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Convergence of individual-based models with small
and frequent mutations to the canonical equation of

adaptive dynamics
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* Université de Lorraine, CNRS, Inria, IECL, F-54000 Nancy, France

Abstract. In this article, a stochastic individual-based model describing Darwinian evolution
of asexual, phenotypic trait-structured population, is studied. We consider a large population
with constant population size characterised by a resampling rate modeling competition pressure
driving selection and a mutation rate where mutations occur during life. In this model, the
population state at fixed time is given as a measure on the space of phenotypes and the evolution
of the population is described by a continuous time, measure-valued Markov process. We
investigate the asymptotic behavior of the system, where mutations are frequent, in the double
simultaneous limit of large population (K → +∞) and small mutational effects (σ → 0) proving
convergence to an ODE known as the canonical equation of adaptive dynamics. This result holds
only for a certain range of σ parameters (as a function of K) which must be small enough but not
too small either. The canonical equation describes the evolution in time of the dominant trait
in the population driven by a fitness gradient. This result is based on an slow-fast asymptotic
analysis. We use an averaging method, inspired by Kurtz [49], which exploits a martingale
approach and compactness-uniqueness arguments. The contribution of the fast component, which
converges to the centered Fleming-Viot process, is obtained by averaging according to its
invariant measure, recently characterised in [16].

Keywords. Adaptive dynamics, Canonical equation, Individual-based model, Measure-
valued Markov process, Slow-fast asymptotic analysis, Averaging method, Centered Fleming-
Viot process.
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1 Introduction
In this article we study, at the individual level and in the interplay between ecology and Dar-
winian evolution, a population model, structured by a 1−dimensional quantitative phenotypic
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trait. The Darwinian evolution is based on three basic mechanisms. Firstly, heredity which
allows the transmission of the individual phenotypic characteristics from one generation to an-
other. Secondly, a source of variation in the individual phenotypic characteristics: in our case
it is only mutations. Finally, a selection mechanism which can result from interaction between
individuals in the population such as competition. Our model is an individual-based model (in
short, IBM) which involves a finite and asexual population with constant population size in which
each individual’s birth, death and mutation events are described. IBMs were first introduced
in ecology as a tool to describe local interactions or complex phenomena at the individual level
[65, 11, 12, 29, 45, 24]. Ecological studies using IBMs are mainly numerical and the models are
mostly posed in discrete space as systems of interacting particles [65] and more rarely in continu-
ous space [11, 12, 29]. Many IBMs (with non-constant population size) have been proposed and
stutied in the context of Darwinian evolutionary by the biology community [59, 27, 35] and the
mathematical community [14, 15, 5]. Others are dispersal models in spatially structured popu-
lations where the trait is viewed as a spatial location and mutations as dispersal [11, 12, 54, 40].
Other models, structured in age, were developed in [19] and studied mathematically in [66, 73],
or structured in age and traits in [36, 58, 62].

We consider an IBM with fixed population size, so that births and deaths occur simultane-
ously in so-called resampling (or swap phenomenon) events. The mutation and resampling rate of
an individual depends on its phenotype. When a mutation occurs, the new mutant trait is close
to its parent’s one yielding a slow variation of the trait. In population genetics, the Wright-
Fisher model (and its extensions with selection, mutation or immigration), Cannings model or
the Moran model are interested in the evolution of allele frequencies according to various mech-
anisms [32]. In [37, 23, 22, 31], the authors construct the Fleming-Viot process as a scaling
limit of large population from the Moran process. Several extensions exist, including frequency-
dependent selection, recombination, other reproduction mechanisms [33, 44]. In particular, the
last article provides a bridge between population genetics and eco-evolutionary models. Others,
based on Kermack-McKendrick’s model, are interested in epidemiological questions [61, 63].

The aim of this article is to describe the evolutionary dynamics of the dominant trait, at
the population level, on a long time scale, as a solution to an ordinary differential equation (in
short, ODE) called Canonical Equation of the Adaptive Dynamics (in short, CEAD). Canonical
equations are well-known tools in evolutionary biology, used to predict the evolutionary fate
of ecological communities. More precisely, such equations describe the evolution of dominant
traits in a biological population as driven by mutations and a fitness gradient which describes
the strength of selection that pushes the population to locally increase its fitness [76, 53, 72, 26].

Fitness measures the selective value of a given individual in a given environment including
the population under consideration itself. This individual can be any (fictitious) mutant individ-
ual that can be born in the population at the time under consideration. The way to construct
a fitness landscape depends on the ecological context [60]. For continuous time homogeneous
Markov models as studied below, it is the instantaneous growth rate (birth rate minus death
rate) of the individual considered in the environment considered. If we further assume that the
population constituting the environment is in a stationary state, then we can consider that the
fitness of a given mutant individual in this population governs the possibility of invasion of the
descendants of this mutant in the population.

The canonical equation has been studied and derived in different contexts such as game
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theory [47] and quantitative genetics [53]. In the branch of evolutionary biology called adap-
tive dynamics [48, 64, 57], the CEAD has been introduced heuristically in [26]. The theory of
adaptive dynamics studies the links between ecology and Darwinian evolution, more precisely, it
investigates the effects of the ecological aspects of population dynamics on the evolutionary pro-
cess, and so describes the population dynamics on the phenotypic level instead of the genotypic
level. The theory of adaptive dynamics is based on biological assumptions of rare and small
mutations and of large population under which the CEAD was proposed.

Two mathematical approaches were developed to give a proper mathematical justification of
this theory: a deterministic one, and a stochastic one. All these approaches are based on the use
of IBMs and different combinations of the three previous biological assumptions and consider
a parameter scaling under which the population distribution over the trait space concentrates
to Dirac masses, i.e. to subpopulations in which all the individuals have the same trait. The
canonical equation corresponds to the motion of Dirac masses. Let us introduce three parame-
ters corresponding to the different biological assumptions: p for the mutation probability, σ for
the mutation size and K for the population size.

In the deterministic approach, [40] first establishes that, under the asymptotic of large popu-
lation (K → +∞), the IBM converges in law to a deterministic process which is a weak solution
of a partial differential equation. Then by adding the small mutation assumption (σ → 0) and an
appropriate time scaling 1/σ, [28, 69, 56] establish the convergence to a version of the canonical
equation different from the one of [26] and described by a Hamilton-Jacobi equation with
constraint.

The stochastic approach was developed in [14, 18]. In [14] it is proved that the IBM con-
verges, for finite dimensional distributions, under the double simultaneous asymptotic of large
population (K → +∞) and rare mutation (p → 0) to a stochastic process: the TSS for Trait
Substitution Sequence introduced in [59, Section 6.4]. This is a pure jump Markov process in
the trait space where the population is at all times monomorphic and where the jumps de-
scribe the invasion and then the fixation of a mutant y in a monomorphic resident population of
trait x. By adding the small mutation assumption (σ → 0) to the TSS, its convergence to the
canonical equation proposed in [26] is established in [18]. The time scale involved in observing
the canonical equation phenomenon is 1/Kσ2p. Extensions of these results were obtained in
[17] for chemostat models, in [30, 58] for age-structured populations models, in [55] for spatial-
structured populations models and [2] which studies the simultaneous application of the three
limits (K → +∞, p → 0, σ → 0) in order to determine precisely the range of parameters leading
to the canonical equation.

Despite their success, the proposed approaches are criticised by biologists [74, 70]. Among
the biological assumptions of adaptive dynamics, the assumption of rare mutations is the most
critised as unrealistic [74]. The rate of molecular mutation is relatively well known and gener-
ally involves several nucleotide substitutions per generation. The adaptive dynamics response is
based on the fact that only non-synonymous mutations (changing phenotypes) producing viable
individuals should be taken into account [1] [59, Section 6.4]. Since only a small fraction of DNA
codes for proteins and many mutations produce non-functional proteins, and thus non-viable
individuals, it is not unreasonable to assume that mutations are rare, but probably not as rare
as assumed in the stochastic approach [14, 18, 2]. Another criticism of stochastic approaches is
that the phenomenon of the canonical equation takes place on a too long evolutionary time scale.
In order to solve these problems, we propose to apply a double simultaneous asymptotic of small
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mutations (σ → 0) and large population (K → +∞), but frequent mutations (p ≡ 1). After con-
veniently scaling the population state, this leads to a slow-fast dynamics where the phenomenon
of the canonical equation is visible on a time scale 1/Kσ2. So, there is some consistency between
the previous stochastic approaches developed in [18, 2] and ours: it is exactly the same canonical
equation. However in our situation, the CEAD is visible on a shorter evolutionary scale than
theirs, and therefore is biologically more reasonable.

As the mutation size parameter is small, the population distribution tends to be close to a
Dirac mass. Our aim is to describe the evolution of the support of this Dirac mass on a large
time scale. The mean trait appears as the natural slow component. It will be proved to act on
the time scale 1/Kσ2. In our case, the fast component acts on the time scale K and is given
by the dynamics of the centered and dilated distribution of traits corresponding to a discrete
version of the centered Fleming-Viot process [16]. Since the centered Fleming-Viot process
is ergodic [16], we expect the centered and dilated distribution of traits to stabilise on the slow
time scale, hence the distribution of traits should stabilise to a Dirac mass. Therefore, the
dynamics of the dominant trait corresponds to that of the mean trait.

The reason for not considering the same IBM as in [14, 18, 2] is because it involves three time
scales, a slow one corresponding to the dynamics of the mean trait acting on the evolutionary
time scale 1/Kσ2, a fast one corresponding to the dynamics of the centered, dilated distribution
of traits acting on the evolutionary time scale K and a very fast one corresponding to the pop-
ulation size dynamics acting on the ecological time scale 1. For simplicity, we focus here on a
model with constant population size to reduce the number of time scales to two. We expect our
results to extend to general IBMs as in [14, 18, 2] and we leave this for future works.

To prove convergence in the framework of slow-fast dynamics (also called stochastic singular
perturbations), different techniques can be used.

Firstly, the method of the perturbed test function initially proposed by Papanicolaou,
Stroock and Varadhan in [67] identifies the generator of the limit process with a mar-
tingale approach whose idea is the following. If we consider a family of stochastic processes
((Xε, Y ε))ε>0 of generator Lε where Xε is the slow component and Y ε is the fast component
in the form Y ε(t) = Y (t/ε) where Y is a Markov process, the slow-fast problem consists in
identifying the limit process of Xε using ergodicity properties of the fast dynamics. Assuming
that the family (Xε)ε>0 is tight, we consider X a limiting value. We can expect to characterise
X with a martingale problem derived from the martingale problem of (Xε, Y ε) provided that
the solution to this problem is unique. We would then obtain the convergence of Xε to X in law.
However, for multiscale singular problems, the convergence of Lεφ ((Xε

t , Y
ε

t )) when ε → 0, for a
test function φ depending only on the X component, does not (in general) take place because
it contains diverging terms in ε. To overcome this difficulty, firstly the idea is to decompose the
generator Lε in the following form Lε = 1

εL1 + L0 where L1 is the infinitesimal generator of the
Markov process Y in the variable y and L0 the operator of the slow component depending on
slow and fast variables. Secondly, the idea is to perturb the initial test function φ(x) into a test
function φε(x, y) := φ(x) + εφ1(x, y) such that

Lεφε =
ï1
ε
L1 + L0

ò
(φ+ εφ1) =

(
L1φ1 + L0φ− L0φ

)
+ L0φ+ εL0φ1 (1)
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because of L1φ = 0 and where L0 is the operator of the limit slow component averaged by the
unique invariant probability measure of the limit fast component Y . Provided that φ1 solves the
Poisson equation (with respect to L1 and the variable y)

L1φ1 + L0φ− L0φ = 0, (2)

we deduce that Lεφε = L0φ + O(ε). Then, φε(x, y) → φ(x) and Lεφε(x, y) → L0φ(x) when
ε → 0 as expected.

The perturbed test function method has been extended in [10, 50, 51] and in the books
[38, Section 6.3], [52]. Many other references apply the perturbed test function strategy in
various settings: in finance [39] in transport problems as in [67] or in [21] where the tightness
of the fast component is established using its occupation measure. Similar methods are used
in homogenisation [67, 7, 68] (see also [6] which exploits spectral and semi-group properties in
addition), and in stochastic stability and control [52].

Finally, an important method is the stochastic averaging, in a generic framework, that was
proposed by Kurtz in [49]. Many approaches [3, 62, 46, 20, 43, 13, 4, 8] including ours, are based
on it. The main idea consists in exploiting the occupation measure Γε of the fast component Y ε

which is formally defined for all t ⩾ 0, for any Borelian B by

Γε ([0, t] ×B) =
∫ t

0
1B (Y ε

s ) ds,

and to establish the convergence of the couple (Xε,Γε) when ε → 0 using compactness-uniqueness
arguments. Proceeding in this way allows us to escape the difficulties created by the fluctuations
of the fast component and avoids to obtain tightness result of the “slow-fast” couple (Xε, Y ε).
The proof can be divided into four steps.

