the factor 1/Ko? corresponds to the time scaling of /€ used to define 2 and pf.

Proof. Step 1. About the gemerators. On the one hand, from , note that for all ® : R x
M{ (R, R) = R and ¢ : My x(R) — R such that ¢(v) = ® <<id, vy, <h L O T (idw) > jjy)

9K

LX® (2, 0) = K(lyf( X L5 (72 0 by yie) £ 1) (20)

On the other hand, note that for all v € M g(R), u,v € R, ¥ : R = R and ¥ : M; g(R) = R
measurable bounded functions, we have

/¢ ( x+a§fu B ig) v(dz)
- /R¢ (gK\/Ey + (id, y))\If ((T(id’w o hUK\/g) i [u + 5?“ - %D p(dy).

. . . . 5] s
Finally, by noting that for all v € R the mean trait of (T<id,y> ) hUK\/?) i [,u -+ } is

K
K
@¢w+”ﬁ{(u—m
and the centered and dilated distribution of traits of (T(idw o haK\/E) f [,u — %ﬂ” + %“} is
48
u z 1% K K

the announced result follows from and .

Step 2. About the martingales. The martingale property follows from classical arguments
since ® and LE® are bounded [40, Chapter 4]. To compute the bracket, we proceed according
to the following classical method (see e.g. [46]). We apply . ) replacing ® by 2 to obtam the
martingale M K.9? Then, we apply the ITA” formula to compute &2 (zt ,ut from . We
deduce that

Marty = @ (=f uf) = @ (8 l) =2 [ (a0l €50 (<0l ) s = (u57),
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is a martingale. Hence, the martingale MtK’(b2 — Mart; has finite variation, so it is null [48,
Theorem 4.1], leading to

(o) = [ £ (o u) — 20 (5 ) £ (5, 1] ds
then the announced conclusion. O

3.2 Asymptotic expansions
Recall that, a set S C % (R,R) is called M{ ¢ (R) — convergence determining if whenever
(P’Vl>n€N € ME,K (R)N Pe M%,K(R) and

lim (f, Fn) = (f,P)

n—-+o0o

for all f € S, we have that (P,), oy converges weakly to P [40, Chapter 3, Section 4, p.112]. As
developed in [26, Theorem 3.2.6], the class of functions on MS x(R),

B} o= {F, | Py () = F (o) F € 62 (1) ¢ € G2R.B) |

is M{ ¢ (R) —convergence determining.
In the following sections, we prove the assertions (i) and (ii) of Section [2.3.1]

3.2.1 Slow component

Proposition 3.2. For all f € €2(R,R), understood as a function of (z, ) which depends only on
z, the infinitesimal generator LX defined in Proposition satisfies the following decomposition

LEf (2,1) = Lsrow S (2,p) + O (I;? * Mém

+ o VK Ms; (u)>

where the operator Lsr,ow s given by @D

Proof. From Proposition for the choice of test functions ®(z,u) := f(z) we obtain that
LEf(z,p) = (A)F + (B)" where

K
() =
KO’%(

/u(dx)/u(dy)b (oxVEz + 2,06 VEKy + 2),
R R

(s 25w -0) - 10
(B)X . K /Ru(d:z:)ﬁ (O’K\/ESU—l-Z)/Rm(O'K\/EI-FZ,h)

T KoZ
x [f (z+ oK V3Kh,) - f(z)] dh.
K

2
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Now, we want to decompose and study (A)®. Denoting (C)fy(z) =f (z + %(y - m))
—f(2), from TAYLOR’s formula, note that (A)* = (A)X + (A)F + (A)é( where

(A = g [ ntan) [ () (2. 2) (O ),
(A)K = Kfi XUK\F/ (dz /M (dy) (20hb (2, 2) + ydab(z, 2)) ()X (2),

(A)?::KU /udx/udy UK\ﬁa:—l—z UK\/>y+z)—b(z z),

— ok VE (301D (2, 2) + ydab(z, 2)) | (C)X,(2).

Usi K _ ox VK _ i _ 2
sing that (C),,(z) = f'(2)2F=(z —y) + O ( F [y — 2|7 ), we deduce that

(A)f =0 (M}(”)> L (A = 1(2) (8ab(2,2) — 1b(2, 2)) My (1) + O <UK\/EKM3 (“)) :

X Cl% |y

and noting that ‘(C)ffy < — x| for some constant C7 > 0 and

’b (aK\/Ew + 2,0k VKy + z) —b(2,2) — og VK (x01b (2, 2) + ydab(z, z))‘
< CQO'%{K (w2 + y2)

for some constant Cy > 0, we deduce that (A)é( =0 (O'K\/FMg (u)) Therefore,

() = () (ab(z. 2) — Dub(z. ) Mo () + O (M2 e VR by ().
As previously, we obtain that B
B)Y* =0 (9;22) :
and the announced result follows. O

3.2.2 Fast component

Proposition 3.3. For all F € €3(R,R) and ¢ € €2(R,R), the infinitesimal generator LK
defined in Proposition [3.1], satisfies the following decomposition

0(z)ma(2)

LRF, (2,1) =
s K203

[Q@Fw(z,u) +0 <\/1E + o K2 My (1) + Miéﬂ)ﬂ

where the operator Ei\?(\}? is given by and F, is understood as a function of (z,p) which
depends only on p.
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Proof. Noting that

D), = <%t%ﬁ {u - % + %D — (¢, 1)

:<<pot%,u>+%{s@<y—%> —@(96—¥>}—<%M>,

setting (C)f:y = F (((p,m + (D)fy) — F ({¢, ) and from Proposition we obtain that
LEF (2, ) = (A" + (B)X where
K
(A)K = j/u(dx)/ p(dy)b (UK\/>:E+Z UK\/>y—|—z) (C)zy,
Koi Jr R

(B .= KI;%( /Ru(dx)Q (O'K\/ECC + z) /R’m (UK\/Em + 2, h) (C)i{,x—i-h/\/E dh.

Step 1. Decomposition and study of (A)K. From TAYLOR’s formula, we obtain that (A)K =
(A)E + (A)Y where

K:L xr 2,2 K
UShE KUK/Md /udyb( ) (©)F,,

(A)Y = / (dzx) /u dy U;@Fﬂﬁ%-z UK\ﬁy—i-z) —b(z, z)] (C)zy

Denoting (E)f,y = % (p(y) — ¢(z) — (y — x) (¢', 1)) and from TAYLOR’s formula again, we ob-
tain that (A)F = (A)F + (A)E + (A + (A)F, where

W= g [ ) [ @bz, F (g ) (D,
(A= s o) [t . F (o) (D)

AV = g [ ) [ e P ) [0V (9157

K
(A)ﬁ = M{/Rﬂ(dx)/RN(dy)b(%Z)
(©F, (e ), - U2 [y 17)

From TAYLOR’s formula again and the centered condition of u, we obtain that

W = T [t [ anF (o) [(BE, = (=) (#0) = & o)

N (y—a;);gw”,erO(\y—x +ly—af )1

- %zirzp(«o,u» (=2 i ) + (" 1) Mz ()] + K210 <o (FEE)
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In a straightforward way, we obtain that

(W) = P G [ ) — b1 + M () ()" = 2 x 10,10 ()]

As ¢ is bounded and so F' too, we deduce that there exists two constants C,Cy > 0 such that
2 2
[@)5,]" = (@] ] = [, - @[, + @),

ly — x|+ (y — )2(1 \y—x)
< — -~
\C Pr—i_ )

K? K
— 73
‘(C)i{,y — F ({g. ) D)5, - M (D) A < ”|]y(3|
Hence,
! 1+ M. 1 14 M.
(A)fo, = K2a§< x O ( + K3(M)> and (A)ﬁ = KT%{ % O (JFK?’(“)> .

Finally, as ‘b (O'K\/ESU + z,0xVKy + z) —b(z, z)‘ < C30x VK (Jz| + |y|) and ‘(C)fy < C’le

for some constants Cs, Cy > 0, we deduce that

(A = 5y 7 0 (oK (M) + Ma(y).

Therefore, using HOLDER's inequalities to bound M (p) < /Ma () < 1+ Ma(p) and Ma(p) <
M32/3(,u) < 1+ Ms(p) we have that

(A = TG o) [2¢ i)+ (") M ()]
+ %2 2) F" ({, 1)) [{6% 1) = (0, 18)” + Mo (1) (', )" — 2 (ip x i, ) (&', )]
1

><O<K+0KK2[1+M2( ) + M3(“)).

K2 K

Step 2. Conclusion. In similar way to Step 1, we obtain that

(B)K - 9(222()}7’« ) <902H,/,L> K21 7 x O (\/% +UKKM1(M)) .

Since, by Assumption , ox K 3 < \/%, the announced result follows. O

3.3 Generators and martingales in the case of polynomials in g
3.3.1 For bounded test functions

In this section, we extend in Lemma the result of Proposition to test functions of the
form

Prpn () == / /f (1, ,xpn) u(dey) -+ - p(day,) (22)
22



with n € N*, p € M{ (R), f € %2 (R",R) and where p™ is the n—fold product measure of .
In Lemmas [3.6] and [3.7 we extend this result to the case of specific unbounded test functions.

For all n € N*, we denote by 1 € R"”, the vector whose coordinates are all 1 and by A the
Laplacian operator on R™. Let us introduce, for all n € N*, A > 0 and f € %2 (R",R), the

operator Bg\n) defined by
n 1 n
B f(x) := GAf(@) —2A(Vf(@) 1) (x-1),  weR" (23)

Let us consider for all n € N* for all 4,5 € {1,--- ,n},

o @, 2R R) — G2(R" L R), with i # 7, is the function obtained from f by inserting
the variable x; between z;_1 and z; when ¢« < j and by inserting the variable x;_; between
xj—1 and x; when ¢ > j:

@i7jf($17... 7xn_1):f(x17... ij—lawiul‘j)xj—‘rlu'” 7$n_1) 7/<] (24)
Qijf (x1,- s Tn1) = f (@1, 01, Tim1, Tjy Tjp1, 0 5 Tn1) 1>
o Kij: Cgb2(Rn7R) — 2R R) is defined as
Kijf (o1, s n ) = 05 Fwn, o+ wn)adsy. (25)

We recall from [I8, Definition 2.8] that the extended generator (in the sense of DYNKIN, see
below) [,évc of the centered FLEMING-VIOT process with resampling rate A is defined for
any n € N*, for any test functions f € %)2 (R™ R) by

n

LivePrn (1) = (B Fum) + 0 32 [(@ifon™ ™) = (FuM] + 4 Y2 (Kigfumt). (26)
ij=1 hj=1
oy

From [I8, Definition 2.8] and denoting

Q= {X €%’ ([0, +00) ,M?’Q(R)) ‘ VI >0, sup M (Xy) < oo} ,

0<t<T

we recall that a probability measure P, on Q is said to solve the centered FLEMING-VIOT martin-
gale problem for polynomials with initial condition u € M‘f’Q(R), if the canonical process (Xt)t>0
on () satisfies P, (Xo =p) =1 and, for all n € N* and f € 42 (R",R),

—p; i
N7 = Pra(X0) = Pra(Xo) = | £vePra (X.) ds (27)

is a P, —martingale.

Lemma 3.4. The infinitesimal generator L% of the R x ./\/liK(R)—valued MARKOV process

(ZK,;LK) given by Proposition satisfies for all n € N* and f € ‘Kb‘g (R™ R), the following

relations:

0(z)moa(z)
K?%o%

z 1 1 3 M.
E%&/C)Pf,n (p) + KTI%{ x O ( + UKKgMQ (1) + 3(“)>

K —
ﬁ Pf,n(znu) - \/F K
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where \(z) := b( 2) Moreover, for all K,n € N* and test functions f € €2 (R",R), the
0(2)ma(z) b
process ( Pf") defined by

MtK7Pf’n = Pf’n (/Lf() - me (/lz(g{) - /Ot EKPf,n (’Zf?lu’f) ds

is a square integrale martingale started at 0.

The proof of this result is given in Section

3.3.2 For some unbounded test functions

The following results are particular extensions of Lemma when the test functions are no
longer bounded but the processes are stopped at time 7% Then, we give in Lemmas and
Doo0B’s semi-martingale decomposition of moments of order 2 and those whose degree is 6.