The first one consists in establishing uniform tightness of the sequence of laws of the couple
(Xε,Γε). The second one consists in establishing a martingale problem for any limiting value of
the family of laws of the couple. The third one is based on establishing the uniqueness of the
limiting value of Γε expressed in terms of the limit X of Xε which is given. The characterisation
of the limiting value Γ of Γε is usually based on ergodicity arguments. Finally, the last step is
to establish the uniqueness of the martingale problem for the slow component limit X when Γ
is given as above.

The Kurtz approach seems to be better adapted to our situation than the perturbed test
function method. Indeed, the generator L1 being that of a measure-valued diffusion, it is thus
delicate to find the good class of test function φ1 satisfying (2) and the computations are difficult
because of the moment terms (see Section 2.3). In addition, the remainder terms generated by
(1) are difficult to control and the fast component Y ε does not take the form Y (t/ε). However,
Kurtz’s approach can neither be implemented directly because of difficulties inherent to our
model described in Section 2. Therefore, our result required a complete reworking of the classical
arguments. In particular, in our case, we don’t have uniform moment estimates but only a
uniform control, in probability, of the second moment of the fast variable up to a stopping time
τ̌K where the diameter of the support of the fast component becomes large.

This paper is organised as follows. In Section 2, we define our trait structured IBM, state the
central theorem about the CEAD characterising the limit model which consists of an ODE ruling
the dynamics of the limit slow component. We establish in this section the sketch and outline of
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the main proof and the difficulties encountered. We give also some prospects that let us believe
that we can improve our main result by relaxing some assumptions. The rest of this paper
is devoted to prove the central theorem of Section 2. In Section 3 some approximations of the
infinitesimal generator of the slow-fast process are proved. In Section 4, we establish estimates of
moments, in particular of the sixth and second order moment up to time τ̌K . We also prove the
convergence of τ̌K to +∞ when K → +∞ exploiting coupling arguments between the moment
of order 2 and a certain biased random walk for which large deviations estimates are established.
In Section 5, we prove the tightness of the couple “slow-occupation measure fast” in the torus
case. In Section 6, we establish, in the torus case, the uniqueness of the limit occupation measure
which is described by the unique invariant probability measure of the centered Fleming-Viot
process. This result is used in Section 7 to characterise the limit slow component as the unique
solution of the CEAD with values in the torus. Thanks to the non-explosion of this ODE and
choosing the torus large enough we are able to conclude the proof of our main result given in
Section 2.

2 A trait structured IBM
Let us describe the microscopic model which models population evolution, in a Darwinian sense,
at the individual level.

2.1 Parameters and assumptions of the model

We consider a discrete population of constant size in continuous time in which the survival and
reproductive capacity of each individual is characterised by a continuous quantitative phenotypic
trait x ∈ R, i.e. an overall characteristic subject to selection such as body size at maturity. The
individuals reproduce asexually during their lives, i.e. the reproduction scheme is assumed clonal
simultaneously with death of another individual, with frequency-dependent rates. Each birth of
an individual occurs simultaneously with the death of another individual in the population. A
mutation occurs during life at the individual level at rate 1: in this sense mutations are consid-
ered frequent. Each mutation has an amplitude of the order of magnitude σ ∈ (0,+∞). Small
σ means mutations have a small phenotypic effect, i.e. evolution acts slowly on the individual
phenotypic characteristics.

We are interested in approximating the long-term dynamics of a large population. We assume
that the number of individuals alive at each time t ⩾ 0 is always equal to K. Let us denote
by x1(t), · · · , xK(t), the phenotypic trait values of these individuals at time t. The state of the
population at time t, can be described by the finite point measure on R rescaled by K

νK,σ
t := 1

K

K∑
i = 1

δxi(t)

where δx is the Dirac measure at x.

For all x, y ∈ R, let us introduce the following biological parameters:
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• b(x, y) ∈ R+ is the resampling rate, i.e. the rate of simultaneous birth of an individual
holding trait y and death of an individual holding trait x and it can be interpreted as
modeling a competitive pressure driving selection.

• θ(x) ∈ R+ is the rate of mutation of an individual holding trait x.

• m(x, dh) is the mutation law of the scaled mutation step h, born from an individual with
trait x, where the mutant trait is given by y := x+ σh ∈ R. It is a probability measure on
R.

Let us also introduce the following notations, used throughout this paper:

• β(x) := θ(x)
b(x,x) , the ratio between the mutation rate and the resampling rate in a monomor-

phic population with trait x, which can be interpreted (in the scaling limit considered
below) as the mean number of mutations between two resampling events.

• Fit(y, x) := b(x, y) − b(y, x) is the adaptive value or fitness of a mutant individual with
trait y in the population of (K − 1) individuals of trait x. The fitness can be interpreted
as the initial growth rate of a mutant individual y in a resident monomorphic population
with trait x.
Indeed, the total birth rate of a mutant individual y in this population is b(x, y)(K−1) and
the total death rate of a mutant individual y in this population is b(y, x)(K − 1). Hence,
the (initial) growth rate of the mutant population is Fit(y, x)(K − 1).

Let M1(R) be the set of probability measures on R, endowed with the topology of weak
convergence making it a Polish space [9]. For a measurable real bounded function f , and a
measure ν ∈ M1(R), we denote ⟨f, ν⟩ :=

∫
R f(x)ν(dx). We denote by id the identity function.

We denote also N := {0, 1, 2, · · · } and N⋆ := N \ {0}. If I is an interval of R, then for all ℓ ∈ N,
p ∈ N⋆, we denote by C ℓ(Ip,R) the space of functions of class C ℓ from Ip to R and by C ℓ

b (Ip,R)
the space of functions of class C ℓ(Ip,R) with bounded derivatives. Finally, we define for all
K ∈ N⋆,

M1,K(R) :=
{

1
K

K∑
i = 1

δxi

∣∣∣∣∣ (xi)1⩽i⩽K ∈ RK

}
.

the set of probability measures on R of K atoms of mass 1/K.

Assumptions. Let us denote by (A) the following two assumptions:

(A1) The maps b : R2 → R+, and θ : R → R+ are respectively in C 2
b (R2,R) and C 2

b (R,R) and
there exists 0 < b, b, θ, θ < ∞ such that:

b ⩽ b(·, ·) ⩽ b, and θ ⩽ θ(·) ⩽ θ.

(A2) (a) There exists Am ∈ (0,+∞) such that the law m(x,dh) is absolutely continuous with
respect to the Lebesgue measure on R with density m(x, h) centered and satisfies

∀x ∈ R, ∀ |h| ⩾ Am, m(x, h) = 0.
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(b) For all α ∈ R, for all ℓ ∈ N, we denote by

mℓ (α) :=
∫
R

|h|ℓm (α, h) dh

the ℓth moment of the mutation law. We assume for ℓ ∈ {2, 4, 6} that mℓ is Lipschitz
and there exists mℓ,mℓ ∈ (0,+∞) such that for all α ∈ R, mℓ ⩽ mℓ(α) ⩽ mℓ.

Let us now give the infinitesimal generator LK,σ of the M1,K(R)−valued Markov process
νK,σ :=

Ä
νK,σ

t

ä
t⩾0

describing the ecological dynamics of the population with resampling. The
generator LK,σ is defined for any bounded measurable map ϕ from M1,K(R) to R, by

LK,σϕ(ν) = K

∫
R
ν(dx)

∫
R
ν(dy)b(x, y)

ï
ϕ

Å
ν − δx

K
+ δy

K

ã
− ϕ(ν)

ò
+K

∫
R
θ(x)ν(dx)

∫
R
m(x, h)

ï
ϕ

Å
ν − δx

K
+ δx+σh

K

ã
− ϕ(ν)

ò
dh.

(3)

The first term describes the resampling event of one individual by another and the second
term describes the effect of mutations over the lifetime of individuals.

2.2 Main result

The main result of this article is the following theorem. For all ν ∈ M1(R), let us denote by
Diam (Supp ν) the diameter of the support of ν.

Theorem 2.1. Assume (A) and for all K ∈ N⋆, σ ∈ (0,+∞), for some x0 ∈ R, for all
ℓ ∈ {1, 2, 3}, ¨

id, νK,σ
0
∂

:= x0, and
¨
(id − x0)2ℓ , νK,σ

0
∂
⩽ C⋆

2ℓK
ℓσ2ℓ (4)

for some C⋆
2ℓ > 0. Assume that K → +∞, σ → 0 and σ = σ(K) such that

∃ ε > 0, ∀C > 0, K−C log(K) ≪ σ ≪ K−(2+ε). (5)

Then, for the Skorohod topology, the sequence of the mean trait processes
(Ä¨

id, νK,σ
t/Kσ2

∂ä
t⩾0

)
K∈N⋆

converges in law in D (R+,R) when K → +∞, σ → 0, to the unique deterministic process
(ζt)t⩾0 ∈ C 0 (R+,R) with initial condition ζ0 := x0, which is solution to the Canonical Equation
of Adaptive Dynamics (CEAD):

ẏ = ∂1Fit(y, y) × β(y)m2(y).

In addition, we have the following support concentration property : for all T > 0,

sup
t∈[0,T ]

Diam
Ä
Supp νK,σ

t/Kσ2

ä
⩽

1
K

(6)

holds with probability which tends to 1 when K → +∞.
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The canonical equation is composed of two terms. The first term: the fitness gradient,
describes the strength of selection that pushes the population to increase its adaptive value
locally. The second term describes the effect of mutations. Note that (6) describes, in some
sense, when K → +∞, the convergence of the population distribution

Ä
νK,σ

t/Kσ2

ä
to a Dirac

mass.

Remark 2.2. (1) We conjecture that the assumption σ ≪ K−(2+ε) given by (5) is too restric-
tive and that it can be weakened by σ ≪ K−( 3

2 +ε). This conjecture is supported by the
discussion in Section 2.3.4 below.

(2) We actually prove Theorem 2.1 (see Section 4.4.3) under a slightly weaker assumption than
the left bound of (5): for a universal constant C0 depending only on b, θ,m and not on K
and σ,

∃ ε > 0, K−ε2C0 log(K) ≪ σ ≪ K−(2+ε).

(3) The Assumption (A2)(a) is only used in Section 4.4 and could be weakened with some tail
bounds (typically exponential) on m(x, ·).

The aim of the rest of the paper is to prove Theorem 2.1. Since σ = σ(K), we will use the
notation νK to designate νK,σ.

2.3 Sketch and outline of the proof

Note that, the convergence result of Theorem 2.1 takes place on the time scale 1/Kσ2. The idea
of the proof is based on slow-fast asymptotic analysis techniques developed by Kurtz [49]. Let
us begin by introducing the slow and fast dynamics involved in our model, then the difficulties
encountered and finally the outline of the proof.

2.3.1 Slow-fast asymptotic analysis

Let a, α ∈ R and B(R) the Borel σ−field on R. Let us define respectively by τα and ha, the
translation operator of vector α and the homothety of ratio a. For all x ∈ R, for all A ∈ B(R),

(ha ◦ τα) ♯ δx(A) = δa(x+α)(A) and (τα ◦ ha) ♯ δx(A) = δax+α(A).

Note that for all K ∈ N⋆, any ν ∈ M1,K(R) has all its moments finite. We define for all K ∈ N⋆,
Mc

1,K(R) the set of centered probability measures of M1,K(R). From the population processÄ
νK

t/Kσ2

ä
t⩾0

, we introduce two evolutionary dynamics:

• The slow dynamics, with value in R, corresponds to that of the mean trait defined by

zK
t :=

¨
id, νK

t/Kσ2

∂
.

• The fast dynamics, with value in Mc
1,K(R), corresponds to that of the centered and dilated

distribution of traits defined by

µK
t :=

(
h 1

σ
√

K

◦ τ−zK
t

)
♯ νK

t/Kσ2 = 1
K

K∑
i = 1

δ 1
σ

√
K

(xi(t)−zK
t ). (7)

Note that νK
t =

Ä
τK

ztKσ2 ◦ hσ
√

K

ä
♯ µK

tKσ2
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For all ℓ ∈ N and ν ∈ M1(R), we denote by Mℓ (ν) :=
¨
|id|ℓ , ν

∂
the ℓth moment of the measure

ν. Let us consider for all ℓ ∈ N⋆,

Mc,ℓ
1 (R) :=

ß
µ ∈ M1(R)

∣∣∣∣Mℓ (µ) < ∞, ⟨id, µ⟩ = 0
™

and the convention Mℓ (µ) = +∞ if µ /∈ Mc,ℓ
1 (R). Let us denote by B (E,R) the set of Borel

functions on the metric space E.

In the following, for all K ∈ N⋆, we study the couple of processes
((
zK

t , µ
K
t

))
t⩾0. Denoting

LK the infinitesimal generator of the process
((
zK

t , µ
K
t

))
t⩾0, computed in Proposition 3.1, we

will check the following assertions, proved respectively in Propositions 3.2 and 3.3.

(1) If we consider a function f : (z, µ) 7→ f(z) ∈ C 2
b (R,R), the generator LK satisfies the

following decomposition

LKf (z, µ) = LSLOWf (z, µ) +O

Å 1
K2 + M2(µ)

K
+ σ

√
KM3 (µ)

ã
(8)

where the operator LSLOW, of the limit slow component, is defined from C 1
b (R,R) to

B
Ä
R × Mc,2

1 (R),R
ä

by

LSLOWf (z, µ) = f ′(z)M2 (µ) ∂1Fit(z, z). (9)

(2) If we consider a function Fφ : (z, µ) 7→ Fφ(µ) := F (⟨φ, µ⟩) with F ∈ C 3(R,R) and
φ ∈ C 3

b (R,R), the generator LK satisfies the following decomposition

LKFφ (z, µ) = θ(z)m2(z)
K2σ2

ï
Lλ(z)

FVcFφ(z, µ) +O

Å 1√
K

+ σK
3
2M2 (µ) + M3(µ)

K

ãò
(10)

where Lλ(z)
FVc is the generator of the centered Fleming-Viot process with resampling rate

λ(z) := b(z,z)
θ(z)m2(z) , as studied in [16] and whose definition is recalled below. For all F ∈

C 2(R,R) and g ∈ C 2
b (R,R),

Lλ
FVcFg (µ) := F ′ (⟨g, µ⟩)

Å≠
g′′

2 , µ
∑

+ λ
[〈
g′′, µ

〉
M2(µ) − 2

〈
g′ × id, µ

〉]ã
+ λF ′′ (⟨g, µ⟩)

î〈
g2, µ

〉
− ⟨g, µ⟩2 +

〈
g′, µ

〉2
M2 (µ) − 2

〈
g′, µ

〉
⟨g × id, µ⟩

ó
.

(11)

From (10) and (8), note that the fast component
(
µK

Kσ2t

)
t⩾0 =

((
h 1

σ
√

K

◦ τ−⟨id,νK
t ⟩
)
♯ νK

t

)
t⩾0

moves on the evolutionary time scale K whereas the slow component
(
zK

Kσ2t

)
t⩾0 =

(〈
id, νK

t

〉)
t⩾0

moves over a much longer evolutionary time scale 1/Kσ2. The different time scales involved in
this model can be represented as in Figure 2.1. It follows that the fast component will be the first
to stabilise in its equilibrium state. Note that the operator of the slow component (9) depends
on the fast variable through the second-order moment M2 (µ). This is a standard difficulty in
slow-fast analysis, usually solved by assuming that once the fast component is stabilised in its
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1

Birth/Death
Competition

[Very fast]

K

Centered and dilated
distribution

[Fast]

1
Kσ2

Mean trait

[Slow]

Time

Figure 2.1: Different time scales involved in our individual-based model ex-
pected in the original time scale of the process

(
νK

t

)
t⩾0.

equilibrium state, M2 (µ) can be characterised in terms of the slow component leading to an
autonomous slow dynamics in the limit K → +∞.

As the fast limit component is driven by a centered Fleming-Viot process, we expect that
it will inherit ergodicity properties as stated in [16, Section 4]. This reference establishes the
existence of a unique invariant probability measure πλ for the centered Fleming-Viot process
and characterises it. In particular, we expect that the averaging principle applied to the drift
coefficient in (9) will lead to the averaged drift

∂1Fit (zt, zt)
∫

M1(R)
M2 (µ)πλ(zt)(dµ) = ∂1Fit (zt, zt)

λ (zt)
= ∂1Fit (zt, zt)β (zt)m2 (zt)

where (zt)t⩾0 is the limit slow component (see [16, Corollary 4.16] for the computation of the
integral). Formally, by replacing M2 (µ) by its mean value

∫
M1(R)M2 (µ)πλ(zt)(dµ) in (9), we

obtain that (see details in Section 7)

LCEADf(z, µ) = f ′(z)∂1Fit(z, z)β(z)m2(z)

and we recognise the generator of the announced CEAD.

2.3.2 Difficulties encountered

The slow-fast analysis relies on a stochastic averaging result that exploits tightness arguments.
The classical approach to prove tightness of sequences of laws [5, 40] requires to have uni-
form pathwise estimates on the moments of the process. In our situation, we note the pres-
ence of moments in (8) and (10). However, we could not establish control in expectation of
sup0⩽t⩽T M2

(
µK

t

)
for all T ⩾ 0 because of the long time scale which does not allow to exploit

the martingale problem associated to the decomposition of M2
(
µK

t

)
. This is an important dif-

ference, for example with [62] which studies similar forms of processes (individual-based models).
Instead, we will first use fine pathwise estimates and expectation bounds on M2

(
µK

t

)
up to the

stopping time τK defined for all K ∈ N⋆ by

τK := τ̌K ∧ τ̂K . (12)

where
τ̂K := inf

ß
t ⩾ 0

∣∣∣∣M2
Ä
µK

t

ä
⩾ Kε

™
(13)
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with ε > 0 given in Theorem 2.1 and where

τ̌K := inf
ß
t ⩾ 0

∣∣∣∣Diam
Ä
SuppµK

t

ä
>

1
σK

3+ε
2

™
(14)

which allows to control the diameter of the support of the centered and dilated distribution of
the traits µK . An important difficulty arises in Lemma 3.6 from the presence of third order
moment in the Doob semi-martingale decomposition of M2

(
µK

t

)
:

M2
Ä
µK

t

ä
= M2

Ä
µK

0
ä

− 1
K2σ2

∫ t

0

¶
2b
Ä
zK

s , z
K
s

ä
M2
Ä
µK

s

ä
− θ
Ä
zK

s

ä
m2
Ä
zK

s

ä©
ds

+ 1
K2σ2

∫ t

0
O

Å 1
K

+ σKM2
Ä
µK

s

ä
+ σK

3
2M3

Ä
µK

s

äã
ds+M

K,Pid2,1
t

where
(
M

K,Pid2,1
t

)
t⩾0

is a local-martingale. This leads to introduce the stopping time τ̌K which

guarantees that the error term in M3
(
µK

t

)
remains under control. This leads to a new difficulty:

establishing that τ̌K tends to +∞ in probability when K → +∞. To prove this, we use pathwise
estimates on M2

(
µK

t

)
up to time τ̌K to estimate the different transitions of M2

(
µK

t

)
between

thresholds of the form 3ℓ−1K
ε
2 and 3ℓ+1K

ε
2 and to construct a coupling between these transitions

and biased random walks. This allows us to use large deviations results on random walks and
estimates on the exit from an attracting domain (see e.g. [41, 25]) to prove that the stopping
time τ̂K , defined by (13), converges to +∞ in probability when K → +∞. This in turn implies
that τ̌K → +∞ in probability when K → +∞ (see Section 2.3.4 for a discussion of the method
used for this step).

The implementation of the slow-fast method of Kurtz [49] is done in two steps. To establish
the tightness of the sequence of laws of the slow component, we exploit criteria developed by
Ethier-Kurtz [34, Theorems 3.9.1 and 3.9.4] by restricting ourselves to the torus case. This
strategy allows to overcome the difficulty related to the verification of the compact containment
condition, on the real line, of the slow component stopped at the stopping time τK . The second
step consists in characterising each accumulation point of the sequence of laws of the slow dy-
namics and the occupation measure of the fast dynamics. For this, we need to check that any
measure γ in M1 (M1(R)) satisfying∫

M1(R)
Lλ

FVcϕ(µ)γ(dµ) = 0 (15)

for a certain class F of functions ϕ must be πλ. Equation (10) suggests to take F as the set of
functions of the form Fφ(µ) := F (⟨φ, µ⟩). However, the last property seems hard to prove for
this choice of F . Instead, we adapt a result of Dawson [22, Theorem 2.7.1] that applies to the
set F of so-called polynomial functions of the form

Pf,n(µ) :=
∫
R

· · ·
∫
R
f (x1, · · · , xn)µ(dx1) · · ·µ(dxn).

However the duality property used by Dawson in [22] does not hold in our case. In [16], it is
proved only a weak duality relation involving stopping times. This difficulty will be solved by
proving that the measure γ in (15) gives mass only to measures having its first five moments
finite. This will allow us to characterise the limit fast component and hence the limit slow
component on the torus, as solution to an ODE. Since this ODE is non-explosive, we choose the
torus large enough to conclude the proof on the real line.
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2.3.3 Outline of the proof

In Section 3, we begin by giving an approximation of the infinitesimal generator of the slow-
fast process

((
zK

t , µ
K
t

))
t⩾0 for a class of test functions on R × Mc

1,K(R), large enough to be
convergence determining and we characterise martingales associated to our process. We give
also martingale problems of the slow-fast process for polynomials in µ. In Section 4, we prove
some moment estimates. In Section 4.1, we give estimates of the moment of order 6. In Section
4.2, we establish some inequalities on M2

(
µK

t

)
and we control its bracket that we will use in

Section 4.3 to prove P−a.s. that M2
(
µK

t

)
takes superlinear (of the order of KC log(K)) long

time before hitting Kε. The fact that τK → +∞ in probability when K → +∞ is proved in
Section 4.3. The rest of the proof deals with the compactness-uniqueness argument associated
to our slow-fast problem. Firstly, in Section 5, we establish uniform tightness of the sequence
of laws of

(
zK ,ΓK

)
stopped at time τ̌K in the torus case where ΓK designates the occupation

measure of the process µK . In Section 6, we identify and characterise in a unique way the limiting
distribution of the fast component on the torus. In Section 7.1, we proceed similarly for the slow
component. Thanks to the uniqueness on the torus of the limit slow component, we deduce in
Section 7.2 the announced result of Theorem 2.1.

2.3.4 Prospects

In the first part of this section, we explain the origin of exponent 2 in the inequality σ ≪ K−(2+ε)

of Assumption (5). In the second part, it is explained how Assumption (5) may be improved
into the assumption σ ≪ K−( 3

2 +ε) by using estimates for moments of order 2ℓ. Finally, in the
last part of this section, we explain the difficulties in obtaining these moment estimates. Note
that the assumption σ ≪ K− 3

2 is the best we can expect because of the error term σK
3
2 in (10).

(a) Origin of the exponent 2 in Assumption (5). On the one hand, as for all t ⩾ 0 and
K ∈ N⋆, Diam

(
SuppµK

t

)2
⩽
(

2 max
{

|x|
∣∣∣x ∈ SuppµK

t

})2
⩽ 4KM2

(
µK

t

)
, we deduce that

P
Ä
τ̌K < τ̂K ∧ T

ä
⩽ P
Å

∃t < T ∧ τ̂K ,Diam
Ä
SuppµK

t

ä
>

1
σK

3+ε
2

ã
⩽ P
Å

∃t < T ∧ τ̂K ,M2
Ä
µK

t

ä
>

1
4σ2K4+ε

ã
On the other hand, note that thanks to the definition (13) of the stopping time τ̂K ,

P
Ä
∃t < T ∧ τ̂K ,M2

Ä
µK

t

ä
> Kε

ä
= 0.

Hence, Assumption (5) implies that P
(
τ̌K < τ̂K ∧ T

)
= 0 for K large enough. Using this

relation, we prove in Section 4.3 that P
(
τK < T

)
⩽ P

(
τ̂K ⩽ T ∧ τ̌K

)
. Hence, to establish that

τK → +∞ when K → +∞ in probability, we need to prove that

lim
K→+∞

P
Ä
τ̂K ⩽ T ∧ τ̌K

ä
= lim

K→+∞
P
Ç

sup
0⩽t⩽T ∧τ̌K

M2
Ä
µK

t

ä
⩾ Kε

å
= 0

as established in Section 4.4.
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(b) Improvement of Assumption (5) with moments of order 2ℓ. Assume now that
σ ≪ K−( 3

2 +ε). Then, there exists ℓ ∈ N⋆, ε̃ > 0 such that

∀C > 0, K−C log(K) ≪ σ ≪ K−( 3
2 + 1

2ℓ
+ ℓ+1

2ℓ
ε̃) (16)

and we consider the stopping times

τ̂K
bis := inf

ß
t ⩾ 0

∣∣∣∣M2
Ä
µK

t

ä
⩾ K ε̃

™
and τ̌K

bis := inf
ß
t ⩾ 0

∣∣∣∣Diam
Ä
SuppµK

t

ä
>

1
σK

3+ε̃
2

™
.