Proposition 3.5. For alln € N*, for all f € €3 (R™,R), the process (Mf;ﬁf’")po defined by

tAFK
K.Prpn K
Mz = Pro (fpen ) = Pro (1) = 75 / / u(de) / u(dy)
0z Oy
b(aK\/Kx—i—zs Lok V Kz + 2z ) {PfOT e (,u + > —Pf,n(,u)} ds
e KK

K tni K
—1—72/ /,u(dJ:)H(UK\/E:U—I—zf)/m(o’K\/Ex+zf,h)dh
Ko Jo R R

) 5m+L
Pfov'_im w—= ? + K\/? _Pf,n(,u) ds

is a bounded martingale.

Proof. Thanks to the stopping time 7%, (M :Z’;f’")po is bounded. Hence the martingality of
this process follows from Lemma B O

(a) Moment of order 2. The following result will be useful in Section

defined in Proposition satisfies for

K,P,
Lemma 3.6. For all K € N*, the process (M . ‘d2’1)
t>

tATE
allt >0

=

My i = My (uf ) = M (“5)

b [ A2 () M ) 0 (8 (o) s

L M2 VEM; (uX K2M; (p5) ) d
+K2o—%< ; 7 TOK 1(M5)+0K 3(Ms> s
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is a square integrable martingale with quadratic variation:

+K
(T, i [ () (ot (1) - 08 () s

1 2 K My (uX KM; (X
+ 7](202 /0 ’ 0] <U§(( + 2}(?5 ) 4 OK\FK:S ('us ) + O’K\/EME) (Mf)) ds.
K

Proof. Step 1. Approximation of the DOOB decomposition. Note that for all x,y € R,

0z Oy 1 1
]DidQOTﬂ_T, ('“ K + K> — Bg21(p) = K (yz - 562) - ﬁ(y —x)*.
K

From TAYLOR’s formula, it follows that
K ¢ K K
72/ ds/ ,u(da:)/ wu(dy)b (UK\/Kx—i—zs L, orVEKY + 2 )
KUK 0 R R
0z | Oy
1

[T P,

and

KO’K/dS/ d:c/ ofo+zs, )H(UK\/Ex—sz)

6 6$+h
x K
X | Bazor p ol r=e vt — Bz 1 (p) | dh
K3/2
1 t K K
:K20%(/0 [0(2 )mg( )+O( + oV KM ps)ﬂds.

We deduce the first announced result.
Step 2. Quadratic variation. In similar way to the proof of Proposition we have

Kt
<MKPd2 1> :72/ ds/uf(dx)/Mf(dy)b(JKva+zf,JKva+z§)
t Koy Jo R R

[0 - gatv-or]

+K;{/Otds/Rﬂf(dx)/Rm(UK\/?J?+zf,h)9(0;@/?37—1—25)

R B2 2zh)7
[7—7+%Jm
K K K3

The announced result follows from TAYLOR’s formula and straightforward computations.

(b) Moments of degree 6. Let us denote for all £ € N, ]\Ajg(u) = <id€, p>.
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Lemma 3.7. Let us consider the functions f,g : R? — R and h : R® — R respectively defined

by f(u,v) == u*v?, g(u,v) = uv® and h(u,v,w) = v?v?w?. For all K € N*, the processes
KPd61 KPﬁQ K,P 2 KP} 3 .
<Mt/\TK >t>0, (Mt/\%K )t>0’ (Mt/\ﬂﬁ )t20 and (Mt/\%K )t>0 satisfiy for allt >0

%K
. MtA Kd61 Mg (M{f\%x) — Mg (,ué{) +K230%</0M {b(zf,st) [4M6 (Mf)
00 1) M, ()] =30 (2 o () ()

1 tATE Ms (,LLK) 1+ My (MK) K
+K2o—§</0 O< \/Es + i s +UK\/?M5(N5)7

Mg (1)
K2

(1)
b (20 (58 ot () 0 () = s () 4303 ()
60 ()] = 0 (=) ma (=5 [6043 () + 212 (48]} as

tAr K
1 / O(]\W+UKK2M7(Mf)>dS,

+K20’%{ 0 K3
o Myl = M3 (“ﬁﬂ() - M3 (“0) Kz K202 /MT {b( Zs %5 ) [ 2Ms (“S )
+ 1403 () + 120y (pE) My (p5) — 1805 (uf) ]} ds

7% K
1 / O<W+UKK3M7(M5K))d37

+

+ O'KK%M7 (,uf)) ds

o MMTI2 — (uf/{w;{) M, (,ut[f\;_x) — My (M ) 2

tAT

+K20%< 0 K3

o MU = 03 (1l ) < M () g [ {0 (a8 ) 120 (1)
- 01 () M ()] — 30 (=1)ma (=2 M (8 )}
n 1 /t/\i-KO(MG (Mf) —I—O'KK%M7 (Mf)) ds.

K202 Jo K3

Proof. The approximation proposed is obtained in a similar way to the proof of Lemma O

3.4 Proof of Lemma [3.4]

From Proposition for the choice of test functions ®(z, u) := Py, (1) given by and noting
that for all z,y € R,

(1 (g b= 5I) ) = o i 8,
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we obtain that LK Py, (2, u) =

((A) + (B)K) where

(@A) i= [ uda) [ u(dy)b(oxvEa+200VEy+2) (O,
/,u dz /9 a;@ﬁx%—z) (z+aK\/Ex,h)(C)§x+h/\/§dh

R

where (C)f,y = <f 0T y—s, [,u - %’ + %}n> — (f, ™). Note that, from TAYLOR’s formula, we

obtain that

+
=
M
ey
)=
)=
PN
2
)
=
|
g
_l_
=S
3
~_
+
o
P
<
=
“i
\_/

=2

k
By abuse of notation, we do not indicate the orders of the products of measure ™ * [—% + ?y} .

Step 1. Decomposition and study of (A). Note that (A)* = 3°_, (A)K where

@ =) 3 (1) [tan) futan (e [552]),

k=1
n n k
NS S (Z) [ o) [ wtay)y -2 <aif, [0 4 0] >
p n n n : k
W= X Y (k) [ e [ )y - 27 <a$jf, [0 4 O] >
(A)4 = (M;(:g'u )7

(A = /R,u(d:c)/Ry(dy) [b (UK\/I?QC—FZ,UK\/?y—i-z) —b(z,z)} (C)f’y

We first study precisely the (A)é( term by explaining the case k =0, k =1 and k > 2. We will
just give the result for the other (A)ZK , © € {1,3,5}: the approach remains the same. By the
centered assumption of u, note that for all ¢ € {1,--- ,n},

[ @) [ ldy) o) @f. 1) =0
R R
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Then, using again the centered assumption of u, we obtain that

(1) £ oo Loamts— (s [+ 2]
kBB L oo o

X |:‘Talf (‘,1:17"' ,.'Ifj_l,x,xj_i,_l"' 7xn) _xa’bf (':Clv'” 7$j—17y7$j+1 7xn)

_yazf (xlv"' s Lj—1, Ly Lj41 " 7xn) +yazf (;Ula"' Yy Lj—1,Y, Tj+1 - ,.Tn):| H M(dl‘g)

(5
2 K& n
K Z // / p(dx)z0; f (w1, -+ @1, T, Tj1, ++  Tn) H w(dzxy)
i=1j=1"R R /R 2;1
j

= 2V D) (e 1) 7).

As V[ is bounded, we deduce that for all k > 2, for all s € {1,--- ,n},

[ ) [ )y - ) <8¢f, [0 4 O] k> —o (M),

Therefore, we deduce that

2b(z, z)

(A); = T

Ml(ﬂ))

(V5 1) (0 1) + 0 (M0

In similar way and using Assumptions (A) we have that

W =2 S s - ()] <0 (55),
iR

W = 3 3 (K)o (540).
i=1j5=

(A)f =0 ("Kf [My () + My (u)]) -

Step 2. Decomposition and study of (B). For all a,h € R, we denote 0, (o, h) :
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0 (o) m (v, h). Note that (B)* =3°_, (B)ZK where

n 5x _h_ F
B)f =" (Z) [ @) [ Oty { gt [—ﬁ§.+ ;ﬁ] dh,

k=1
K 1 ¢~ v k|0 6“7}1* '
o n— X K
B =5y Z()/udw/9 N ] dh,

k
1 - - n 633 P
(B)f = — g E ( )/,u(d:c)/ Qm(z7h)h2 812]0’ Mn—k [_+ \/K] dh,
2K3 =1k =0 k] Jr R J K K

(B)¥ :_O<Ijg/Ru(dx)/Rem(z,h)]h]?’dh),
(B)Y = /]R u(dz) /R [0 (08VE e + 2.h) — 0(2.0)] (©)F ., dh.

Note that, from TAYLOR’s formula and Assumptions (A), we have that

()/udx/& zh<f, —+5x;(¢h?]>dh
72/ // d:cl/H zh{\/l?

h? 9
2K8uf(x17'“ y Lyttt 7$n)+0 (Kg)

SR () ().

In similar way to Step 1, we obtain that

@i = (G o). @ -o(g)

@) =0(5). ®F-0() aa ®F-o0 (”i{ s (u)) .

and using Assumptions the announced result follows.

Step 3. Martingality. By classical arguments, since M :Pfn» is bounded, we obtain that
M%Prn is a square integrable martingale started at 0.
4 Moments estimates

Lemmas and lead us to look for moment estimates. In Lemma we have given the
DooB semi-martingale decomposition of the second-order moment and note that involves the
third-order moment in the error term. The presence of the higher order moment generates a
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difficulty to obtain a fine control of the second order moment. This difficulty is overcome by
introducing the stopping time 75, given by (15]). In Section we give estimates of the moment
of order 6 and some corollaries useful for SectionsBland [l In Section 4.2 we establish estimates in
expectation and probability of the second order moment up to the stopping time 7% and we also
control the martingale bracket of the DOOB decomposition given in Lemma In Sections [4.3]
and we prove that the stopping time 7% := #5 A7K | given by , converges in probability
to +00 when K — 400 using coupling arguments between My (uK ) and a biased random walk
on N*, reflected in 1, and large deviations estimates for this random walk.

4.1 Estimates of the moment of order 6

In this section, we establish a technical lemma useful for Lemma [£.2] below. The idea is to obtain
an explicit upper bound of the moments of order 6.

Lemma 4.1. Given any continuous function y(t) satisfying

v <yl + [ P, < (20)

for some LIPSCHITZ function F: R — R, then y(s) < z(s) for all s > 0, where z(t) is the unique
solution of

2(t) = () +/:F(z(r))dr, Vs < t (30)
such that z(0) = y(0).

Proof. First, it is sufficient to prove that, for all € > 0, y(s) < z-(s) for all s > 0, where z. is the
unique solution of

() = 2 (s) + /: F(z(r) +]dr, Vs<t (31)

such that 2z.(0) = y(0) + . Indeed, it follows from and that, for all ¢ > 0 and € > 0

t
2(0) = 2:(8)] <21+ 8) + Cuip | 2(6) = 22(5) ds
where Cp,p, if the LIPSCHITZ constant of /. GRONWALL’s lemma then entails

|2(t) — 2e(t)] < e(1+t)exp (Cript) — 0

e—0

so that y(t) < z:(t), for all € > 0 indeed implies y(t) < z(t).
So, let ¢ > 0 be fixed and let us prove that y(t) < z-(¢) for all £ > 0. Define

9. = inf {t >0 ’ y(t) > za(t)} .

Our goal is to prove that ¥, = +oc.
By continuity of y, 9. > 0 and, if ¥. < oo, y (¥:) = 2- (¥:). Assume by contradiction that
Y. < co. Then, using and , for all 6 € (0,9.),

ze (V) —y () — (2e (U = 6) —y (Ve —9)) S 1 e
]




By continuity of z. and y, the last term of the right-hand side converges to 0 when § — 0. Hence
the left-hand side is positive for all § small enough. Since z. (¥:) = y (9.), this implies that

ze (Ve —6) —y (¥ —0) <0

for such 0. This contradicts the definition of ). as the first time ¢ such that z.(t) < y(t). O

Lemma 4.2. There exists Ko € N* large enough and two constants C1,Ca > 0 such that for all
K>Kyandt >0,
90

E (M6 (/LtK) ]ltg%K) < Cl exp <_Mt> + CQ

Proof. Step 1. Pathwise inequality. Note that for all ¢ > 0,

. Mg (X .