Using now that for all t ⩾ 0, for all K ∈ N⋆, for all ℓ ∈ N⋆, Diam
(
SuppµK

t

)2ℓ
⩽ 2ℓKM2ℓ

(
µK

t

)
,

we deduce that

P
Å

∃t < T ∧ τ̂K
bis,Diam

Ä
SuppµK

t

ä
>

1
σK

3+ε̃
2

ã
⩽ P
Å

∃t < T ∧ τ̂K
bis,M2ℓ

Ä
µK

t

ä
>

1
2ℓσ2ℓK3ℓ+1+ℓε̃

ã
,

which is zero for K large enough by (16). As previously, if we can prove for all T ⩾ 0 that

lim
K→+∞

P
Ä
τ̂K

bis ⩽ T ∧ τ̌K
bis
ä

= lim
K→+∞

P

(
sup

0⩽t⩽T ∧τ̌K
bis

M2ℓ

Ä
µK

t

ä
⩾ K ε̃

)
= 0, (17)

then, we can conclude as before.

(c) Difficulties encountered. The main difficulty consists in proving (17). For this we
could seek for an extension of Lemma 4.1 to the framework of moments of order 2ℓ. Lemma 4.1
relies on the inequality for all t ⩾ 0, K large enough,

3
4M6 (µt∧τ̌K ) + 3M4

Ä
µK

t∧τ̌K

ä
M2
Ä
µK

t∧τ̌K

ä
+ 3

2M
3
2
Ä
µK

t∧τ̌K

ä
⩽

3
4M6

Ä
µK

0
ä

+ 7M4
Ä
µK

0
ä
M2
Ä
µK

0
ä

+ 3
2M

3
2 (µt∧τ̌K )

− C1
K2σ2

∫ t∧τ̌K

0

Å3
4M6 (µt∧τ̌K ) + 3M4

Ä
µK

s

ä
M2
Ä
µK

s

ä
+ 3

2M
3
2
Ä
µK

s

ä
− C2

ã
ds+ Martt∧τ̌K

for some constants C1, C2 > 0 and where (Martt∧τ̌K )t⩾0 is a martingale. However a similar
calculation does not seem to be successful for moments of order 8 or more.

3 Infinitesimal generator approximation
Let us begin this section by giving the generator of the couple of process

(
zK , µK

)
. Then, we

give an approximation of the previous formula for a class of test functions which is convergence
determining. Finally, we give an extension to this result in the case of polynomials in µ.
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3.1 Generators and martingales

For all K ∈ N⋆, let us introduce the filtration
(
FK

t

)
t⩾0 defined by FK

t := σ
(
zK

s , µ
K
s

∣∣∣ s ⩽ t
)

.

Proposition 3.1. The infinitesimal generator of the R ⊗ Mc
1,K(R)−valued Markov process(

zK , µK
)
, defined for all bounded measurable function Φ from R × Mc

1,K(R) to R, is given by

LKΦ (z, µ) = K

Kσ2

∫
R
µ(dx)

∫
R
µ(dy)b

Ä
σ

√
Kx+ z, σ

√
Ky + z

ä
×
ñ
Φ
Ç
z + σ

√
K

K
(y − x), τ− y−x

K
♯

ï
µ− δx

K
+ δy

K

òå
− Φ (z, µ)

ô
+ K

Kσ2

∫
R
µ(dx)θ

Ä
σ

√
Kx+ z

ä ∫
R
m
Ä
σ

√
Kx+ z, h

ä
×

[
Φ
(
z + σ

√
Kh

K
3
2

, τ− h

K3/2
♯

[
µ− δx

K
+
δx+ h√

K

K

])
− Φ (z, µ)

]
dh

Moreover, for all K ∈ N⋆, for all bounded measurable function Φ from R × Mc
1,K(R) to R, the

following process
Ä
MK,Φ

t

ä
t⩾0

defined by

MK,Φ
t := Φ

Ä
zK

t , µ
K
t

ä
− Φ
Ä
zK

0 , µ
K
0
ä

−
∫ t

0
LKΦ

Ä
zK

s , µ
K
s

ä
ds (18)

is a
(
FK

t

)
t⩾0 −martingale, square integrable, with quadratic variation:¨

MK,Φ
t

∂
t

= K

Kσ2

∫ t

0
ds

∫
R
µ(dx)

∫
R
µ(dy)b

Ä
σ

√
Kx+ z, σ

√
Ky + z

ä
×
ñ
Φ
Ç
z + σ

√
K

K
(y − x), τ− y−x

K
♯

ï
µ− δx

K
+ δy

K

òå
− Φ (z, µ)

ô2

+ K

Kσ2

∫ t

0
ds

∫
R
µ(dx)θ

Ä
σ

√
Kx+ z

ä ∫
R
m
Ä
σ

√
Kx+ z, h

ä
×

[
Φ
(
z + σ

√
Kh

K
3
2

, τ− h

K3/2
♯

[
µ− δx

K
+
δx+ h√

K

K

])
− Φ (z, µ)

]2

dh

Note that the factor 1/Kσ2 corresponds to the time scaling of νt used to define zt and µt.

Proof. Step 1. About the generators. On the one hand, from (3), note that for all Φ :
R × Mc

1,K(R,R) → R and ϕ : M1,K(R) → R such that ϕ(ν) = Φ
(

⟨id, ν⟩ ,
(
h 1

σ
√

K

◦ τ−⟨id,ν⟩

)
♯ ν
)

,

LKΦ (z, µ) = 1
Kσ2 × LK,σϕ

ÄÄ
τz ◦ hσ

√
K

ä
♯ µ
ä
. (19)
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On the other hand, note that for all ν ∈ M1,K(R), u, v ∈ R, ψ : R → R and Ψ : M1,K(R) → R
measurable bounded functions, we have∫

R
ψ(x)Ψ

Å
ν +

δx+σ
√

Ku

K
− δv

K

ã
ν(dx)

=
∫
R
ψ
Ä
σ

√
Ky + ⟨id, ν⟩

ä
Ψ
ÅÄ
τ⟨id,ν⟩ ◦ hσ

√
K

ä
♯

ï
µ+ δy+u

K
− δv

K

òã
µ(dy).

(20)

Finally, by noting that for all u ∈ R the mean trait of
Ä
τ⟨id,ν⟩ ◦ hσ

√
K

ä
♯
î
µ− δx

K + δu
K

ó
is ⟨id, ν⟩+

σ
√

K
K (u−x) and the centered and dilated distribution of traits of

Ä
τ⟨id,ν⟩ ◦ hσ

√
K

ä
♯
î
µ− δx

K + δu
K

ó
is τ− u−x

K
♯
î
µ− δx

K + δu
K

ó
, the announced result follows from (19) and (20).

Step 2. About the martingales. The martingale property follows from classical argu-
ments since Φ and LKΦ are bounded [34, Chapter 4]. To compute the bracket, we proceed
according to the following classical method (see e.g. [40]). We apply (18) replacing Φ by Φ2 to
obtain the martingale MK,Φ2 . Then, we apply the Itô formula to compute Φ2 (zK

t , µ
K
t

)
from

(18). We deduce that

Martt := Φ2
Ä
zK

t , µ
K
t

ä
− Φ2

Ä
zK

0 , µ
K
0
ä

− 2
∫ t

0
LKΦ

Ä
zK

s , µ
K
s

ä
ds−

¨
MK,Φ

∂
t

is a martingale. Hence, the martingale MK,Φ2

t − Martt has finite variation, so it is null [42,
Theorem 4.1], leading to¨

MK,Φ
∂

t
=

∫ t

0

î
LKΦ2

Ä
zK

s , µ
K
s

ä
− 2Φ

Ä
zK

s , µ
K
s

ä
LKΦ

Ä
zK

s , µ
K
s

äó
ds

then the announced conclusion.

3.2 Asymptotic expansions

Recall that, a set S ⊂ C 0
b (R,R) is called Mc

1,K (R) −convergence determining if whenever
(Pn)n∈N ∈ Mc

1,K (R)N , P ∈ Mc
1,K(R) and limn→+∞ ⟨f, Pn⟩ = ⟨f, P ⟩ for all f ∈ S, we have

that (Pn)n∈N converges weakly to P [34, Chapter 3, Section 4, p.112]. As developed in [22,
Theorem 3.2.6], the class of functions on Mc

1,K(R),

F2
b :=

ß
Fφ

∣∣∣∣Fφ (µ) := F (⟨φ, µ⟩) , F ∈ C 2 (R,R) , φ ∈ C 2
b (R,R)

™
.

is Mc
1,K (R) −convergence determining.

In the following sections, we prove the assertions (1) and (2) of Section 2.3.1.

3.2.1 Slow component

Proposition 3.2. For all f ∈ C 2
b (R,R), understood as a function of (z, µ) which depends only on

z, the infinitesimal generator LK defined in Proposition 3.1, satisfies the following decomposition

LKf (z, µ) = LSLOWf (z, µ) +O

Å 1
K2 + M2(µ)

K
+ σ

√
KM3 (µ)

ã
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where the operator LSLOW is given by (9).

Proof. From Proposition 3.1 for the choice of test functions Φ(z, µ) := f(z) we obtain that
LKf(z, µ) = (A)K + (B)K where

(A)K := K

Kσ2

∫
R
µ(dx)

∫
R
µ(dy)b

Ä
σ

√
Kx+ z, σ

√
Ky + z

ä ñ
f

Ç
z + σ

√
K

K
(y − x)

å
− f(z)

ô
,

(B)K := K

Kσ2

∫
R
µ(dx)θ

Ä
σ

√
Kx+ z

ä ∫
R
m
Ä
σ

√
Kx+ z, h

ä ñ
f

Ç
z + σ

√
K

K
3
2
h

å
− f(z)

ô
dh.

Now, we want to decompose and study (A)K . Denoting (C)K
x,y(z) := f

Ä
z + σ

√
K

K (y − x)
ä

−
f(z), from Taylor’s formula, note that (A)K = (A)K

1 + (A)K
2 + (A)K

3 where

(A)K
1 := K

Kσ2

∫
R
µ(dx)

∫
R
µ(dy)b (z, z) (C)K

x,y(z),

(A)K
2 := K

Kσ2 × σ
√
K

∫
R
µ(dx)

∫
R
µ(dy) (x∂1b (z, z) + y∂2b(z, z)) (C)K

x,y(z),

(A)K
3 := K

Kσ2

∫
R
µ(dx)

∫
R
µ(dy)

î
b
Ä
σ

√
Kx+ z, σ

√
Ky + z

ä
− b(z, z) ,

− σ
√
K (x∂1b (z, z) + y∂2b(z, z))

ó
(C)K

x,y(z)

Using that (C)K
x,y(z) = f ′(z)σ

√
K

K (x− y) +O
Ä

σ2

K |y − x|2
ä
, we deduce that

(A)K
1 = O

Å
M2 (µ)
K

ã
,

(A)K
2 = f ′(z) (∂2b(z, z) − ∂1b(z, z))M2 (µ) +O

Ç
σ

√
KM3 (µ)
K

å
,

and noting that
∣∣∣(C)K

x,y

∣∣∣ ⩽ C1
σ

√
K

K |y − x| for some constant C1 > 0 and∣∣∣b Äσ√
Kx+ z, σ

√
Ky + z

ä
− b(z, z) − σ

√
K (x∂1b (z, z) + y∂2b(z, z))

∣∣∣ ⩽ C2σ
2K
(
x2 + y2)

for some constant C2 > 0, we deduce that (A)K
3 = O

Ä
σ

√
KM3 (µ)

ä
. Therefore,

(A)K = f ′(z) (∂2b(z, z) − ∂1b(z, z))M2 (µ) +O

Å
M2 (µ)
K

+ σ
√
KM3 (µ)

ã
.

As previously, we obtain that

(B)K = O

Ç
θm2
K2

å
.

and the announced result follows.
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3.2.2 Fast component

Proposition 3.3. For all F ∈ C 3(R,R) and φ ∈ C 3
b (R,R), the infinitesimal generator LK

defined in Proposition 3.1, satisfies the following decomposition

LKFφ (z, µ) = θ(z)m2(z)
K2σ2

ï
Lλ(z)

FVcFφ(z, µ) +O

Å 1√
K

+ σK
3
2M2 (µ) + M3(µ)

K

ãò
where the operator Lλ(z)

FVc is given by (11) and Fφ is understood as a function of (z, µ) which
depends only on µ.