My (pfs 21 ) < Diam (Supp sy sxc ) Mo (5o ) < (7%11() (32)

oK 2

Introducing for all ¢ > 0, A; := %M@ (,u{() + TM,y (u{{) Mo (,uf() — 4]\732 (uf) + %MZ?’ (,utK), we

obtain from Lemma and Assumptions (A) that there exists a constant C' > 0 such that
forallt > s >0,

1 tAFE C K 9 K K 3 K
Ao < Ao =g [ (0= 5 ) (390 (u8) + 5000 ) 2 () 5 52 ()

- 91
— Omy [ZM4 (,ufq{) + 42M3 (,u,fn{)} dr} + Mart,pzx — Mart ,:x

where (Mart;), is a martingale. Note that, choosing K large enough, for all K > Ko, b —

CK~¢/2 > b/2. From the inequalities M3 () < My(p) and My(p) < M62/3 (1) < aMg(p) +1/a?
with a := 2b/2590m5, we deduce that

3b _ 191 3b 25907 925936°m3
T ()~ B2 | SN () + 9203 ()] > M (1) — 20T Ma ) > 0y () - 25 0

Thus, for all t > s > 0,

A < Agpsx + Mart, zx — Mart ,zx

7K _ ;
g [0 [ 3 ) ) <o ) - (22) o

NFE
K —\3
< Agpir — 28[3;:%( /S:TK <Ar - % (25929;12) ) dr + Mart,zx — Mart,:x
Step 2. Conclusion. Let us consider the stochastic process (N (,u,tK )) +>0 defined by
Ay if s<t<#K
N (uf) =4 (Asx — Co)exp (—ﬁ (t— %K)) YOy if s<iK <t
0 if K <s<t
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S \3
where Cj := %4 (%) . From Step 1, for all t > s > 0,

N(Nf{) < N(,uf) — M?-;‘z/t [N (,uff) —C’o} dr + Mart; — Mart,
K /s

which entails
9b

t
- W(/s (y(r) — Co)dr

where y(t) :=E (N (pf*)). From Lemma we deduce that for all ¢ > 0, y(t) < z(t) where z(t)
is the unique solution of

y(t) < y(s)

9b

z(t) = 2(s) — m

t

[ o) - coyar

such that z(0) = Ay, i.e. z(t) = (2(0) — Cp) exp (—281?7%‘20 + Cp. From (/7)) then , note that
K

Mo (1) = (. 1) = gz (10— 20)® i) < i

From CAUCHY-SCHWARZ’s inequality Mg(u) < My(p)Ma(p), note that z(0) < 21Cg /4 and so,
forallt > 0,

4 3 3
K K K K 3( K
E (Mg () Dpern ) < 3E (LLMG (1) +3My (f) My (uf*) + M (1t )} ntg%K)
4 4 (21 9b
b= (B () v0)
3Z(t) 3 < 4 (06 Oo) exXp 28K20'%<t -+ C(]
and the announced result follows. O

The following lemma will be useful in the proof of Theorem

Lemma 4.3. For allt > 0,

178l
sup E (/ Mg (uf) ds) < 00.
0

KeN*

Proof. Let t > 0 be fixed. By FUBINI’S theorem and Lemma [£.2] there exists two constants
C4,Cy > 0 such that

t t 9b
K 1%
E <A M6 (/"LS ) ]]‘8/\’7'de> < ClA exp <—W(S) ds -+ Cgt < (Cl + CQ)t

which ends the proof. O

The last lemma has the following consequence, used in Sections [5| and [6]
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Corollary 4.4. For all T > 0, the family

tAFE
< / Ms (Mf) dS)
0 t€[0,T], K eN*

is uniformly integrable.

Proof. Note that for all K € N*, for all t € [0,T], for all A € (0,+00),

t 1 t 6/5
]lft Ms (pE)1 <Vde>A/0 Ms (Nf) ]lsé%KdS < 57\/2 (/0 Ms (:uf) ]lsg%KdS) )
0 8 /7s<T =

we deduce from HOLDER’inequality that, for all ¢t € [0, T, for all A € (0, 4+00),

¢
des>A/O Ms (Mf) ]lsﬁde)

s<T
T b 65 K
< —= sup E (/ M, 1.+ ds>
A Kehe 0o’ (,us ) st

T t
< —— su E(/M f]ls%ds)
5AK61£1)* 0 G(u ) <7

E{1l
s B (L0

From Lemma [£.3] we deduce that the right hand side of the previous inequality goes to 0 when
A — +00 and so the announced result. O

4.2 Some inequalities on the moment of order 2

Lemma 4.5. There exists Ky € N* large enough such that for oll K > Ky, the process Mo (,uK)
satisfies for allt > 0 the following inequalities:

5b AT 20m,  20m K,P, K,P,
K K L1082 2 ’ 1d2,1 _ ’ 1d2,1
My () — K27 /WK [MQ (nE) - = T ] dr+ M, =M

b e om K,P, K,P,
K K = K 2 a2, 1542,
< My (pfforc) < Mo (pS5nc) — 70/5 [MQ (uf) - ] dr 4+ M,y

K203 Jopix b
(33)
K,P, . . .
where Mt/\ﬂ?p’1 is defined in Proposition . Moreover, fort >0,
om: b om:
K K 2 b 2
E (Ms (1) Tcsnc) < E (M2 () - b) exp (art) + 2.
Proof. Note that for all ¢t > 0,
. M2 MKV
Ms (pf 2 ) < Diam (Supp pifs o ) Ma (pifie ) < (7%1() (34)

JKK 2
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From Lemma and Assumptions (A), there exists two constants C, C > 0 such that for
allt >s>0

1 tAF _C om K,P, K,P
K K 2 421 Hid21
My (MSA%K) T K202 /s/\%K ([21) + K } My (MT ) — fmy + K) dr+ My =M, px
< M2 (Ntf/(\;_K)
1 tAFE 67
K
< o) = e | ([Qb s

N K

o

’Pid2,1

- Om K K,P,

sATE

Noting that for all K > Ky, 2b — CK—/? > band 20 + CK—¢/? < 55/27 the announced first
result follows. In similar way to Step 2 of the proof of Lemma we obtain the second part of
the announced result. O

Corollary 4.6. For allt >0, E (M2 (pf() ]ltg%x) < max {C;,?mg/b}.
Proof. From and , note that
My (,ué() = <id2,u£(> <G5
The announced result follows from Lemma .5l O

The goal of the following result is to bound the martingale bracket <M K’Pid2,1>tN «+ To do

this, we exploit the martingale approximation of the moment of order 6 in order to control the
dominant term My (uf) — M3 (uf) in (28).

Lemma 4.7. There exists a constant C' > 0 such that for all K € N*, for allt > 0 the martingale
bracket <MK’Pid271>t satisfies

C

E (<MK’Pid2’l>t/\7v_K) < KTO_%(

E(t/\%K).

Proof. From Lemma and HOLDER’s inequalities M2 (u) < My(p) < M62/3 < 14 Mg(p) and
M5 (1) < Mg (,u)5/6 < 14 Mg (1), we deduce that there exists a constant C' > 0 such that for all
t=>0

K
(uihan) < Kgaf(/om (14 8o (1)) <1 " %) o

The announced result follows from FUBINI’s theorem and Lemma O

K

4.3 Convergence to +oo of the stopping time 7% and support concentration

property
K

The main result of this section is the following convergence result for the stopping time 7%,
defined by , when K — +o0.

Proposition 4.8. Under Assumption (5), 7 converges in probability to +o0o when K — +o0.
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The proof is based on the next lemma proved in Section [£.4] below. Thanks to Proposition
we deduce the support concentration property of < YKo 2) given by (EI} Indeed, with

probability which tends to 1 when K — 400, Diam (ut ) < 3+£ for all t € [0,T]. Hence,
2

ox K
1
. K o . K
Diam (I/t/KU%{> = O'K\/I?Dlam (,ut ) < m
and @ follows.
Lemma 4.9. Under Assumption , for all T >0,

lim P (7K

e ( <7V'K/\T): lim P sup Mg(ﬂ{{)gKE)—o.

K—=+oo  \ o<t<TA#K

Proof of Proposition[{.8 Note that for all T > 0,

1
IF’(%K <T/\7A'K) g]P’(EIt<T/\7A'K,Diam (Supp,utK) > 3+5)
O’KK 2

Asforallt > 0, for all K € N*, Diam (Supp s ) (2 max {\x| )x € Supp ,uf(}f <AK M, (uff),
we deduce that

1
P <E|t < T A7E Diam (Supp,u{() > 3JFE)

UKK 2
1
~K K

According to , we deduce that the following inequality 40% K4t < 1/K* holds true when
K — 400 and o — 0. Hence, we deduce that

}P’(EIL‘<T/\?K,M2(WK) P (3t <T AR My (uf) > K°) =0.

) <
Now, for all T > 0, {#K > T A7KY = {#K > 2K} U {#K > T}, and so
B ({7 > 7Y 0 (o5 <1}) < B([{7 <) {7 < 75} U 55 <1 < 75))
<P(FE<TAFK).
Note that for all T > 0,
P(r¥ <T) <P(#X <TAFK) +P (7 <T AFK).

Hence, from Lemma we have for all T' > 0, limg oo P (TK < T) = 0 and the announced
result follows. O

35/70



4.4 Proof of Lemma (4.9

Note that if My (Mf ) becomes larger than s /b, the drift term in the right-hand side of 1 is

then negative preventing Mo (,uf ) to become excessively large unless the martingale M a2
has an exceptional path with large increments on a small time interval. We then expect to have
large deviations estimates and bounds on the time of exit from attractive domains for Mo (MK )
However, we cannot consider establishing directly a large deviation principle on My (;LK ), in
particular because of the slow-fast limit. The approach considered below is based on coupling ar-
guments between My (uK ) and a simpler process for which large deviations estimates are known.

Let us introduce ug := 0 and for all ¢ € N* the real number uy := 3'K % and the interval Iy =
[ug—1,ups1). We will look at the process Ms (MK ) at successive exit times of (Zy) .. We set
L =1 when My (i) € [0,2u1 +1] and L{ := £y € N* when Ma (pf) € (2ugy—1 + 1, 2ug, + 1.

We also set T4 := 0 and by induction on k € N*| if (LZK ) and (TZ-K ) are constructed,

1<i<k 1<i<k

TE | = inf {t > T | My (4 ¢ ZLi(}

and
Lﬁ(ﬂ = min {E eN ' My (uﬁ;il) < 2up + 1} .

Note that from , for K large enough, L = 1 because My (ué() < (5. Since (,u,tK)t>0 is a

pure jump process, note that (Mg (utK )) is also a pure jump process. The definition of wy is

=0
motivated by the fact that, for all £ > 0, L,ﬁ_1 < LkK + 1, which follows from the next lemma.

Lemma 4.10. Let 91 be the first jump time of u*. Then, for K large enough
My (uff)) < 2My () +1.
In particular, for allt > 0, AMs (uf) = Mo (,uf) — My (ufi) < Mo (u{f) + 1.
Proof. Let us consider ul = % Zszl dz), and y = (yx),<p< g defined by
y = { <$1,"' ,wifl,xﬁ-%,ﬂﬂ,'“ ,iﬁK) on Er,
(1, Tj—1, T4, Tjg1, - TK) on Fs,

where H follows the mutation law m(x;,dh), F; is the event “a mutation occurs at time 1"
and Fo is the event “a resampling between ¢ and j occurs at time ©#;”. Note that '“1]9(1 =

T7<id 1K 6yk>tt (% SEK 5%). Hence, noting that for all k € {1,--- , K},

'K k=1

lze| < \/E(l + M (Mg))
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and using Assumption (A2), for K large enough we have that

My () < ( Z%)— S

i=1 i=1
24 A?
72 a:k m;k + ?r; on FEi,
2
<
1 9 2 — a2
?kglfﬁk + on EQ,
2A,, (14 My (pf€ A2
<) M (b)) + m K 2 (kg ))‘FKTZ on FEj,
2Mo (,u(l){) on Fjy,

<2M, (uff) + 1.
0

Each of the previous steps will be called transitions of Mo (uf( ) The idea of the proof of
Lemma is to estimate the transition probabilities of the sequence (LkK ) pen order to con-

struct a coupling between (Lf )k oy and a biased random walk on N* reflected in 1.