Proof. Noting that

(D)K
x,y :=

≠
φ, τ− y−x

K
♯

ï
µ− δx

K
+ δy

K

ò∑
− ⟨φ, µ⟩

=
〈
φ ◦ τ− y−x

K
, µ
〉

+ 1
K

{
φ
(
y − y − x

K

)
− φ

(
x− y − x

K

)}
− ⟨φ, µ⟩ ,

setting (C)K
x,y := F

Ä
⟨φ, µ⟩ + (D)K

x,y

ä
− F (⟨φ, µ⟩) and from Proposition 3.1 we obtain that

LKFφ(z, µ) = (A)K + (B)K where

(A)K := K

Kσ2

∫
R
µ(dx)

∫
R
µ(dy)b

Ä
σ

√
Kx+ z, σ

√
Ky + z

ä
(C)K

x,y,

(B)K := K

Kσ2

∫
R
µ(dx)θ

Ä
σ

√
Kx+ z

ä ∫
R
m
Ä
σ

√
Kx+ z, h

ä
(C)K

x,x+h/
√

K
dh.

Step 1. Decomposition and study of (A)K . From Taylor’s formula, we obtain that
(A)K = (A)K

1 + (A)K
2 where

(A)K
1 := K

Kσ2

∫
R
µ(dx)

∫
R
µ(dy)b (z, z) (C)K

x,y,

(A)K
2 := K

Kσ2

∫
R
µ(dx)

∫
R
µ(dy)

î
b
Ä
σ

√
Kx+ z, σ

√
Ky + z

ä
− b(z, z)

ó
(C)K

x,y.

Denoting (E)K
x,y := 1

K (φ(y) − φ(x) − (y − x) ⟨φ′, µ⟩) and from Taylor’s formula again, we ob-
tain that (A)K

1 = (A)K
11 + (A)K

12 + (A)K
13 + (A)K

14 where

(A)K
11 := K

Kσ2

∫
R
µ(dx)

∫
R
µ(dy)b (z, z)F ′ (⟨φ, µ⟩) (D)K

x,y,

(A)K
12 := K

2Kσ2

∫
R
µ(dx)

∫
R
µ(dy)b (z, z)F ′′ (⟨φ, µ⟩)

î
(E)K

x,y

ó2
,

(A)K
13 := K

2Kσ2

∫
R
µ(dx)

∫
R
µ(dy)b (z, z)F ′′ (⟨φ, µ⟩)

[î
(D)K

x,y

ó2
−
î
(E)K

x,y

ó2]
,

(A)K
14 := K

Kσ2

∫
R
µ(dx)

∫
R
µ(dy)b (z, z)

Å
(C)K

x,y − F ′ (⟨φ, µ⟩) (D)K
x,y − F ′′ (⟨φ, µ⟩)

2
î
(D)K

x,y

ó2ã
.
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From Taylor’s formula again and the centered condition of µ, we obtain that

(A)K
11 = Kb (z, z)

Kσ2

∫
R
µ(dx)

∫
R
µ(dy)F ′ (⟨φ, µ⟩)

ï
(E)K

x,y − 1
K2 (y − x)

(
φ′(y) − φ′(x)

)
+ (y − x)2 ⟨φ′′, µ⟩

2K2 +O

Ç
|y − x|2 + |y − x|3

K3

åô
= b(z, z)
K2σ2 F

′ (⟨φ, µ⟩)
[
−2
〈
φ′ × id, µ

〉
+
〈
φ′′, µ

〉
M2 (µ)

]
+ 1
K2σ2 ×O

Å
M2 (µ) +M3 (µ)

K

ã
In a straightforward way, we obtain that

(A)K
12 = b(z, z)

K2σ2 F
′′ (⟨φ, µ⟩)

î〈
φ2, µ

〉
− ⟨φ, µ⟩2 +M2 (µ)

〈
φ′, µ

〉2 − 2 ⟨φ× id, µ⟩
〈
φ′, µ

〉ó
As φ is bounded and so F too, we deduce that there exists two constants C1, C2 > 0 such that∣∣∣î(D)K

x,y

ó2
−
î
(E)K

x,y

ó2∣∣∣ =
∣∣∣(D)K

x,y − (E)K
x,y

∣∣∣ ∣∣∣(D)K
x,y + (E)K

x,y

∣∣∣ ⩽ C1
|y − x| + (y − x)2

K2

Å 1
K

+ |y − x|
K

ã
,∣∣∣∣(C)K

x,y − F ′ (⟨φ, µ⟩) (D)K
x,y − F ′′ (⟨φ, µ⟩)

2
î
(D)K

x,y

ó2∣∣∣∣ ⩽ C2
1 + |y − x|3

K3 .

Hence,

(A)K
13 = 1

K2σ2 ×O

Å1 +M3(µ)
K

ã
and (A)K

14 = 1
K2σ2 ×O

Å1 +M3(µ)
K

ã
.

Finally, as
∣∣∣b Äσ√

Kx+ z, σ
√
Ky + z

ä
− b(z, z)

∣∣∣ ⩽ C3σ
√
K (|x| + |y|) and

∣∣∣(C)K
x,y

∣∣∣ ⩽ C4
1+|y−x|

K

for some constants C3, C4 > 0, we deduce that

(A)K
2 = 1

K2σ2 ×O
Ä
σK

3
2 [M1(µ) +M2(µ)]

ä
.

Therefore, using Hölder’s inequalities to bound M1(µ) ⩽
√
M2 (µ) ⩽ 1 +M2(µ) and M2(µ) ⩽

M
2/3
3 (µ) ⩽ 1 +M3(µ) we have that

(A)K = b(z, z)
K2σ2 F

′ (⟨φ, µ⟩)
[
−2
〈
φ′ × id, µ

〉
+
〈
φ′′, µ

〉
M2 (µ)

]
+ b(z, z)
K2σ2 F

′′ (⟨φ, µ⟩)
î〈
φ2, µ

〉
− ⟨φ, µ⟩2 +M2 (µ)

〈
φ′, µ

〉2 − 2 ⟨φ× id, µ⟩
〈
φ′, µ

〉ó
+ 1
K2σ2 ×O

Å 1
K

+ σK
3
2 [1 +M2 (µ)] + M3 (µ)

K

ã
Step 2. Conclusion. In similar way to Step 1, we obtain that

(B)K = θ(z)m2(z)
K2σ2 F ′ (⟨φ, µ⟩)

≠
φ′′

2 , µ

∑
+ 1
K2σ2 ×O

Å 1√
K

+ σKM1(µ)
ã
.

Since, by Assumption (5), σK
3
2 ≪ 1√

K
, the announced result follows.
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3.3 Generators and martingales in the case of polynomials in µ

3.3.1 For bounded test functions

In this section, we extend in Lemma 3.4 the result of Proposition 3.1 to test functions of the
form

Pf,n (µ) := ⟨f, µn⟩ :=
∫
R

· · ·
∫
R
f (x1, · · · , xn)µ (dx1) · · ·µ (dxn) (21)

with n ∈ N⋆, µ ∈ Mc
1,K(R), f ∈ C 3

b (Rn,R) and where µn is the n−fold product measure of µ.
In Lemmas 3.6 and 3.7 we extend this result to the case of specific unbounded test functions.

For all n ∈ N⋆, we denote by 1 ∈ Rn, the vector whose coordinates are all 1 and by ∆ the
Laplacian operator on Rn. Let us introduce, for all n ∈ N⋆, λ > 0 and f ∈ C 2

b (Rn,R), the
operator B(n)

λ defined by

B
(n)
λ f(x) := 1

2∆f(x) − 2λ (∇f(x) · 1) (x · 1), x ∈ Rn. (22)

Let us consider for all n ∈ N⋆ for all i, j ∈ {1, · · · , n},

• Φi,j : C 2
b (Rn,R) −→ C 2

b (Rn−1,R), with i ̸= j, is the function obtained from f by inserting
the variable xi between xj−1 and xj when i < j and by inserting the variable xi−1 between
xj−1 and xj when i > j:

Φi,jf (x1, · · · , xn−1) = f (x1, · · · , xj−1, xi, xj , xj+1, · · · , xn−1) i < j

Φi,jf (x1, · · · , xn−1) = f (x1, · · · , xj−1, xi−1, xj , xj+1, · · · , xn−1) i > j
. (23)

• Ki,j : C 2
b (Rn,R) −→ C 2(Rn+1,R) is defined as

Ki,jf(x1, · · · , xn, xn+1) := ∂2
ijf(x1, · · · , xn)x2

n+1. (24)

We recall from [16, Definition 2.8] that the extended generator (in the sense of Dynkin, see
(26) below) Lλ

FVc of the centered Fleming-Viot process with resampling rate λ is defined for
any n ∈ N⋆, for any test functions f ∈ C 2

b (Rn,R) by

Lλ
FVcPf,n (µ) =

¨
B

(n)
λ f, µn

∂
+ λ

n∑
i,j = 1
i ̸= j

[〈
Φi,jf, µ

n−1〉− ⟨f, µn⟩
]

+ λ
n∑

i,j = 1

〈
Ki,jf, µ

n+1〉. (25)

From [16, Definition 2.8] and denoting

Ω̃ :=
®
X ∈ C 0

Ä
[0,+∞) ,Mc,2

1 (R)
ä ∣∣∣∣ ∀T > 0, sup

0⩽t⩽T
M2 (Xt) < ∞

´
,

we recall that a probability measure Pµ on Ω̃ is said to solve the centered Fleming-Viot martin-
gale problem for polynomials with initial condition µ ∈ Mc,2

1 (R), if the canonical process (Xt)t⩾0
on Ω̃ satisfies Pµ (X0 = µ) = 1 and, for all n ∈ N⋆ and f ∈ C 2

b (Rn,R),

M̂
Pf,n

t := Pf,n (Xt) − Pf,n (X0) −
∫ t

0
Lλ

FVcPf,n (Xs) ds (26)

is a Pµ−martingale.
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Lemma 3.4. The infinitesimal generator LK of the R ⊗ Mc
1,K(R)−valued Markov process(

zK
t , µ

K
t

)
t⩾0 given by Proposition 3.1, satisfies for all n ∈ N⋆ and f ∈ C 3

b (Rn,R), the following
relations:

LKPf,n(z, µ) = θ(z)m2(z)
K2σ2 Lλ(z)

FVcPf,n (µ) + 1
K2σ2 ×O

Å 1√
K

+ σK
3
2M2 (µ) + M3 (µ)

K

ã
where λ(z) := b(z,z)

θ(z)m2(z) . Moreover, for all K,n ∈ N⋆ and test functions f ∈ C 3
b (Rn,R), the

process
Ä
M

K,Pf,n

t

ä
t⩾0

defined by

M
K,Pf,n

t := Pf,n

Ä
µK

t

ä
− Pf,n

Ä
µK

0
ä

−
∫ t

0
LKPf,n

Ä
zK

s , µ
K
s

ä
ds

is a square integrale martingale started at 0.

The proof of this result is given in Section 3.4.

3.3.2 For some unbounded test functions

The following results are particular extensions of Lemma 3.4 when the test functions are no
longer bounded but the processes are stopped at time τ̌K Then, we give in Lemmas 3.6 and 3.7
Doob’s semi-martingale decomposition of moments of order 2 and those whose degree is 6.

Proposition 3.5. For all n ∈ N⋆, for all f ∈ C 3 (Rn,R), the process
Ä
M

K,Pf,n

t∧τ̌K

ä
t⩾0

defined by

M
K,Pf,n

t∧τ̌K := Pf,n

Ä
µK

t∧τ̌K

ä
− Pf,n

Ä
µK

0
ä

− K

Kσ2

∫ t∧τ̌K

0

∫
R
µ(dx)

∫
R
µ(dy)b

Ä
σ

√
Kx+ zK

s , σ
√
Kx+ zK

s

ä
×
ï
Pf◦τ

− y−x
K

,n

Å
µ− δx

K
+ δy

K

ã
− Pf,n(µ)

ò
ds

+ K

Kσ2

∫ t∧τ̌K

0

∫
R
µ(dx)θ

Ä
σ

√
Kx+ zK

s

ä ∫
R
m
Ä
σ

√
Kx+ zK

s , h
ä

dh

×

[
Pf◦τ− h

K
3
2

,n

(
µ− δx

K
+
δx+ h√

K

K

)
− Pf,n(µ)

]
ds

is a bounded martingale.

Proof. Thanks to the stopping time τ̌K ,
Ä
M

K,Pf,n

t∧τ̌K

ä
t⩾0

is bounded. Hence the martingality of
this process follows from Lemma 3.4.

(a) Moment of order 2. The following result will be useful in Section 4.