At time 7K, My (p K) € Il ) where |z] is the lower integer part of x. So, the

m log(K
number of transitions of My (ut ) before 7K is greater than or equal to Tk}g where kg is the first
integer such that LkK0 = Lﬁg(iﬁ) log(K)J.

By using estimates on the number of steps that a biased random walk takes to reach
\ﬁlog( )log(K )J and estimates on the durations between two transitions T,fil — TE, we will
deduce a lower bound, exponential in K, on 7%. An additional difficulty comes from the fact
that the previous coupling argument is only valid up to time 7. Hence we will construct a
coupling that takes into account the possibility that 7% happens during each transition step.
The proof is divided into four steps: in Section [4.4.1], we characterise the behaviour of the first
transition step; in Section [£.4.2] the proposed coupling is constructed; in Section [1.4.3] we give
estimates on the first exit time from an attractive domain for random walks; finally, we conclude

in Section [4.4.4]

4.4.1 One-step transitions

In this section we look at only one transition: we suppose that My (ug) € [2up—1 +1,2u;+ 1)
for ¢ € N* fixed and we look for bounds on the first transition probabilities of M (uf*) and on
time TY. The main result is the following.

Lemma 4.11. For all £ € N, for all uff € MiQK(R) such that

M, (,u,éf) € [2up—1+ 1,2up + 1),

there exist a constant C > 0, Ko € N* such that for all K > Kg, we have

B ({1 =)0 (5 T Kot 0 T > 7)) 2 o, a9
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1 C
where Nk =35 — 7Z73-

The proof of the previous result is based on Corollary .12 which is obtained as a straight-
forward consequence of Lemma

Corollary 4.12. Let { € N* be fizred. There exists Ko € N* large enough such that for all
K > Ky, for all pff € Mii{(R) such that My (,ug) € [2up—1+ 1,2up + 1), we have for all
t < T that

v K7Pi2
tAFE M,

NFK

5gué+1 + 0ms,

211,@71 +1-— 5

2K?07,
K.P

tAFE + M,

ATFE

buy_
< My (M{i;x) <2up+1-— KTO_QI
K

Proof of Lemma[{-11. By passing on the complementary of (35)), it is equivalent to prove that
P ([{2 = 0401} U {TF < Kod} ] n {7 < #)) < L e
As for all events A, B, P(AU B) = P(AN B°) + P(B), we have
P ([{LF =+ 1} U{Tf < Kof} | n {Tf < #5})
=P ({TF < #} n {Lf = e+ 1} n {1 > Kok })
+ B, ({1 < #} n {T] < Ko} })
<SP ({Tf < #pn{Lf = t+1}) + P ({1 < #} n {7 < Kok }).

(36)

Step 1. Control of the first right-hand term of . Let us consider the martingale (Martf(’+)t>0

defined by

K,P, . §
Kt M, e it t<FK
Mart, " = K,P.o
M+ =By it £ > 7K
where (By), is a standard Brownian motion independent of (uf ) +>0- Note that from Lemma
[4.7] there exists a constant C' > 0 such that for all ¢ > 0 we have
E ((Mart"*) ) < ¢, (37)
) = K202
Let us consider the process (MQK ’+(t))t>0 defined by
K . LK
M2K’+(t) = e (utK) bug_y VK K+ K+ %f 'S 7:K
Mo (,LL%K) — ;(20% (t -7 ) + (Martt — Mart%K ) if t>7
Note that from Corollary for all t > 0,
5bugy1 + Omy K+ K+ bup_q K+
2'LL@,1 + 1-— Wt —+ Martt < M2 (t) < 2’[1/@ + 1— K2o'%<t -+ Martt . (38)
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By GIRSANOV’s theorem, the process (EtK7+)t> defined for all ¢ > 0 by

/

1
EtK’Jr = exp (Martf’Jr -3 <MartK’+>t>

. . K 6K202 .
is a local martingale. Let t; := £ be fixed and let us consider
Tt = mf ‘ 0| MET (1) ¢ Ig}

LE* .= min {E eN ‘ M () < 2up — 1} :
: o K,+ 2buy K,+ K
From and denoting I' := {<Mart >T1K’+/\t5< < Fors 21T At }, we have

K+ K+
1=E E; > E E; 1
#5(( Tf’*/\t{f) = #5( TSt Atk F)

> exp (—2up — 1) E,x <exp (M21(,+ (TlK’+ A t(lf) + Kl;eaéTlK’—i_ AtE
_ % <MartK7+>T1K‘+Até<) 11F>
> exp (—2u — 1) B, (exp (My"F (157 Atg) ) 1)
> exp (—2up — 1) [exp(u ,uK ({LK+—€+1}OFH{TK+<7§ })
+]P>K({ T<e—1pnrn{ntt <))
As for all events A, B,C, P(ANBNC) > P(A) —P(ANB°) —P(ANC°), and denoting g :=

P, (L1 = €+ 1) we have that
1>exp(ug—1) [q - P ({L{(’Jr =/{+ 1} OFC)

= P ({L5F = e 1} n {1 >}

+exp(—2ur—1) [1 =g =P ({LI7F <=1} nT°)

_[p)ué(({Ll <1 {7 > i)

> (exp (ug — 1) —exp (—2up — 1)) ¢ + exp (—2u; — 1)
— (exp (ug — 1) + exp (—2uy — 1)) [IF’ x (I)+P, K (T1K’+ > té()} :

. K?
Then, considering sf := H < t{f be fixed, we deduce that
0+4+1T7Iy

1—exp(—2up—1)
“5 exp (ug — 1) — exp (—2uy — 1)
exp (ug) + exp (—2uy)
oxp (ue) —oxp (2
<exp (—ug + 1) x 1 —exp(—2u;—1)  exp (ug) + exp (—2uyp)
1 —exp (—ups1) exp (ug) — exp (—2uy)
T (T > 1) P (15 <) 7y (1 > )]

[P (1) + P

“0
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Denoting [a] the upper integer part of a € R, we obtain on the one hand that there exists a
constant C7 > 0 such that

P (070 {17 > s})

2buy_
_ K+ U1 K+ , K K+ K
= ]P’Mé( ({<Mart >T1K'+Atg< > T At } N {T1 > s })

K202
(t

Il
= NACHER
L

2bu
K+ 0—1 K+ o LK K K+ K
Pué‘ <{<Mart >T1K’+/\té( > oy 2 T, Aty } N {kso <TI0 < (B+1)sg >

2bu
K+ OUg—1 K+ K+ K K K
+]P),LL5< ({<Mart >T1K’+/\t0K > K2(]'2 /\to } {T tO /30 180 })

(ﬁ]_l
K
*0 2buy_ 2buy_
K,+ 21, K K+ 21 K
< k—lPué{ ((Mart >(k+1) « > Trga ke > + P <<Mart >tg< > Kagz b )

[t /sk1-1

_ KQU%( Z E <<MartK’+>(k+1)sé(> . E (<MartK’+>té(>

I 2ng_1k:s{f

QQUg_lté(
<G

S €
K2

where we use MARKOV’s inequality in the second inequality and in the last inequality. On
the other hand, we control P#(‘[)( (TlK’Jr < 85) as follows:

K, K, K,
Pk (Tl t<sh ) <{T t<sh } { sup My ot (t) > uz+1}>
+ P <{T1K’+<Sé(}ﬂ{ inf MK+()<W_1}>.
0 0<t<sy

Let us consider Ky € N* independent of ¢ satisfying K f/ % > 2. There exists a constant C1 >0
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such that for all K > K;, we have that

P ({T < 8p } { sup M2K’+(t) > Ug+1}>
o<t<sy
<P { <so} sup {2w+1 belt—i—Martt } Ups1
Ho Ogtgs{;{ K2 2
< Pué( ({TlK’+ < 5 } { sup Martf’Jr = up — 1})

0<t<sE
3K 2

<IP’#K sup ‘Mart ‘
¢ \o<t<sE 2

4
K+
< 4Eu§ <<Mart >s(§<> X e
Cy
S E
where we use in the first inequality, DOOB’s maximal inequality in the fourth inequality and

in the last mequahty Now, let us consider Kg € N* independent of ¢ satlsfylng K, £/ > 4.

Using again , DooB’s maximal inequality, (| , and the definition of 30 , we deduce that
there exists a constant C5 > 0 such that for all K > Ko, we have that

. K+
P <{T < s } {Ogltzfsg‘ Mym(t) < Ug_1}>

. Sbugi1 + 0ma K+
Pué( ({T < 8 } {Ogliiéf {2u€_1 —1- Wt -+ Mart, < Up_q

K+ K Ug—1
L ({Tl < 8 } N {0<1£fs Mart 5 + 1})
K+ —1
< Pug < sup ‘Mart ’ > ? - 1)
0<t<sfs
<&
Ke

Hence, for all K > max {K, K2}, IF’M(? (TIK’Jr < sé() < % Finally, from and MARKOV’s
inequality and the definition of ¢£, note that there exists a constant C3 > 0 such that

P (TFF > 1) <P ({ sup MIST(t) < w+1} N {OgtxiK ME+() > Ug_1}>
Stsbo

o<ty
bup—y K
(Mart > up_1 —2up— 1+ KQO'%(tO
_ By (Mant s )
s (wp—y — 1)?
Cs
<=,
KE
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Hence, for all K > max {K7, K2}, we deduce that ¢ < ex where

1-— —2up — 1 -2 C
ek =exp (—ug+ 1) x exp (~2u; — 1) 4 &P (ug) + exp (~2ur) x —L
1 —exp (—ups1) exp (ug) —exp (—2uy) K32

and thus, for all K > max {K1, K»},
P ({TF <# b n{Lf =0+1}) =P ({117 <#} 0 {1 =t +1}) <g<en

Step 2. Control of the second right-hand term of Hi Similarly, let us consider K3 € N*

independent of ¢ satisfying Kg/ 2> 9 Using Corollary Doo0B’s maximal inequality and
Lemma [4.7) in similar way to Step 1, there exists a constant Cy > 0 such that for all K > K3 we
have that

16K, <<MK’P“2’1> o2 A+K>
P, ({TIK < ¥} ﬂ{ sup My (uf) > W+1}) S e

0<t<Ko2 NP
Cy

= Kl+e’

Let us consider K4y € N* independent of ¢ satisfying the relation uy,_; > 1 + %. As

previously, we establish that there exists a constant Cs > 0 such that for all K > K4 we have
that

K.Pg2.
4EM5{ (<M ! 1>Ko—§<A%K>

- 2
5bugy1+0m
(Uﬂ—l —l-—r

Cs

]P)Mé( ({TlK < %K} N {ogtgli(rclyg(/\%K Mo (Mf{) < UZ—I}) <

To conclude this proof, there exists a constant C' > 0 such that for all K > Ky where Ky :=
max;e(1,... 4 K,

P (i =e+1} u{Tf < Kok }| n {Tf < #5}) <%_77K

for any ng > % — €K — C;‘é'ﬁ%. A convenient choice is given by ng := % — K§/2 for K large enough
independent of ¢ which completes the proof. O

4.4.2 Construction of the coupling

The goal of this section is to construct a coupling between (Lﬁ( ) and a biased random walk

keN
on N* and reflected in 1. To do this, we will construct a sequence (ﬁ,ﬁ( )

variables with values in {—1,1} as follows.

EN of i.i.d. random

Step 1. First of all, thanks to Lemma we can construct the random variable ¢ € {—1,1}
such that

el = —1} ¢ [{LK = L — 1} n {Ko% < TF < £} U {25 > 75)
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and }P’(&f{ = —1) = % + K-

Step 2. Then, thanks to Lemma again and after having applied the MARKOV property
at time TJ<, we can construct the random variable £ € {—1,1} such that, conditionally to

]:TlK \/0(55(),
leff = 1) c [{LF = LF —1) n{Ko} + T < T <75} U {TF = 75)

and P (g{( =-1 ‘ .FTIK Vo (55)) = % + g . Note that this implies in particular that & is inde-
pendent of &£.

Step 3. By induction on k € N, if (éiK)O<i<k are constructed, then thanks to Lemma m

again and after having applied the MARKOV property at time T,fil, we can construct the random
variable §,§+1 € {—1,1} such that, conditionally to ]-'Tlf+1 Vo (fé{, e ,5,5),

{flgl = —1} C [{Lk+2 = Lif1 — } {KUK +T S Tfs < 7 }] U {Tlfm > ?K}
1
and P (¢l = —1| Fpee Vo (6 €)) = L+
To conclude, we set
VK € N*, Vk e N, ZI?H — Z]g( = 55 and Zé( — Lé{ (39)

and the sequence (Z,f ) satisfies by construction the following lemma:

keN

Lemma 4.13. The sequence (Z,f()keNy

given by (39) is a biased simple random walk on N*,
reflected in 1 and for all k € N as long as T o1 < T

, that

1) Zi 2 > L — L
(2) TE, - TX > Kok when Z,ﬁ_l —ZK = 1.