Lemma 3.6. For all K ∈ N⋆, the process
(
M

K,Pid2,1
t∧τ̌K

)
t⩾0

defined in Proposition 3.5 satisfies for
all t ⩾ 0

M
K,Pid2,1
t∧τ̌K = M2

Ä
µK

t∧τ̌K

ä
−M2

Ä
µK

0
ä

+ 1
K2σ2

∫ t∧τ̌K

0

¶
2b
Ä
zK

s , z
K
s

ä
M2
Ä
µK

s

ä
− θ
Ä
zK

s

ä
m2
Ä
zK

s

ä©
ds

+ 1
K2σ2

∫ t∧τ̌K

0
O

Å 1
K

+ σ
√
KM1

Ä
µK

s

ä
+ σK

3
2M3

Ä
µK

s

äã
ds
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is a square integrable martingale with quadratic variation:¨
MK,Pid2,1

∂
t∧τ̌K

= 2
K2σ2

∫ t∧τ̌K

0
b
Ä
zK

s , z
K
s

ä¶
M4
Ä
µK

s

ä
−M2

2
Ä
µK

s

ä©
ds

+ 1
K2σ2

∫ t∧τ̌K

0
O

Ç
σ

√
K

K2 +
M2
(
µK

s

)
K

+
σ

√
KM3

(
µK

s

)
K

+ σ
√
KM5

Ä
µK

s

äå
ds.

(27)

Proof. Step 1. Approximation of the Doob decomposition. Note that for all x, y ∈ R,

Pid2◦τ
− y−x

K

,1

Å
µ− δx

K
+ δy

K

ã
− Pid2,1(µ) = 1

K

(
y2 − x2)− 1

K2 (−x+ y)2.

From Taylor’s formula, it follows that

K

Kσ2

∫ t

0
ds

∫
R
µ(dx)

∫
R
µ(dy)b

Ä
σ

√
Kx+ zK

s , σ
√
Ky + zK

s

ä
×
ï
Pid2◦τ

− y−x
K

,1

Å
µ− δx

K
+ δy

K

ã
− Pid2,1(µ)

ò
= 1
K2σ2

∫ t

0

î
−2b
Ä
zK

s , z
K
s

ä
M2
Ä
µK

s

ä
+O
Ä
σK

3
2M3

Ä
µK

s

ääó
ds

and

K

Kσ2

∫ t

0
ds

∫
R
µ(dx)

∫
R
m
Ä
σ

√
Kx+ zK

s , h
ä
θ
Ä
σ

√
Kx+ zK

s

ä
×

[
Pid2◦τ− h

K3/2
,1

(
µ− δx

K
+
δx+ h√

K

K

)
− Pid2,1(µ)

]
dh

= 1
K2σ2

∫ t

0

ï
θ
Ä
zK

s

ä
m2
Ä
zK

s

ä
+O

Å 1
K

+ σ
√
KM1

Ä
µK

s

äãò
ds.

We deduce the first announced result.

Step 2. Quadratic variation. In similar way to the proof of Proposition 3.1, we have¨
MK,Pid2,1

∂
t

= K

Kσ2

∫ t

0
ds

∫
R
µK

s (dx)
∫
R
µK

s (dy)b
Ä
σ

√
Kx+ zK

s , σ
√
Ky + zK

s

ä
×
ï 1
K

(
y2 − x2)− 1

K2 (−x+ y)2
ò2

+ K

Kσ2

∫ t

0
ds

∫
R
µK

s (dx)
∫
R
m
Ä
σ

√
Kx+ zK

s , h
ä
θ
Ä
σ

√
Kx+ zK

s

ä ï h2

K2 − h2

K3 + 2xh
K

3
2

ò2
dh.

The announced result follows from Taylor’s formula and straightforward computations.

(b) Moments of degree 6. Let us denote for all ℓ ∈ N, M̃ℓ(µ) :=
¨
idℓ, µ

∂
.
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Lemma 3.7. Let us consider the functions f, g : R2 → R and h : R3 → R respectively defined
by f(u, v) := u4v2, g(u, v) := u3v3 and h(u, v, w) := u2v2w2. For all K ∈ N⋆, the processes(
M

K,Pid6,1
t∧τ̌K

)
t⩾0

,
Ä
M

K,Pf,2
t∧τ̌K

ä
t⩾0

,
Ä
M

K,Pg,2
t∧τ̌K

ä
t⩾0

and
Ä
M

K,Ph,3
t∧τ̌K

ä
t⩾0

satisfiy for all t ⩾ 0

• M
K,Pid6,1
t∧τ̌K = M6

Ä
µK

t∧τ̌K

ä
−M6

Ä
µK

0
ä

+ 3
K2σ2

∫ t∧τ̌K

0

¶
b
Ä
zK

s , z
K
s

ä î
4M6

Ä
µK

s

ä
− 10M4

Ä
µK

s

ä
M2
Ä
µK

s

äó
− 5θ

Ä
zK

s

ä
m2
Ä
zK

s

ä
M4
Ä
µK

s

ä©
ds

+ 1
K2σ2

∫ t∧τ̌K

0
O

Ç
M3
(
µK

s

)
√
K

+
1 +M4

(
µK

s

)
K

+ σ
√
KM5

Ä
µK

s

ä
+
M6
(
µK

s

)
K2 + σK

3
2M7

Ä
µK

s

äå
ds,

• MK,Pf,2
t∧τ̌K = M4

Ä
µK

t∧τ̌K

ä
M2
Ä
µK

t∧τ̌K

ä
−M4

Ä
µK

0
ä
M2
Ä
µK

0
ä

+ 1
K2σ2

∫ t∧τ̌K

0

¶
2b
Ä
zK

s , z
K
s

ä î
6M4

Ä
µK

s

ä
M2
Ä
µK

s

ä
− M6

Ä
µK

s

ä
+ 4M̃2

3
Ä
µK

s

ä
− 6M3

2
Ä
µK

s

äó
− θ
Ä
zK

s

ä
m2
Ä
zK

s

ä î
6M2

2
Ä
µK

s

ä
+M4

Ä
µK

s

äó©
ds

+ 1
K2σ2

∫ t∧τ̌K

0
O

Ç
M6
(
µK

s

)
K3 + σK

3
2M7

Ä
µK

s

äå
ds,

• MK,Pg,2
t∧τ̌K = M̃2

3
Ä
µK

t∧τ̌K

ä
− M̃2

3
Ä
µK

0
ä

+ 1
K2σ2

∫ t∧τ̌K

0

¶
b
Ä
zK

s , z
K
s

ä î
−2M6

Ä
µK

s

ä
+ 14M̃2

3
Ä
µK

s

ä
+ 12M4

Ä
µK

s

ä
M2
Ä
µK

s

ä
− 18M3

2
Ä
µK

s

äó©
ds

+ 1
K2σ2

∫ t∧τ̌K

0
O

Ç
M6
(
µK

s

)
K3 + σK

3
2M7

Ä
µK

s

äå
ds,

• MK,Ph,3
t∧τ̌K = M3

2
Ä
µK

t∧τ̌K

ä
−M3

2
Ä
µK

0
ä

+ 1
K2σ2

∫ t∧τ̌K

0

¶
b
Ä
zK

s , z
K
s

ä î
−6M4

Ä
µK

s

ä
M2
Ä
µK

s

ä
+ 12M3

2
Ä
µK

s

äó
− 3θ

Ä
zK

s

ä
m2
Ä
zK

s

ä
M4
Ä
µK

s

ä©
ds

+ 1
K2σ2

∫ t∧τ̌K

0
O

Ç
M6
(
µK

s

)
K3 + σK

3
2M7

Ä
µK

s

äå
ds.

Proof. The approximation proposed is obtained in a similar way to the proof of Lemma 3.6

3.4 Proof of Lemma 3.4

From Proposition 3.1, for the choice of test functions Φ(z, µ) := Pf,n(µ) given by (21) and noting
that for all x, y ∈ R,≠

f,
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K
♯
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K
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òãn∑
=
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òn∑
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we obtain that LKPf,n(z, µ) = K
Kσ2
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ä
where
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∫
R
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∫
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√
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√
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∫
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where (C)K
x,y :=

〈
f ◦ τ− y−x

K
,
î
µ− δx

K + δy

K

ón〉
− ⟨f, µn⟩. Note that, from Taylor’s formula, we

obtain that
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Ç
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+O

Ç
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By abuse of notation, we do not indicate the orders of the products of measure µn−k
î
− δx

K + δy

K

ók
.

Step 1. Decomposition and study of (A)K . Note that (A)K =
∑5

i = 1 (A)K
i where

(A)K
1 := b(z, z)

n∑
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Ç
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We first study precisely the (A)K
2 term by explaining the case k = 0, k = 1 and k ⩾ 2. We will

just give the result for the other (A)K
i , i ∈ {1, 3, 5}: the approach remains the same. By the

centered assumption of µ, note that for all i ∈ {1, · · · , n},
∫
R µ(dx)

∫
R µ(dy)(y − x) ⟨∂if, µ

n⟩ = 0.
Then, using again the centered assumption of µ, we obtain thatÇ

n

1

å
n∑

i = 1

∫
R
µ(dx)

∫
R
µ(dy)(y − x)

≠
∂if, µ

n−1
ï
−δx

K
+ δy

K

ò∑
= 1
K

n∑
i = 1

n∑
j = 1

∫
R

· · ·
∫
R

∫
R
µ(dx)

∫
R
µ(dy)

×
ï
x∂if (x1, · · · , xj−1, x, xj+1 · · · , xn) − x∂if (x1, · · · , xj−1, y, xj+1 · · · , xn)

− y∂if (x1, · · · , xj−1, x, xj+1 · · · , xn) + y∂if (x1, · · · , xj−1, y, xj+1 · · · , xn)
ò n∏

ℓ = 1
ℓ ̸= j

µ(dxℓ)

= 2
K

n∑
i = 1

n∑
j = 1

∫
R

· · ·
∫
R

∫
R
µ(dx)x∂if (x1, · · · , xj−1, x, xj+1, · · · , xn)

n∏
ℓ = 1
ℓ ̸= j

µ (dxℓ)

= 2
K

⟨(∇f · 1) (• · 1) , µn⟩ .

24/64



As ∇f is bounded, we deduce that for all k ⩾ 2, for all i ∈ {1, · · · , n},∫
R
µ(dx)

∫
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µ(dy)(y − x)

Æ
∂if, µ
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ï
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K
+ δy

K
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Therefore, we deduce that
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In similar way and using Assumptions (A) we have that
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Step 2. Decomposition and study of (B)K . For all α, h ∈ R, we denote θm (α, h) :=
θ (α)m (α, h). Note that (B)K =

∑5
i = 1 (B)K

i where
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Ç
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Note that, from Taylor’s formula and Assumptions (A), we have thatÇ
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= θ(z)m2(z)
K2

≠∆f
2 , µn

∑
+O

Å 1
K

5
2

ã
.

In similar way to Step 1, we obtain that

(B)K
1 = θ(z)m2(z)

K2

≠∆f
2 , µn

∑
+O

Å 1
K

5
2

ã
(B)K

2 = (B)K
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Å 1
K3

ã
, (B)K

4 = O

Å 1
K

9
2

ã
and (B)K

5 = O

Ç
σ

√
K

K
3
2
M1 (µ)

å
.

and using Assumptions (5) the announced result follows.

Step 3. Martingality. By classical arguments, since MK,Pf,n is bounded, we obtain that
MK,Pf,n is a square integrable martingale started at 0.

4 Moments estimates
Lemma 3.6 and 3.7 lead us to look for moment estimates. In Lemma 3.6 we have given the Doob
semi-martingale decomposition of the second-order moment and note that the latter involves the
third-order moment in the error term. The presence of the higher order moment generates a
difficulty to obtain a fine control of the second order moment. This difficulty is overcomed by
introducing the stopping time τ̌K , given by (14). In Section 4.1, we give estimates of the moment
of order 6 and some corollaries useful for Sections 5 and 6. In Section 4.2 we establish estimates in
expectation and probability of the second order moment up to the stopping time τ̌K and we also
control the martingale bracket of the Doob decomposition given in Lemma 3.6. In Sections 4.3
and 4.4, we prove that the stopping time τK := τ̌K ∧ τ̂K , given by (12), converges in probability
to +∞ when K → +∞ using coupling arguments between M2

(
µK
)

and a biased random walk
on N⋆, reflected in 1, and large deviations estimates for this random walk.