On the one hand, note that for all k£ € N, LkK < Z,f(. On the other hand, note that Lemma
1mphes forall k € N, LY, ; — Lif € {---,—3,-2,—1,1} which justifies (1) of Lemma
In Figure we illustrate the coupling between (LkK)ng<7 and (Zé()ogkg?' In this figure, we
observe that gk =LK, — LK forall k € {0,1,2,4,5,6} and & = —1 > —2 = L — L. This
illustrates that Zk+1 — ZE is always 1 when LkKH — L is equal to 1. Note that Z,ﬁl — ZE can
be 1 when Lfﬂ — LkK is equal to —1.

4.4.3 Estimates of exit from an attractive domain for random walks

Let us consider N¥ the number of transitions before reaching Lﬁg(?)) log(K )J for the random
walk (Zlg{)keN‘

Remark 4.14. By Lemma NE < ko where ko is the first integer such that LkKO =
~K K K
| o5 log(®) |, s0 7 > TS > T,
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Figure 4.7: For K large enough, coupling between (LK ) and (Z K ) up to time T and
s ’ k Jo<k<7 k Jo<gk<T

before ¥% and where My (p) € [0,2u1 + 1) so that L =1 and Zlﬁ( =gk = 3%E K°/? for all
ke N.

The following lemma gives an estimate on the problem of exit from a domain for Z%. For
all k € N*, we denote by Py the law of the MARKOV chain ZK given ZlX = LI = k.

Lemma 4.15. We have,

2

13
lim P (NK> <71 2K)>:1.
K-otoo ! P 161og(3) o8 (K)

Proof. For all k € N*, let us consider the stopping time EK := inf {n eN ‘ ZE = k} and we
set vk = Py, (TK < T[K

210g(3)
rE = }+§"K > 1, we prove that

log(K) J) Note that v{* = 1. By a classical approach and setting

K _ 1— TK(L2log(3) log(K)J k)

v =
b (LQlog(Zi) log(K)J 1)
"k

1—
=1- (r’;(_l - 1) exp (— (LZlogg(?)) log(K)J — 1) log(rK)) .

Note that N¥ is greater than the number of transitions from 2 to 1 that occur before 71 log ()|
2 log(3)

Hence, under Py, NX > X where X is random variable with geometric law of parameter

qr = (rg —1)exp (— ([210g( )log( )J — 1)log(7°K)). Since rx ~K 100 5/2, with C > 0
given by Lemma gk — 0 when K — 400 and using that for all x > 0 small enough,
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log(1 — ) > —2z we deduce that for all K large enough,

L2log(3) log(K )J 1

Pi| X >exp 5

log ()

L2log(3) log(K )J 1
2

=exp | exp log (rx) | log (1 —gk)

- Lﬁg(i’)) log(K)J -1

>exp| —2(rg —1)exp 5 log (1K)
Using again that rg ~g 100 %/2, we deduce that for K large enough,
L21Og( 3) log(K)] —1 g2
1 > ————log? (K
and the announced result follows. O

It is in the next Corollary that we see the importance of Assumption where o must
not be too small.

Corollary 4.16. For all T > 0,

lim P(KU%( (NK— E()log(K)> <T> = 0.

K—+o0 2 2 log 3

Proof. From Lemma and Assumption we deduce in a straightfoward manner that

K 2
lim Pl( 9K <NK—
K—+oo 2

210(;(3> log(K)> < T> = 0.

As LY depends on pff note that LI = Z& is function of the initial condition ufS. However, by
Assumption and MARKOV’s inequality, we have that

C*
K K ~2
P(LE >1) <P (M (uf) > K2) < 22
which tends to 0 when K — 400 and the announced result follows. O

4.4.4 Conclusion
We denote respectively by IV f and N¥ the number of upward transitions and downward tran-

sitions for (Zlg()keN before reaching LZlog( 3 log(K )J Let T' > 0 be fixed. Note that

P(FH <HAT) <P ({7X <#HAT) 0 {#> Tf})
+P ({7 < AT {F < TR
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Step 1. Control of the first right-hand term of (@ As ZK =1 with probability converging
to 1 and Z§, = blog( )Iog( )J, we have NI — NE < blog(B) log(K )J and NX + NKE = NE.
Thus,

N* - blog( 3) log(K)J
5 .
Hence, if #% > TF,, then by Lemma m (2),

NE >

NEK 2
Ko e
~K K K K K 2 K K
> T > ;: 1j (1 = T%,) > N¥Ko% > 5 (N - Tios@ 1og(K)> .

Therefore,

({7 ) 0 (> 1) < (R (W e < 7)

which tends to 0 when K — 400 according to Corollary [.16]

Step 2. Control of the second right-hand term of @) If 7 TNK7 let us consider NX the

last index k such that Tk #K. We have N < NX and so NX +1 < <N NE which implies,
thanks to Lemma [£.10] that for all t < Tk, and K large enough,

My (pf) < 2u og(k)] +1<2K% +1 < K°.

|—2 105g(3)

As the jump times of X are isolated, we deduce that 7% > TX . Now, by definition of NK ,
NE4+1

we have TNKH > 7K and thus 7% > 7. Hence, we obtain that
P({FK < AT} (# <TH}) =P (o) =

Therefore, limg 100 P (?K < 7EA T) = 0 which concludes the proof of Lemma

5 Tightness on the torus

The main result of this section is given by Theorem [5.I] This is a stochastic averaging result
inspired by KURTz [57, Theorem 2.1] establishing a tightness result, in the torus case, of the

sequence of laws of ((zK K )) e+ Where I'f is the occupation measure of the fast component

p’. We will use criteria proposed by ETHIER-KURTZ in [40, Theorems 3.9.1 and 3.9.4]. In

Sections [0 and [7] we identify the limit and we prove its uniqueness.

Let introduce the torus Tg := [zg — 2R, 2o + 2R] of length 4R with R > 0 fixed and z( is
the value of the mean trait of v as in Theorem We define M; (Tg) the set of probability
measure on Tr. We denote by M,,, (M1 (R)) the set of measures I on Ry x M; (R) such that for
all t >0, T ([0,¢] x My (R)) =t. For any t > 0, we denote by M! (M; (R)) the set of measures
' € My, (M; (R)) restricted to [0,¢] x M; (R). For all T > 0, we denote by D ([0,7], Tr) the
space of cad-lag functions on [0, 7] with values in Tg.
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Let br € € (T%,R) and O € €2 (Tg, R) be two functions satisfying bg = b on [zg — R, z¢ +
R)? and 0 = 0 on [x9 — R, w0 + R]. Let T > 0 be fixed. We define on Tg, in similar way as in

KR ._ (VK,R KR ._ ( K,R

. KR _ (, KR
Sectlon the processes v , )te[oﬂ, 2y )te[o,T] and p (ut )te[oﬂ

as follows

TR
KR _ KR _ KR _
v = — E (53313(75), zp = <1d, ut/K 2 > and gy = <h L OT_ZtK> ﬁyt[/(KU%(

where for all i € {1,---, K}, /% is defined on M (TR) from bg and 05 as vX was defined

from b and 6 and th R € Tg. Note that Mf( H takes values in M (T%) where T% is the torus

corresponding to the interval [U 1/? (:UO — 2R — th) - {/? (:L‘o + 2R — th)} . However, we will
K K

identify in the sequel My (Tf) as a subset of M1 (R) using the natural embedding of Tf in R.

So, ,utK = M;i(R). We define also the stopping times

?K,R := inf {t = 0‘ M2 (/1’{{71{) > KE} ,

1
R nf { 0‘ Diam (Supp vy ’R) > M} )

O'KK 2

and 7R = KR A KR
T

We define on ML (M; (R)) the sequence of random measures

Kens 88 follows

IR (e, dp) = 8 s (du) dt.
t

In the sequel, we study the limit as K tends to +oco of the sequence of laws of

((zK,R’ PK,R))KGN*

in My (D([0,7],Tg) x ML (M (R))).

Theorem 5.1. Let T, R > 0. The sequence of laws of ((ZK’R,I‘K’R))KGN* is tight in the set
of probability measures on D ([0,T],Tgr) x ML (Mj (R)) and for any limiting value Q of this
sequence, the canonical process ((f,TF) on D ([0,T],Tg) x ML (M1 (R)) satisfies that for all
f S %l? (TR,TR),

NF = f (Ct / / CSLowf (Cs ,M) I'f (ds,dp) =0 (41)

Q—a.s. Moreover, for allt € [0,T],

Eq ( / /Ml W) TR (ds, d@) o0, (42)

so that the definition makes sense.

This result is based on Propositions [3.1] and [£.8] Lemma [£.3] The proof is divided in eight
steps. In Step 1, we establish the tightness of the family of laws of the stopped slow compo-
nent (zK’R In Step 2, we establish a compact containment condition for the stopped

) I
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K.R )
oATFOR ) ren+
occupation measure. In Step 4, we deduce the tightness of the family of laws of the couple

(slow, occupation measure fast). In Step 5, we prove uniform integrability results for a family
(Nf7K’R constructed from 2% and T'F similarly as Ntf’R in 1’ Step 6 is de-

t/\TK’R)tG[O,T},KGN*
voted to establish the convergence in distribution of (N .f /\[:KRR)KGN* to N&E. In Steps 7 and 8,

we prove that the limit N/ is null Q—a.s.

The main modification of KURTZ’s setting of [57, Theorem 2.1] is that we have to work
with stopped times and need to be careful with moment estimates and uniform integrability
properties. This led us to rewrite the proof.

fast component (,u In Step 3, we prove the tightness of the family of laws of the

Proof of Theorem[5.1l Step 1. Tightness of the family of laws 0f< 2K, R)KGN* onD ([0,T],Tg).
Let f € ¢2(Tg,Tg). For all K € N* and for all ¢t € [0,7], let us consider the two processes
Y;K’R = f (zg/{\’ﬁ(ﬂ) and ZtK’R defined by the relation

tATER

t
e AR AP A R TF
0

where M > SRR %.r is the martingale given by in the torus case. Note that, for all s > 755,
ZER = 0 From Proposition n . and Lemma note that there exists a constant C' > 0

(/ ‘ZKR‘ dt) ]

2
< sup E[l—k/ ‘ZtK’R) dt]
0

sup E
KeN~*

KeN*

TATEER KR 1
<C{1+I§2§*EVO (M (il + g [0+ M (" )])dtu
< Q.

Hence, from [40, Theorem 3.9.4], the family of laws of (YK’R)KGN*’ on D ([0,T],Tg), is tight. Let
us observe that the compact containment condition is satisfied by the stopped slow component

K,R . .
(z. Py R)KGN* since Tg is compact and
VT >0, 1nf ]P’( sup ZS\RKR € 'JI‘R) =1. (43)
eN* \o<i<T

As €72 (Tg, Tg) is a dense subset of € (Tg, Tg) in the topology of the uniform norm, we
deduce from l) and [40, Theorem 3.9.1] that the family of laws of ( R

Zoirin) oy, 18 tight on
D ([0, T], Tr).

Step 2. Compact containment condition.

Lemma 5.2. Let R > 0. For oll T > 0, the family of laws of the marginal random variables of

the stopped fast process (Mﬁfo is tight on My (R) i.e.

) )te[O,T],KeN*

¥y >0, IDET C My (R) compact, Vt € [0,T], VK € N*, P (uy " . € DET) > 11,
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Proof. Let n > 0 be fixed. From Proposition [£.8] there exists Ky € N* large enough such that for
all K > Ko, for all t € [0,T], P (¢t > 7%) < J. We consider the R—valued sequence (agn)gen

- q n N — D :
satisfying for all ¢ € Nyag, > 1, and > o . < M, where Mo := max {C’;,GmQ/b} is a

uniform upper bound of E (MQ (,ufi’TRK R)) given by Corollary Let (/ﬁq,n)qu be a sequence
of compact intervals on R, increasing for inclusion, of the form [—agy, aq,]. Let t € [0,T]. For
all g € N*, and K > Kj, note that

K,R 2 KR o2 R c
M, (Mt ) Li;xr 2 1igrn /c a7 (dw) =2 Uyl i R ( q,n) Licrrom,
Kqn

2

and we deduce that {”t/\ K.R Lcm) > %} N {t < 7.K,R} c {M (uﬁfm) S %Tn} N {t < TK,R}.