4.1 Estimates of the moment of order 6
Lemma 4.1. There exists K0 ∈ N⋆ large enough and a constant C > 0 such that for all K ⩾ K0
and t ⩾ 0,
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1t⩽τ̌K

ã
⩽
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Proof. Step 1. Pathwise inequality of 3
4M6(µ) + 3M4(µ)M2(µ) + 3
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3
2 (µ). Note that for all
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2

(28)
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and from Cauchy-Schwarz’s inequality M̃2
3 (µ) ⩽ M4(µ)M2(µ). Then Lemma 3.7, (28) and

Assumptions (A) imply that there exists a constant C > 0 such that for all t ⩾ 0,
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where (Martt)t⩾0 is a martingale. Note that, choosing K0 large enough, for all K ⩾ K0, b −
CK−ε/2 > b/2. From the inequalities M2

2 (µ) ⩽M4(µ) and M4(µ) ⩽M
2/3
6 (µ) ⩽ αM6(µ) + 1/α2

with α := 2b/259θm2, we deduce that
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Step 2. Conclusion. Let us consider the stochastic process
(
N
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t

))
t⩾0 defined by
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From (7) then (4), note that
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0
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Hence for all t ⩾ 0
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and the announced result follows.

The following lemma will be useful in the proof of Theorem 5.1.

Lemma 4.2. For all t ⩾ 0,
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By Fubini’s theorem and Lemma 4.1, there exists a constant C > 0 such that
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which ends the proof.

The last lemma has the following consequence, used in Sections 5 and 6.

Corollary 4.3. For all T > 0, the familyÇ∫ t∧τ̌K
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From Lemma 4.2, we deduce that the right hand side of the previous inequality goes to 0 when
A → +∞ and so the announced result.
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4.2 Some inequalities on the moment of order 2
Lemma 4.4. There exists K0 ∈ N⋆ large enough such that for all K ⩾ K0, the process M2
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satisfies for all t ⩾ 0 the following inequalities:
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where M
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t∧τ̌K is defined in Proposition 3.5. Moreover, for t ⩾ 0,
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From Lemma 3.6, (30) and Assumptions (A), there exists two constants C, ‹C > 0 such that for
all t ⩾ 0
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Noting that for all K ⩾ K0, 2b − ‹CK−ε/2 > b and 2b + CK−ε/2 < 5b/2, the announced first
result follows. In similar way to Step 2 of the proof of Lemma 4.1, we obtain the second part of
the announced result.

Corollary 4.5. For all t ⩾ 0, E
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The announced result follows from Lemma 4.4.

The goal of the following result is to bound the martingale bracket
¨
MK,Pid2,1

∂
t∧τ̌K

. To do
this, we exploit the martingale approximation of the moment of order 6 in order to control the
dominant term M4
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s

)
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2
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)
in (27).
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Lemma 4.6. There exists a constant C > 0 such that for all K ∈ N⋆, for all t ⩾ 0 the martingale
bracket
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M5 (µ) ⩽M6 (µ)5/6 ⩽ 1 +M6 (µ), we deduce that there exists a constant C > 0 such that for all
t ⩾ 0 ¨

MK,Pid2,1
∂

t∧τ̌K
⩽

C

K2σ2

∫ t∧τ̌K

0

Ä
1 +M6

Ä
µK

s

ääÅ
1 + 1

K

ã
ds.

The announced result follows from Fubini’s theorem and Lemma 4.1.

4.3 Convergence to +∞ of the stopping time τK and support concentration
property

The main result of this section is the following convergence result for the stopping time τK ,
defined by (12), when K → +∞.

Proposition 4.7. Under Assumption (5), τK converges in probability to +∞ when K → +∞.

The proof is based on the next lemma proved in Section 4.4 below. Thanks to Proposition 4.7,
we deduce the support concentration property of

Ä
νK

t/Kσ2

ä
given by (6). Indeed, with probability

which tends to 1 when K → +∞, Diam
(
µK

t

)
⩽ 1

σK
3+ε

2
for all t ∈ [0, T ]. Hence,

Diam
Ä
νK

t/Kσ2

ä
= σ

√
KDiam

Ä
µK

t

ä
⩽

1
K1+ ε

2

and (6) follows.

Lemma 4.8. Under Assumption (5), for all T ⩾ 0,

lim
K→+∞

P
Ä
τ̂K ⩽ τ̌K ∧ T

ä
= lim

K→+∞
P
Ç

sup
0⩽t⩽T ∧τ̌K

M2
Ä
µK

t

ä
⩾ Kε

å
= 0.

Proof of Proposition 4.7. Note that for all T ⩾ 0,

P
Ä
τ̌K < T ∧ τ̂K

ä
⩽ P
Å

∃t < T ∧ τ̂K ,Diam
Ä
SuppµK

t

ä
>

1
σK

3+ε
2

ã
As for all t ⩾ 0, for allK ∈ N⋆, Diam

(
SuppµK

t

)2
⩽
(

2 max
{

|x|
∣∣∣x ∈ SuppµK

t

})2
⩽ 4KM2

(
µK

t

)
,

we deduce that

P
Å

∃t < T ∧ τ̂K ,Diam
Ä
SuppµK

t

ä
>

1
σK

3+ε
2

ã
⩽ P
Å

∃t < T∧, τ̂KM2
Ä
µK

t

ä
>

1
4σ2K4+ε

ã
.
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According to (5), we deduce that the following inequality 4σ2K4+ε ⩽ 1/Kε holds true when
K → +∞ and σ → 0. Hence, we deduce that

P
Å

∃t < T ∧ τ̂K ,M2
Ä
µK

t

ä
>

1
4σ2K4+ε

ã
⩽ P
Ä
∃t < T ∧ τ̂K ,M2

Ä
µK

t

ä
> Kε

ä
= 0.

Now, for all T > 0,
{
τ̌K ⩾ T ∧ τ̂K

}
=
{
τ̌K ⩾ τ̂K

}
∪
{
τ̌K ⩾ T

}
, and so

P
Ä¶
τ̌K ⩾ T ∧ τ̂K

©
∩
¶
τK < T

©ä
⩽ P
Äî¶

τ̂K < T
©

∩
¶
τ̂K ⩽ τ̌K

©ó
∪
¶
τ̂K < T ⩽ τ̌K

©ä
⩽ P
Ä
τ̂K ⩽ T ∧ τ̌K

ä
.

Note that for all T > 0,

P
Ä
τK < T

ä
⩽ P
Ä
τ̌K < T ∧ τ̂K

ä
+ P
Ä
τ̂K ⩽ T ∧ τ̌K

ä
.

Hence, from Lemma 4.8, we have for all T ⩾ 0, limK→+∞ P
(
τK < T

)
= 0 and the announced

result follows.

4.4 Proof of Lemma 4.8

Note that if M2
(
µK

s

)
becomes larger than θm2/b, the drift term in the right-hand side of (29) is

then negative preventing M2
(
µK

s

)
to become excessively large unless the martingale MK,Pid2,1

has an exceptional path with large increments on a small time interval. We then expect to have
large deviations estimates and bounds on the time of exit from attractive domains for M2

(
µK
)
.

However, we cannot consider establishing directly a large deviation principle on M2
(
µK
)
, in

particular because of the slow-fast limit. The approach considered below is based on coupling ar-
guments between M2

(
µK
)

and a simpler process for which large deviations estimates are known.

Let us introduce u0 := 0 and for all ℓ ∈ N⋆ the real number uℓ := 3ℓK
ε
2 and the interval Iℓ :=

[uℓ−1, uℓ+1). We will look at the process M2
(
µK
)

at successive exit times of (Iℓ)ℓ∈N⋆ . We set
LK

0 := 1 when M2
(
µK

0
)

∈ [0, 2u1 +1] and LK
0 := ℓ0 ∈ N⋆ when M2

(
µK

0
)

∈ (2uℓ0−1 + 1, 2uℓ0 + 1].
We also set TK

0 := 0 and by induction on k ∈ N⋆, if
(
LK

i

)
1⩽i⩽k

and
(
TK

i

)
1⩽i⩽k

are constructed,

TK
k+1 := inf

ß
t ⩾ TK

k

∣∣∣∣M2
Ä
µK

t

ä
/∈ ILK

k

™
and LK

k+1 := min
ß
ℓ ∈ N

∣∣∣∣M2

(
µK

T K
k+1

)
⩽ 2uℓ + 1

™
.

Note that from (4), for K large enough, LK
0 = 1 because M2

(
µK

0
)
⩽ C⋆

2 . Since
(
µK

t

)
t⩾0 is a

pure jump process, note that
(
M2
(
µK

t

))
t⩾0 is also a pure jump process. The definition of uℓ is

motivated by the fact that, for all k ⩾ 0, LK
k+1 ⩽ LK

k + 1, which follows from the next lemma.

Lemma 4.9. Let ϑ1 be the first jump time of µK . Then, for K large enough

M2
Ä
µK

ϑ1

ä
⩽ 2M2

Ä
µK

0
ä

+ 1.

In particular, for all t > 0, ∆M2
(
µK

t

)
:= M2

(
µK

t

)
−M2

(
µK

t−
)
⩽M2

(
µK

t−
)

+ 1.
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Proof. Let us consider µK
0 := 1

K

∑K
k = 1 δxk

and y = (yk)1⩽k⩽K defined by

y =
® Ä

x1, · · · , xi−1, xi + H√
K
, xi+1, · · · , xK

ä
on E1,

(x1, · · · , xj−1, xi, xj+1, · · · , xK) on E2,

where H follows the mutation law m(xi,dh), E1 is the event “a mutation occurs at time ϑ1”
and E2 is the event “a resampling between i and j occurs at time ϑ1”. Note that µK

ϑ1
=

τ−
¨
id, 1

K

∑K

k = 1 δyk

∂♯ Ä 1
K

∑K
k = 1 δyk

ä
. Hence, noting that for all k ∈ {1, · · · ,K},

|xk| ⩽
√
K
Ä
1 +M2

Ä
µK

0
ää

and using Assumption (A2), for K large enough we have that

M2
Ä
µK

ϑ1

ä
⩽M2

(
1
K

K∑
i = 1

δyi

)
= 1
K

K∑
i = 1

y2
i ⩽


1
K

K∑
k = 1

x2
k +

2Amxk

K
3
2

+
A2

m

K2 on E1,

1
K

K∑
k = 1

x2
k +

x2
j − x2

i

K
on E2,

⩽

 M2
(
µK

0
)

+
2Am

(
1 +M2

(
µK

0
))

K
+
A2

m

K2 on E1,

2M2
(
µK

0
)

on E2,

⩽ 2M2
Ä
µK

0
ä

+ 1.

Each of the previous steps will be called transitions of M2
(
µK

t

)
. The idea of the proof of

Lemma 4.8 is to estimate the transition probabilities of the sequence
(
LK

k

)
k∈N in order to con-

struct a coupling between
(
LK

k

)
k∈N and a biased random walk on N⋆ and reflected in 1.

At time τ̂K , M2
(
µK

τ̂K

)
∈ Iö ε

2 log(3) log(K)
ù where ⌊x⌋ is the lower integer part of x. So, the

number of transitions of M2
(
µK

t

)
before τ̂K is greater than or equal to TK

k0
where k0 is the first

integer such that LK
k0

=
ö

ε
2 log(3) log(K)

ù
.

By using estimates on the number of steps that a biased random walk takes to reachö
ε

2 log(3) log(K)
ù

and estimates on the durations between two transitions TK
k+1 − TK

k , we will
deduce a lower bound, exponential in K, on τ̂K . An additional difficulty comes from the fact
that the previous coupling argument is only valid up to time τ̌K . Hence we will construct a
coupling that takes into account the possibility that τ̌K happens during each transition step.
The proof is divided into four steps: in Section 4.4.1, we characterise the behavior of the first
transition step; in Section 4.4.2, the proposed coupling is constructed; in Section 4.4.3, we give
estimates on the first exit time from an attractive domain for random walks; finally, we conclude
in Section 4.4.4.

4.4.1 One-step transitions

In this section we look at only one transition: we suppose that M2
(
µK

0
)

∈ [2uℓ−1 + 1, 2uℓ + 1)
for ℓ ∈ N⋆ fixed and we look for bounds on the first transition probabilities of M2

(
µK

t

)
and on

time TK
1 . The main result is the following.
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Lemma 4.10. For all ℓ ∈ N, for all µK
0 ∈ Mc,2

1,K(R) such that M2
(
µK

0
)

∈ [2uℓ−1 + 1, 2uℓ + 1),
there exist a constant C > 0, K0 ∈ N⋆ such that for all K ⩾ K0, we have

PµK
0

Äî¶
LK

1 = ℓ− 1
©

∩
¶
τ̌K > TK

1 ⩾ Kσ2
©ó

∪
¶
TK

1 ⩾ τ̌K
©ä

⩾
1
2 + ηK , (31)

where ηK := 1
2 − C

Kε/2 .