Hence,
* K,R c 1
P ({Elq €N, pyien (Kgp) > *})

<B(M <)+ T ({5 > 1) <))

qeEN*

<P (TK’R < t) + Z P (M2 (Mf’R) 1t<TK,R > ag’”)

qeEN*

<P(rfF<t)+ Y el

2
qeEN* a(gn
<.
Therefore, we have proved that
¥ >0, Vt€[0,T], VK > Ko, P (p)lin€Kky) >1—-n,

where ), := {M € Mi(R) ‘ Vg e N* (“gm) < %} which is compact by PROHOROV’S theorem.
[l

Step 3. Tightness of the family of laws of (T R)KGN* on ML (M1 (R)). Let n > 0 be
fixed. From Proposition 4.8 H there exists Ky € N* such that for all K > Ky, for all ¢ € [0,T],
P (t > 7%) < 1. Consider D T the compact set in Lemma It follows that for all ¢ € [0, 77,

K KOv
E (TR ([0, x DET)) > & (T5F ([0,4] x D T) Licrin)
2
t
= / P ({,uﬁifKR € D}ﬂ%’T} N{t < TK’R}) ds
0 2

t t
> [ (ulifin € DT ds— [ B (> rR) ds

49|70



Therefore, the tightness of the family of laws of (%) follows from [57, Lemma 1.3].

KeN*
Step 4. Tightness of the family of laws of ((ZK’R, FK’R))KeN* onD ([0, T], Tr)x ML (M (R)).

From Steps 1 and 3 and PROHOROV’s theorem, we deduce that the family of laws of the cou-

ple (( KR K, R))KeN* is relatively compact in My (D ([0,T], Tg) x ML (M; (R))). Hence,

FonrK.RY
there exists a probability measure Q on the canonical space D ([0, 7], Tg) x ML (M; (R)) and an
increasing function n : N* — N* such that the subsequence of laws of (( /\TT?(’ K),R> (K )’R))KeN*
converges weakly to the limiting value Q when K — +4oc. Thanks to Proposition we de-
duce that the family of laws of ((z"(K )R (K )’R))KGN* converges weakly to Q when K — +o00
and therefore that the family of laws of ((ZK’R, FK’R))KGN*

D ([0,T], Tg) x ML (M1 (R)) by PROHOROV’s theorem.

is relatively compact, thus tight on

Step 5. Uniform integrability. For all f € €2 (Tg, Tr), K € N*, let us consider (Ntf’K’R)
the stochastic process defined by

NI = (257) = £ (2077) - /ot /Mmm Lsrow f (207, ) T (ds, dp).

From @, we have for all f € 62 (Tg, Tr), there exists a constant C' > 0 such that

te(0,7

tAnTER

t
vt € [0,7], VK € N*, )Nf” ‘ <C (1 +/ M, (ugﬂR) 11S<TK,Rds) ,
0

Hence, the uniform integrability of ( NT /\IT{E R)KGN* follows from Corollary

Nf/\[;?R)KeN* to NI'B. From Step

4, Proposition and SKOROHOD’s representation theorem, there exists an increasing function
n : N* — N* and a probability space on which we define, the random variable FUK)R - the
families (Eﬁ(K)7R) and (FE(K)’R) and ¢, T'F copies of (zﬁ(K)’R) , (Fﬁ(K)’R) ,

KeN* KeN* KeN* KeN*

¢B TR under Q such that the sequence ((Eﬁ(K)’R,fﬁ(K)vR,?ﬁ(K)’R))
(ZR, IR, +oo) when K — +o0o. Note that for all ¢ € [0, T,

Step 6. Proof of and almost sure convergence of (

Kene converges a.s. to

TR (Jo,8 AFPEOE] s My (R)) = ¢ AFEME 223 TR ([0, 4] x M, (R)).

K—+o00

From [57, Lemma 1.5 (b)(c)(d)] and Corollary we have

INTEGR
/ / ) TR (ds, dp) —25— / / 1) T (ds, dp)
Ml(R K—+c0 Ml(R

and follows. From [57, Lemma 1.5 (b)(c)(d)], we also deduce that for all f € 62 (Tg,Tr),
for all t € [0,T], a.s

tAFE),R

. ~n(K),R 7n(K),R
Jm [ /MI(R)ﬁsmwf (ZEUOR 1) TR (ds, dpr)

= /t/ Lstow f (¢ 1) T (ds, dp)
0 JMi(R)
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and thus the sequence (Nf/’\ ("I((I)QRR)KEN* converges a.s. to the process (ﬁtf’R)te[O 1 where Ntf’K’R

and Ntf T are respectively defined for all K € N* by

NfKﬂ:=f(ZKR)—f(Z?R)‘]Ai&«@mﬁﬂDWf(ZKR#OfKJWd&d“%

t<TATFIOR
NIR = £ (SF) - / / Lssow (&) T (ds ), 1< T.
Step 7. NIE is a martingale. Let us consider the filtration (ﬁKVR)te[o 1 defined by

FEOR = & (Ef’R,fK’R([O, s] x H)’s <t HeB(M; (R))), (fi)i<icqr @ € N* bounded Lips-
CHITZ functions from Tr to Tg and 0 <1 < -+ < tq < s < t. Let us denote for all K € N*, for
all t < 7TEORAT, MfKR NfKR—l—é'fKRwhere MR ig constructed from 758 and nfor
as in (|19) and EfKR is an error term. Note that MfKR is a (.7-",5K R)

Proposition [3.1 Hence,

E( g/lzstl((vKRHfl< tf7/7\l7€7[f(vK )):E< SATnK)RHfl( t/\T"K>R)>.

i=1 i=1

—martingale as in
t€[0,T]

From Proposition H and 1 gA{(KRR =1L %O (fo [ + My (ﬁf’R)] T,z RdS) and then satisfy

the condition limg 40 E sup0<t<T D =0. Asforalli € {1,---,q}, fi is LiPSCHITZ,

t/\‘T-K R
there exists a constant C' > 0 such that

(T8 el 20) 1 (L)
< FL(CK)E </Otz' [1 + Ms (uf(K),Rﬂ ]lr@ﬁm,Rdr)

where the term of the right hand side of the previous inequality goes to 0 when K — 400
according to Lemma We deduce that for all u € {s,t},

K1—1>r-|r—looE (Mf’ Tn(K)R H fi ( £ /\Tn(K)R)) = Kl—lgloia (qu}\_rr{({;)()RR H fi (Ntf’/\q_f(zx?zz)>
i=1 i=1

From Steps 5 and 6, we deduce that
q q
B (ﬁtfﬂ 1 (ﬁggﬂ)) _® <ﬁsfﬂ e (Ng}R)) .
i=1 i=1

Hence,

B (WO T4 (0 ) = (27 TLA (VE7)).

i=1 i=1
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Since the last property is true for all ¢ € N*, ¢; < --- <t; < s < t and for all bounded L1PSCHITZ
functions (fi);<;<,, the monotone class theorem ensures us that

E (Ntf’R o (Nng ‘ u < s)) — N/E

Hence the announced result.

Step 8. Nullity of N/, On the one hand, from ITA “’s formula [80, Theorem 32 of Chapter
1], for all f € 62 (Tgr,Tg) and t € [0, T

() =2 (¢ +2/ / B) Lsvow f (CF, ) TR (ds,dp)
(44)
+o [ 7 (cl) antr <NfR> + X () -s(er)
<s<t
On the other hand, applying with f2 € 62 (Tg, Tr), we obtain that for all ¢ € [0, 7]
() = () / / Lstow? (¢ ) 0¥ (ds, am) + N (45)
Comparing and leads for all ¢ € [0,T7] to
NP2 [ () av g = (N Y (1 (cR) - (ck))’
0<s<t
and thus by [48, Theorem 4.1] that Q—a.s. for all ¢ € [0,T7,
2
(W), == 3 (F(@) = 7(dF)) <0
<s<t
so that <Nf’R>t = 0. Hence, Q—a.s. N/f =0 which completes the proof. O

6 Characterisation of the occupation measure limit on the torus

Consider a probability measure Q on D ([0, T], Tg) x MZ (M; (R)) and the canonical process
(C BT R) as in Theorem The following lemma gives us a desintegration result of the occu-
pation measure I'" that we characterise below.

Lemma 6.1. Let T > 0 be fized. With the notations of Theorem there exists a random
probability measure-valued process (%R)te[o 7] that is predictable in (w,t) and such that for all

bounded measurable function 1 : [0,T] x M; (R) — Tg,
/ / R (ds, dpr) = / / (s, )7 (dp)ds. (46)
M1 (R M (R

Proof. The desintegration result of T' follows directly from [57, Lemma 1.4]. O]
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Corollary 6.2. Let T' > 0 be fized. With the notations of Theorem we have that (T €
€0 ([0,T], Tg) is differentiable of derivative in L*(R) Q—a.s.

Proof. Applying with f = id € ¢}} (Tg, Tr), we deduce from Theorem @ and (46)),
Q-a.s., for all t € [0,7]

=+ /0 t ( /M V2 (1) o (dm) OrFit (X, ) ds.

From Assumptions (A) and , the integrand of the previous time integral is in L!(R) Q—a.s.
Hence, the announced result follows from the fundamental theorem of calculus. O

We now want to characterise the limiting value I'® (dt, du) = ~{* (du) dt under Q.

Proposition 6.3. With the notations of Theorem for a.e. t €[0,T], Q—a.s., 7{t = AM¢T)
where ™ is the unique invariant probability measure of the centered FLEMING-VIOT process with
resampling rate A (see [18, Section 4] ).

It is here that we exploit ergodicity properties for the fast limit component. The proof
of Proposition [6.3] given in Section [6.1] is based on the following technical lemma giving a
characterisation of 7* and proved in Section To state this lemma, let us first recall from
the definition of polynomials in u:

Pran ) 1= (L") = [ o [ f (e m) (o) - p(da)

with n € N*, u € M§(R), f € €2 (R",R). For all n € N*, for any function f : R® — R whose
second derivatives exist, we denote by Hess(f) := (82-

”f)lgm'sn
n € N*, let us denote by %IQ-H (R™ R) the set

the Hessian matrix of f. For all

{fe%z(R”,R)‘HC>O, Vz € R",

@)+ IV £ (@)l + [Hess(£) ()]l < C (1+ ll2]1%,)} -

From (26, we can see that if f € 6} (R",R), L3y Pfn (1) is a polynomial in u of the form
Pjp1 (p) for some function J € %ﬁ” (R™*1,R). We recall from [I8, Proposition 2.11] that if

1€ MSP(R), then supg<i<r By (M5 (Xt)) < oo where (X¢),, denotes the centered FLEMING-
VIOT process with resampling rate A. Since, by , for all u € M§’4(R),

|LrvePrni1(p)] < C(1+ My (n),
for some constant C' > 0, we can apply the martingale problem to the function Pj,1(u)

using classical localisation techniques to obtain that the process (]\ZPJ’"“)DO defined by

—~p,. t
B = P (X0) = Pt (X0) = [ £0vePrar (X.) ds (a7)

is a P, —martingale for all 1 € MSS(R).
Lemma 6.4. Let A € R be fized. If v € My (M1(R)) satisfies [y, ) Ma (1) v (dp) < oo and
Vn e N*, Vf € 67 (R",R), LivePrn (1) (dp) =0,
I Mi(R) )
then, v = 7.
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6.1 Proof of Proposition

Let us define for all £ € N, €% (R™, R) the space of real functions of class ¢* (R”,R) with compact
support. From Lemmaand , for all t € [0, T, for all n € N* we have for all f € €3 (R",R)
that

3
K203 M, = 3 (M) (1A 710R)

tANTER
=1

where for all t < 7B AT
(A){"R< t) = K20 (P (uf‘R) — Pra (1))
W == [0 () () £ Py 0 D s )

(AYER() = 0 (jﬁ + ok +/ “S)ds) ,

is a martingale. Since cx K — 0 by Assumption , (A)f’R (t/\TK’R) — 0 when K —
+00. From Corollary the sequence ((A)é(’R (tA K ))te[o TLKEN is uniformly integrable

and converges in law, when K — +o0, to

M7 = /ot 0(¢7)ma () /M1(R) o Pr () TF (s, ).

Note that, from CAUCHY-SCHWARZ’s inequality and Lemma [4.3] there exists a constant C' > 0
such that

tAt iR (/JK’R) 2 T TATER CT2
E ——=2d —E / Mg (p5) ds | < ==
<ozg£T/o K i K 2 0 (“S ) K2

Hence, limg o0 SUPg<i<r (A)?’R(t/\TK’R) = 0 in L?(R). In particular, we deduce that a

subsequence of (supogth (A)?’R(t A TK7R)) converges almost surely to 0 and the family

KeN*

(supogth (A)?’R(t A TKR))KEN* is uniformly integrable along this subsequence [84, Theorem
13.7]. Using the same method based on SKOROHOD’s representation theorem as in the proof
of Theorem we deduce that the process (Mtpf ’")t>0 is a Q—martingale. As it is also a

continuous and finite variation process by Lemma it must hence be Q—a.s. null [48, Theorem
4.1]. Hence, using Lemma again, we have proved that

Vf e €y (R",R), Q—as., dt —a.e., / ﬁp(w )an( )4 (dp) = 0.
Mi(R)

The space €7 (R™,R) equipped with the norm
[ llzee = [1fllco + 11V Flloo + Hess(F)ll o

is separable. So, we can choose a dense countable family B C €3 (R™,R) such that
I ||W2 o0

VfeCk (RR), 3 (f)yen €BY, fo—"=F.

q—>+00
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Then,
A(¢H) R
Q —a.s., dt —a.e., Vg € N*, / Leve ' P du) = 0.
q My (R) FV. fam n (1) (dp)

From and Lemma we have that [y, g) Ma (1) yfi(dp) < oo. As for all ¢ € N*,

) P (1) < 1 (14 M (1) [ ol e

for some constant C; > 0, we obtain by the dominated convergence theorem that

Q —as., dt —a.e., Vf € €% (R",R), /M - ﬁQ(VC )Pf, (1) 7L (dp) = 0. (48)

Let us consider f € ‘5” I (R™,R) and for all ¢ € N*, 2 — x4(z) = exp <_q2*||193”io) L)l <q

of class > (R",R) with compact support. Then, for all ¢ € N*, fx, € €7 (R",R). Noting
A(¢F . .

that, | [y, (r) EFS,S )Pfxq,n () v (d,u)‘ is dominated by Cy [y, gy (1 + Ma (1)) At (dp) for some

constant Cy > 0, and since fMl(R) My (p) vR(dp) < oo, we deduce from 1’ applied to fxg, by
the dominated convergence theorem, that

Q —as., dt —aee., Vf € €2 (R",R), Pty )Pf (1) vE (dp) = 0.
IH gy FVe TIm

Therefore, it follows from Lemmathat Q-a.s, dt—a.e., v (dp) = ) (dp) which concludes
the proof.

6.2 Proof of Lemma

In Section[6.2.1] we extend some duality results for the centered FLEMING-VIOT process, obtained
n [I8], which are be useful to prove Lemma [6.4] in Section

6.2.1 Extension of the duality result for the centered Fleming-Viot process

Let us recall that the dual process (&) of the centered FLEMING-VIOT process (X¢),5, with
resampling rate \, on the state space U,cn+ €2 (R™, R), obtained in [I8, Section 3.2] is defined
as below.

Let us consider M := (M(t));5, @ MARKOV’s birth and death process in N whose transition
rates ¢; ; from i to j are given by:

(1) guni1 = An? (2) gnp—1=2An(n—1) (3) ¢ij = 0 otherwise.

For all M(0) € N*, & € 62 (RM(O),R) and A > 0, we define

& =T (¢ — 1) AT (1 — ) A T () €,
™ X <t < Tn+1, T S N? (49)
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where (7,,),,cy is the sequence of jump times of M with 7 = 0, (TA(H) (t))t>0 is the semi-group

of operator associated to the generator B/(\n) given by and where (A,),cy is a sequence of
random operators. These are conditionally independent given M and satisfy forall k e N, n > 1
and 1 <1 # j < n,
1
M (7)) = n, M (r) = n— 1 ) _
{ (Tk ) n (Tk) =n } n(n — 1)

and for alln > 1 and 1 < 4,5 < n,

P <Ak = (I)z',j

_ 1
{M(Tk ) =n, M (11, :n—i-l}) =3
where ®; ; and Kj; ; are respectively defined in and . Note that if M(0) = 1, the dual
process can only jump from & to K;;&. As for all t > 0, & € €2 (RM(t),R>, K; ;& is well
defined. Moreover, the dual process (ét)tgo with initial condition &y is constructed on the same
probability space and independently of the centered FLEMING-VIOT process (X¢), with resam-

P (Ak = Ki,j

pling rate A and initial condition ;1 € M$?(R). We shall denote by P(u.¢), the law of the couple
((Xt,&t)) =0 on this probability space.

We denote by S; the number of jumps of the process M on [0,t]. We start with a result
giving bounds on the dual process, which is an extension of similar estimates obtained in [I8],
Lemma 6.4].

Lemma 6.5. For all & € 6 (RM(O),R) there exists Co : Ugene (0, +00)¥ 1 x {k} — R, locally
bounded, such that 5
——||H

and, for all (t;),cy € (0, +00)N, k= Co ((t:)g<icp_1 + k) is non-decreasing and satisfying

Co (11,1) = [[Soll0 +

Vk € N*, Vt < 73, Vo € RM®),

(50)
1€0(2)] < Co (T — Ti)ocich 1K) (14 12)125).

Proof. By induction on k € N*, we prove the property
(Q): Vo € RMOD, e, (2)] < Col(rist — m)ocsens o k) (1+ l2]2).

Step 1. Initial case: computation of Co(71,1). Let us recall some notations of [I8, Theorem
6.1]. For all n € N*, we denote by 1 € R", the vector whose coordinates are all 1. For all
neN,t>0,x€R*and A > 0, let us consider géx the density of the Gaussian distribution

N® (mp,, %) where mp, =z — (=exp(=22nt)) (1. 1)1 and ¥ := Po}P~! with

n

1L 1
lfexi()\f4)\nt) 0 0 vn V2 n(n—1)
— e e - )
0 t 0 _\/; n(n—1)
op = 0 and P := 0 :
: 1
0 0 0 (t) )
1 0 0 —./n=1
N n
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Note that for all i,j € {1,---,n}, dpmp, = €& — Ml and 8§ixjmax = 0 where
(€1, ,€y) is the canonical basis of R™. For all A > 0, the key identity for the sequel is

oo (TN n M(0
Ve L®(RY), V20, Ve eR", T\ @) f@) = (£ g) (mis) (51)
where * stands for the convolution product (see (46) in [I8, Theorem 6.1]).

On the one hand, note that for all t < 71, M(t) = M(0). In this case, for all z € RM(®),

A >0, &(z) = T/SM(O))(t)&O(ac) and so, from [I8, Theomem 6.1], |&(z)| < ||€o|lo- On the other
hand, at time 71, we make a partition of cases according to whether the dual process loses or
gains a variable. Let 7,5 € {1,---, M (0)} be fixed.

o Case Ay = ®; ;. In this case, M (71) = M(0) — 1 and we deduce from that
Ve e RO e (2) = &, ;MO (1) &9 (a).
By , we deduce that for all 2 € RMO)=1 (¢ ()] < ||&o]| -
o Case Ay = K;j. In this case, M(m) = M(0) + 1 and we deduce from and

then from [I8, Theorem 6.1 (3)] and properties of the convolution product that for all
z € RMO+L

& (2) = Kig T (m) 6o )
== Oxiij,sM(O)) (m1) o () x?\/I(O)Jrl

= (00,2, 5)" [ (Hess (€0) 92, o) (2, 5) O] 20y

where & = (xl,--- ,33M(0)) e RM(O0) Asg,

(ess (@) + 2 0) () = ([, #o(igh o (m - — u) du)

1<i,j<M(0)

we obtain that H (Hess (£0) * g3, o) (m>‘ )

T1,%

8%50 HOO Noting that

‘ (e}

‘ (0, milv»%)t Oz | < M(0)’

we deduce that for all z € RMO)+1

2 2 3 2
8ij£OHOOxM(O)+1 < 21(0) [[Hess(§0) lloo 1715

3
£.(2)) < ——  sup
&1 ()] M(0) 1<4,j<M(0)

and (Qp) follows.

Step 2. Inductive Step. We assume that, for £ € N\ {0, 1}, (Qg—_1) is satisfied and prove that
(Qy) is also. We make again a partition of cases according to whether the dual process loses or
gains a variable. Let 4,5 € {1,--- , M (74,_1)} be fixed.
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o Case A, = ®;; at the E™ jump. In this case, M(7},) = M(14_1) — 1 and we deduce from

that for all z € RM(—10)=1 ¢ (z) = <I>i7jT>(\M(T’“_1))(Tk — Ti—1)&r,_, (z). By using
and (Q_1), we deduce from [I8, Corollary 6.2 (1)] that for all z € RM(ms-1)-1,

M (Ty—
@, 1M (7 — 1) 6 ()]
2(k—1)
< Cy (e = o1, M (74-1)) Co (i1 — Ti)ocicn - ) (1+ )28,
where C2C) is locally bounded. As t +— Cy (¢, M (15—1)) is non-decreasing, we deduce (Qy)

in that case.

o Case A, = K, j at the k'™ jump. In this case, M (rz) = M(74—1) + 1. From , and
[T8, Theorem 6.1 (3)], we have for all z € RM(7s-1)+1,

6 (@)] = [Eag M (1) €, (@)
= ‘(8Ijm7>'\k77k,1,:f>t [(éhﬂcfl * Hess (gi\k—kal,O)) (mﬁkf‘rk,l,:?)al‘im‘l/}kfﬂ'k,l,f}

2
X LM (rg_y)+10

where 7 = (ml,--- ,fUM(rk_l))t e RMs-1) From (Qj_1) and [I8, Corollary 6.2 (2)], we
deduce that

[T (- ) 6 (@)
< C3 (13, = Th1, M (1-1)) Co (i1 — Ti)p<cich1 + ¥) (1 + HZL‘H?,IS) ,
where C5C) is locally bounded and (Qy) follows in that case.
We conclude by the principle of induction.
Step 3. Proof of (50) for t < 7. Note that from ([49)), for all k € N and t € (74, Tk+1),
Ve e RMO g(x) = M) (1 - 1) &, (@),
so the announced result follows from [I8, Corollary 6.2 (1)]. O

Let us consider for all £k € N*, £, m € N the stopping times
Oy = inf {t >0 (S >k or dselo], (& x1) > e},

?c,m = inf {t >0 |85 =2k or Cy ((T/L'Jrl — Ti)ng‘gk—l ,k‘) > m},

o= {2082k or 35 0] (6 XM) > 0

or  Co ((Tix1 — Ti)ocich 1 k) = m} .
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As (M(t),&t);0 is independent of (X;),-, note that for all k¥ € N*, m € N, 9}, is indepen-
dent of (X¢);5,- Recall that for all t >0, & € €2 (RM(t),R). For all n > M (t), for all x € R"™,

we denote by &F") (z) = &S”) (z1, @) =& (3317 . ;mM(t)) so that for all p € MTQ(R),

(&, um) = (g, uMO).

The next lemma is an extension of the duality identity proved in [I§].

Lemma 6.6. Given (Xt);5q, (§t);5 as above with Xo := p € M (R), k€ N* and & €
652 (RM( ),R), we have that P, ¢y—a.s., for allt >0, for all m € N,

A
E(.e (& méi?m>)—< (@%@ exp (A / M2<u>du)),uM<°>+’f>. (52)

Compared to the duality identity of [I8], the key point of this lemma is that the right-hand
side of the last equation, is a polynomial in u.

Proof. Let us consider ¢t > 0, k € N*, £,m € N. As ¥}, om S Upye, the weak duality identity of
[18, Theorem 3.4] implies that:

B (60 X057,))
= E(ue0) (<§t/\19;€’&m 1 M(tnd m>> exp ()\ /Ot/\ﬁk o MQ(u)du)>

N,
=Eu¢) (<£t/\19’ M(0)+k> exp ()\/0 k M2(u)du)) ‘

Now, from Lemma and the definition of ¥} ,,, note that for all z € RMO)+k

t/\ﬂkem
E o) (w (@) exp (A / M?(a)du)) 5
<

m (1 + |l2]|2) exp (At (M(0) + &)?) .

Since p € MY 2k( R), we deduce from FUBINI’s theorem that

/‘«50 <<€07 t/\,ﬂ/ >)
t/\19k om
= <E(u ¢o) (gt/\ﬁ’ )+k) exp (/\/0 MQ(u)du)) ,MM(O)+k> .

On the one hand, from [I8, Section 6.2.1], limy— 40 U} g, = U Plugy)—a-s., and since
(Xt)so has continous paths for the topology of weak convergence, we have P(, ¢)—a.s.

ZEI—F <£0 ) t/\19’ > <£O ) t/\19’ > .
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Therefore, we deduce from the LEBESGUE dominated convergence theorem, that for all § €
&2 (RMO)R),

A B (0 X05,.,)) = Bueo (0 5057,))-

On the other hand, Lemma and the dominated convergence theorem imply that for all

z € RMO+k
tAY
: (M (0)+k) kLm o
eETooE #:€0) <5tm9’ ( ) exp ()\ /0 M (u)du))

A
= E(u0) <§tm9' o) () exp (A/o MQ(u)du))

and the limit satisfies the inequality . Asp e Mi’% (R), we deduce again from the dominated
convergence theorem that

tAY
. (M(0)+k) k,0,m 9 M)k
eligloo <E(M7§0) (&f/\ﬁwym exp ()\/0 M (u)du)) ) (0)+ >
tAY
k k,m
= <E(u &) (ﬁt,\ﬁloH )exp <)\/O M2(u)du)) ,/LM(O)+k>

and the announced result follows from the fact that ﬁ;c,m is independent of (Xt)@o, which implies

ZAA.
Eue0) <§tm9' ) (@) exp ()\/0 M2(u)du)>
2.
v (4250 e (3 [ arw) ).

O

From Lemma we deduce that we can choose m € N large enough such that ¥} ,, = 7.
In this case, the function inside the brackets in the left-hand side of is defined, for all ¢t > 0
and for all z € RMO)+1 by

Ve(@) :=E g0 <§t/\7-1 )H)(w) exp <)\ OtATl MQ(u)du)) _

For all t >0, n € N*, f € €2 (R",R) and p € M{?(R) let us denote

Peve(t) Prp (1) == Ey (Pry (X))

the semi-group of the centered FLEMING-VIOT process (X;):>o with resampling rate .

The following result is the main result of this section. It gives an extension of Lemma [6.5] to
a function which appears naturally in the proof of Lemma
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Proposition 6.7. For allt > 0, for all p € MEQ(R); for all & € €2 (RM(O),R)
Pive(t) Py () (1) = Py oy 1 (1) i= (Ve ™ OF1)

where

t
Vi i= exp (aot) = [ exp (cps) vids (54)

and ag := AM(0) [2M (0) — 1]. In addition, for allt > 0, there exist a constant Cy > 0 such that
for all x € RMO)+1
Ve(@)] < Cp (1+ [l%) -

Proof. Let t > 0, u € Mi’2(R), & € 6 (RM(O),R) be fixed. Note that from Lemma there

exists a constant 5}, depending only on & and ¢ such that for all z € RM(O)+1,
[e(@)] < Co (1, 1) (1+1121%) By (exp (e12(0))) < G (1+]lel%) - (55)

Now, from Lemma and the fact that 71 is independent of (Xt),-, we obtain that

<7/}t7,U«M(O)+1> = E(e0) (Peo,m(0) (Xtam)) = By (Prve (8 A1) Pey a0y (1)) -

As 7y follows an exponential law of parameter o we have that
(0, i) = Pove (t) Py (o) (1) exp (—aot)

t (56)
+ Oéo/0 Prve () Pe, 10 (1) exp (—aps) ds.

Thanks to and since p has its moment of order 2 finite, the FUBINI theorem ensures us

that
t t
</ exp (aos) wsds,uM(0)+l> :/ exp (aps) <¢5auM(0)“> ds.
0 0

From we deduce that

t
TR
0
t s t
=a0/0 exp (0408)/0 exp (—aou) PFVC(U)Pgo,M(O)dUd3+/() Peve(s)Pey (o) (m)ds — (57)
t
= exp (aot)/o exp (—aou) Prve(w) Pey a0y (1) du.

Then, the first announced result follows from and and the second one from . O
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6.2.2 Proof of Lemma [6.4]
The key point of this proof is to establish that for all & € 6 (RM<O),R>, t>0and p € M§’4(R),

t
Pove(t) Pey ar(oy (12) = (&0, M@ + /0 Live Prve(s) Pey,n(0) (1) ds
(58)

t
= Péo,M(O) (1) + /0 £1«Aﬂvcpvs,z\4(o)+1(M)ds-

where we use Proposition in the second equality. To do this, we will first prove that for
all t > 0, there exists a constant C; > 0 such that for all z € RMOF1 ||Hess (V;) (x|, <

C (1 + HmHio), so that V; € ‘5”2” (RM(O)“,R).

For all n € N*, for any function f : R* — R, k € N times differentiable, we denote by D* f
the differential of order k of f. Let t >0, A > 0, u € M{*(R) and & € ! (RM(©),R) be fixed.

Step 1. Preliminary bounds. Let z € RM©O)_ Tt follows from lj that

I, T(M (#)éo(x)

T; acjxkxg
- Z 185,; (mtz) Or, (mi\’z)pazk (mz\:f’«”)qaxf (m?m)r (920 * 8§mypyqu§0) (mi\z)
m,p,q," =
where (mg\,x)p designates the p" component of mg\x Then, for all k € {0,---,4}, there exists a

constant C7 > 0 independent of x and t such that
HDkT D (t)éo(x )H <Gy <1 + HDk&)Hoo) :

From , and , we deduce that there exists a constant Cy > 0 independent of ¢ such
that for all z € RMO+1 for all k € {0,1,2},

o] < (i fpte ) + 35 st eoae],

,j=1

Y | Do, M () o (w1, waoy) |
i,j=1
(Ea¥]

<u 1+ ]+ [2]_ o)

By the theorem of differentiation under the integral sign, for all k£ € {0,1,2} and = € RMO)+1
we deduce that

| DFuua)| < exp (AM(0)24) Byygy) (|| D" (@) )
< Cyexp (AM(0)%t) (1 + [|=[|2,) -

Then, from the definition of V; in (54]) we deduce that there exists a constant Cy such that for all
k€ {0,1,2}, for all z € RMO)+1, ] ka(x)H < Gy (1+]|2]2,), so that V; € €2, (RMO+ R).
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Step 2. Proof of the key point @ Thanks to , forallt >0

¢
Peve(t) Peg v0) (1) = Peg 0y (1) + Ep (/0 ‘C%\‘VCP&LM(O) (Xs) dS) :
From , there exists a constant C3 > 0 such that for all t > 0, E, (|£%VCP§07M(0) (Xt)|) <

C3 (1 4+ E, (M (X¢))) which is finite from [I8, Proposition 2.11] since p € MS$4(R). Hence, from
FUBINI’s theorem we obtain that

t
Peve(t) Pey110) (1) = Peoaro)(1) + | By (ChvePes o) (X)) ds. (59)
As L%\‘VCPEO, M(0)(p) is a polynomial in y and since

)EFVC ﬁFvcpgo,M(o) (M))’ < Cy (1 + My (1))

for some constant C4 > 0, we deduce as in that
By, (LivePeya(o) (X0)) = By (LivePey a1(0) (X0) )

t
=E, </0 Live (‘C%\‘chfo,M(O)) (Xs) dS) :

In particular, ¢t — E, (ﬁFVchO, M(0) (Xt)) is continuous, so

1 t+h
EN (ﬁlé\‘VCPfo,M(O) (Xt)) = hm *Eu ( \ EFVCP§O,M(O) (Xs) dS)

= lim hEu (Peo,21(0) (Xen) = Peg,a1(0) (X))
= }Lg% ]EN (PFVC PEO,M(O) (Xh)) — Ppve (1) Pgo,M(O) (1)
= }lbll% hE (Pyiar0)+1 (Xn) — Py ar(o)+1 (1)

where we used MARKOV’s property in the third equality and Proposition [6.7)in the last equality.
From Step 1, we deduce that there exists a constant C5 > 0 such that

| £dve Py a0y 41 ()] < G5 (1+ My (1) (60)

Thus, from the martingale problem and the continuity of ¢ — E, (ﬁFVcPv;, M(0) (,u)), we
have that

o1
B Vs (P ason (50— Praron () = Jim 1B, ([ £8P ason (%5)ds)
= Live Py o)1 (1)

Therefore, we have proved that for all ¢ > 0, for all € MS*(R),

Ey (LavePeon1(0) (X2)) = LivePy aroy+1 (1),
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and so, by , we obtain .

Step 3. Conclusion. From and and since [)y(, ) Ma (1) ¥(dp) < 0o, we deduce that

Prve(t) P, d
Loy PO P ()

where we used the assumption of Lemma [6.4] in the last equality.

As the set of test functions {Pf,n ’ feEGHR,R),n e N*} is M1 (M1(R)) — convergence

determining [26, Lemma 2.1.2], it is M; (M7 (R)) —separating [40, Chapter 3, Section 4, p.112],
so we have for any bounded continuous function ¢ from M;(R) to R that

| Prve®otmran) = [ outdw.
M1 (R)

M;i(R)

Hence ~ is an invariant probability measure for the centered FLEMING-VIOT process with resam-
pling rate . Now, from [I8, Theorem 4.1], 7 is its unique invariant probability measure which
ends the proof of Lemma [6.4]

7 Characterisation of the limiting values of the slow component

Combining the results of Sections[5]and [6] we have proved that for all R > 0, the sequence of laws
of ((z%1, FKR))KeN* is tight in My (D ([0, T, Tg) x ML (M1 (R))) and for any limiting value
Q of this sequence, the canonical process (¢f,T%) on €° ([0, 7], Tr) x ML (M1 (R)) satisfies for
all f € €} (Tg, Tr), for all t € [0,T], Q—a.s.,

£ =r(c)+ /0 t /MI(R) Lsrow f (¢F 1) ) (dp) ds. (61)

From now on, we will establish in Section [7.I] with Lemma that the sequence of laws of
(2551 rens converges weakly in D ([0,7],Tg) to the solution of an ODE in the torus. Finally,
Section [7.2] allows us to get away from the torus and to prove Theorem

7.1 Convergence of the slow component on the torus

Lemma 7.1. The sequence (ZK’R)

of

rens converges in law in D ([0,T], Tr) to the unique solution

t
vt € [0, T, zt:x0+;/ OUFit (2, 25) B (2) ma (25) ds (62)
0

on the torus Tg.
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Proof. For any limiting value Q of the sequence of laws of (zK7R)

Kens from @I) and applying
with f =id € 67 (Tg, Tr), we deduce that Q—a.s.,

¢
vee 1) =dr [ ([ M m ) ) oy () s
0 M1 (R)
From [I8, Corollary 4.16], for all s € [0, ¢],

1 B () ma (¢F)

M. ﬂA(Cf) d _ _ s s ’
so ¢ is solution of (62) Q—a.s. By uniqueness of the solution of , the announced result
follows. O

7.2 End of the proof of Theorem [2.1

Let T > 0 be fixed and recall that xg is the mean trait value of vf*. From Lemma and since
the ODE is non-explosive, we can choose R > 0 large enough such that

. KR R R} ) _
Kl_lfiloop(zt € {wo 2,960—1— 5 Vvt €10,7)) =1.

From Proposition and , we have that,

lim P <Diam (Supp l/tK’R) vt € [O,T]) =1

< —
K—+o00 = K1+€/2’

Hence,
lim P (Supp 1/5’]?02 C [xo— R,zo + R],Vt € [O,T]) =1.
K

K—+oo

Now, on the event {Supp Vf/(’[i_%( C [xo — R,z0 + R],Vt € [O,T]}, 1/5’1?0%{

[0, T, identifying x € Tg with its unique representant in [xg — 2R, z¢ + 2R]. In particular,

= tI/(Ka%( for all ¢t €

vt e[0,T), =58 =zK
Theorem 2.1 then follows from Lemma [7.1]
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