The proof of the previous result is based on Corollary 4.11 which is obtained as a straight-
forward consequence of Lemma 4.4.

Corollary 4.11. Let ℓ ∈ N⋆ be fixed. There exists K0 ∈ N⋆ large enough such that for all
K ⩾ K0, for all µK

0 ∈ Mc,2
1,K(R) such that M2

(
µK

0
)

∈ [2uℓ−1 + 1, 2uℓ + 1), we have for all
t ⩽ TK

1 that

2uℓ−1 + 1 − 5buℓ+1 + θm2
2K2σ2 t ∧ τ̌K +M

K,Pid2,1
t∧τ̌K ⩽M2

Ä
µK

t∧τ̌K

ä
⩽ 2uℓ + 1 − buℓ−1

K2σ2 t ∧ τ̌K +M
K,Pid2,1
t∧τ̌K .

Proof of Lemma 4.10. By passing on the complementary of (31), it is equivalent to prove that

PµK
0

Äî¶
LK

1 = ℓ+ 1
©

∪
¶
TK

1 < Kσ2
©ó

∩
¶
TK

1 < τ̌K
©ä

<
1
2 − ηK .

As for all events A,B, P (A ∪B) = P (A ∩Bc) + P(B), we have

PµK
0

Äî¶
LK

1 = ℓ+ 1
©

∪
¶
TK

1 < Kσ2
©ó

∩
¶
TK

1 < τ̌K
©ä

= PµK
0

Ä¶
TK

1 < τ̌K
©

∩
¶
LK

1 = ℓ+ 1
©

∩
¶
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1 ⩾ Kσ2
©ä

+ PµK
0

Ä¶
TK

1 < τ̌K
©

∩
¶
TK

1 < Kσ2
©ä

⩽ PµK
0

Ä¶
TK

1 < τ̌K
©

∩
¶
LK

1 = ℓ+ 1
©ä

+ PµK
0

Ä¶
TK

1 < τ̌K
©

∩
¶
TK

1 < Kσ2
©ä

.

(32)

Step 1. Control of the first right-hand term of (32). Let us consider the martingaleÄ
MartK,+

t

ä
t⩾0

defined by

MartK,+
t :=

{
M

K,Pid2,1
t if t ⩽ τ̌K

M
K,Pid2,1
τ̌K + 1

KσBt−τ̌K if t > τ̌K

where (Bt)t⩾0 is a standard Brownian motion independent of
(
νK

t

)
t⩾0. Note that from Lemma

4.6, there exists a constant C > 0 such that for all t ⩾ 0 we have

E
Ä¨

MartK,+
∂

t

ä
⩽

C

K2σ2 t. (33)

Let us consider the process
Ä
MK,+

2 (t)
ä

t⩾0
defined by

MK,+
2 (t) :=

®
M2
(
µK

t

)
if t ⩽ τ̌K

M2
(
µK

τ̌K

)
− buℓ−1

K2σ2

(
t− τ̌K

)
+
Ä
MartK,+

t − MartK,+
τ̌K

ä
if t > τ̌K .
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Note that from Corollary 4.11, for all t ⩾ 0,

2uℓ−1 + 1 − 5buℓ+1 + θm2
2K2σ2 t+ MartK,+

t ⩽MK,+
2 (t) ⩽ 2uℓ + 1 − buℓ−1

K2σ2 t+ MartK,+
t . (34)

By Girsanov’s theorem, the process
Ä
EK,+

t

ä
t⩾0

defined for all t ⩾ 0 by

EK,+
t := exp

Å
MartK,+

t − 1
2
¨
MartK,+

∂
t

ã
is a local martingale. Let tK0 := 6K2σ2

b be fixed and let us consider

TK,+
1 := inf

ß
t ⩾ 0

∣∣∣∣MK,+
2 (t) ̸∈ Iℓ

™
and LK,+

1 := min
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2
Ä
TK,+

1
ä
⩽ 2uℓ − 1

™
.

From (34) and denoting Γ :=
{〈

MartK,+〉
T K,+

1 ∧tK
0
⩽ 2buℓ−1

K2σ2 T
K,+
1 ∧ tK0

}
, we have
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T K,+
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ã
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0
1Γ

ã
⩾ exp (−2uℓ − 1)EµK

0

Å
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Å
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2
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1 ∧ tK0
ä
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K2σ2T
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2
¨
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∂
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1 ∧tK
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ã
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Ä
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©ä

+ PµK
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Ä¶
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1 ⩽ ℓ− 1
©

∩ Γ ∩
¶
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1 ⩽ tK0
©äó

.

As for all events A,B,C, P (A ∩B ∩ C) ⩾ P(A) − P (A ∩Bc) − P (A ∩ Cc), and denoting p :=
PµK

0

Ä
LK,+

1 = ℓ+ 1
ä

we have that

1 ⩾ exp (uℓ − 1)
î
p− PµK

0

Ä¶
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©

∩ Γc
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.

Then, considering sK
0 := uℓ−1K2σ2

5buℓ+1+θm2
< tK0 be fixed, we deduce that

p ⩽
1 − exp (−2uℓ − 1)
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0
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.
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Denoting ⌈a⌉ the upper integer part of a ∈ R, we obtain on the one hand that there exists a
constant C1 > 0 such that
PµK

0

Ä
Γc ∩

¶
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1 ⩾ sK
0
©ä
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0

Åß¨
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∂
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1 ⩾ ⌈tK0 /sK
0 ⌉sK

0
©ã

⩽
⌈tK

0 /sK
0 ⌉−1∑

k = 1
PµK

0

Å¨
MartK,+

∂
(k+1)sK

0
>

2buℓ−1
K2σ2 ks

K
0

ã
+ PµK

0

Å¨
MartK,+

∂
tK
0
>

2buℓ−1
K2σ2 t

K
0

ã
⩽ K2σ2

Ñ
⌈tK

0 /sK
0 ⌉−1∑

k = 1

E
(〈

MartK,+〉
(k+1)sK

0

)
2buℓ−1ks

K
0

+
E
(〈

MartK,+〉
tK
0

)
2buℓ−1t

K
0

é
⩽

C1

K
ε
2

where we use Markov’s inequality in the second inequality and (34) in the last inequality. On
the other hand, we control PµK

0

Ä
TK,+

1 < sK
0
ä

as follows:
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Let us consider K1 ∈ N⋆ independent of ℓ satisfying Kε/2
1 ⩾ 2. There exists a constant C1 > 0

such that for all K ⩾ K1, we have that
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⩽
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where we use (34) in the first inequality, Doob’s maximal inequality in the fourth inequality and
(33) in the last inequality. Now, let us consider K2 ∈ N⋆ independent of ℓ satisfying Kε/2

2 ⩾ 4.
Using again (34), Doob’s maximal inequality, (33), and the definition of sK

0 , we deduce that
there exists a constant C2 > 0 such that for all K ⩾ K2, we have that
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⩽
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Hence, for all K ⩾ max {K1,K2}, PµK
0

Ä
TK,+

1 < sK
0
ä
⩽ C1+C2

Kε . Finally, from (34) and Markov’s
inequality and the definition of tK0 , note that there exists a constant C3 > 0 such that
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2 (t) ⩾ uℓ−1

´)
⩽ PµK

0

Å
MartK,+

tK
0

⩾ uℓ−1 − 2uℓ − 1 + buℓ−1
K2σ2 t

K
0

ã
⩽

EµK
0

(〈
MartK,+〉

tK
0

)
(uℓ−1 − 1)2

⩽
C3
Kε

.

Hence, for all K ⩾ max {K1,K2}, we deduce that p ⩽ εK where

εK := exp (−uℓ + 1) × 1 − exp (−2uℓ − 1)
1 − exp (−uℓ+1) + exp (uℓ) + exp (−2uℓ)

exp (uℓ) − exp (−2uℓ)
× C1

K
ε
2

and thus, for all K ⩾ max {K1,K2},

PµK
0

Ä¶
TK

1 < τ̌K
©

∩
¶
LK

1 = ℓ+ 1
©ä

= PµK
0

Ä¶
TK,+

1 < τ̌K
©

∩
¶
LK

1 = ℓ+ 1
©ä

⩽ p ⩽ εK .

Step 2. Control of the second right-hand term of (32). Similarly, let us consider
K3 ∈ N⋆ independent of ℓ satisfying Kε/2

3 ⩾ 2. Using Corollary 4.11, Doob’s maximal inequality
and Lemma 4.6 in similar way to Step 1, there exists a constant C4 > 0 such that for all K ⩾ K3
we have that

PµK
0

Ç¶
TK

1 < τ̌K
©

∩
®

sup
0⩽t⩽Kσ2∧τ̌K

M2
Ä
µK

t

ä
⩾ uℓ+1

´å
⩽

16EµK
0

Ä¨
MK,Pid2,1

∂
Kσ2∧τ̌K

ä
32ℓKε

⩽
C4
K1+ε

.
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Let us consider K4 ∈ N⋆ independent of ℓ satisfying the relation uℓ−1 > 1 + 5buℓ+1+θm2
2K4

. As
previously, we establish that there exists a constant C5 > 0 such that for all K ⩾ K4 we have
that

PµK
0

Å¶
TK

1 < τ̌K
©

∩
ß

inf
0⩽t⩽Kσ2∧τ̌K

M2
Ä
µK

t

ä
< uℓ−1

™ã
⩽

4EµK
0

Ä¨
MK,Pid2,1

∂
Kσ2∧τ̌K

ä
(
uℓ−1 − 1 − 5buℓ+1+θm2

2K

)2 ⩽
C5
K1+ε

.

To conclude this proof, there exists a constant C > 0 such that for all K ⩾ K0 where K0 :=
maxi∈{1,··· ,4}Ki,

PµK
0

Äî¶
LK

1 = ℓ+ 1
©

∪
¶
TK

1 < Kσ2
©ó

∩
¶
TK

1 < τ̌K
©ä

<
1
2 − ηK

for any ηK ⩾ 1
2 − ϵK − C4+C5

K1+ε . A convenient choice is given by ηK := 1
2 − C

Kε/2 for K large enough
independent of ℓ which completes the proof.

4.4.2 Construction of the coupling

The goal of this section is to construct a coupling between
(
LK

k

)
k∈N and a biased random walk

on N⋆ and reflected in 1. To do this, we will construct a sequence
(
ξK

k

)
k∈N of i.i.d. random

variables with values in {−1, 1} as follows.

Step 1. First of all, thanks to Lemma 4.10 we can construct the random variable ξK
0 ∈

{−1, 1} such that¶
ξK

0 = −1
©

⊂
î¶
LK

1 = LK
0 − 1

©
∩
¶
Kσ2 ⩽ TK

1 < τ̌K
©ó

∪
¶
TK

1 ⩾ τ̂K
©

and P
(
ξK

0 = −1
)

= 1
2 + ηK .

Step 2. Then, thanks to Lemma 4.10 again and after having applied the Markov property
at time TK

1 , we can construct the random variable ξK
1 ∈ {−1, 1} such that, conditionally to

FT K
1

∨ σ
(
ξK

0
)
,¶

ξK
1 = −1

©
⊂
î¶
LK

2 = LK
1 − 1

©
∩
¶
Kσ2 + TK

1 ⩽ TK
2 < τ̌K

©ó
∪
¶
TK

2 ⩾ τ̂K
©

and P
(
ξK

1 = −1
∣∣∣FT K

1
∨ σ

(
ξK

0
))

= 1
2 + ηK . Note that this implies in particular that ξK

1 is inde-
pendent of ξK

0 .

Step 3. By induction on k ∈ N, if
(
ξK

i

)
0⩽i⩽k

are constructed, then thanks to Lemma 4.10
again and after having applied the Markov property at time TK

k+1, we can construct the random
variable ξK

k+1 ∈ {−1, 1} such that, conditionally to FT K
k+1

∨ σ
(
ξK

0 , · · · , ξK
k

)
,¶

ξK
k+1 = −1

©
⊂
î¶
LK

k+2 = LK
k+1 − 1

©
∩
¶
Kσ2 + TK

k+1 ⩽ TK
k+2 < τ̌K

©ó
∪
¶
TK

k+2 ⩾ τ̂K
©

and P
(
ξK

1 = −1
∣∣∣FT K

k+1
∨ σ

(
ξK

0 , · · · , ξK
k

))
= 1

2 + ηK .
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To conclude, we set

∀K ∈ N⋆, ∀k ∈ N, ZK
k+1 − ZK

k := ξK
k and ZK

0 = LK
0 (35)

and the sequence
(
ZK

k

)
k∈N satisfies by construction the following lemma:

Lemma 4.12. The sequence
(
ZK

k

)
k∈N, given by (35) is a biased simple random walk on N⋆,

reflected in 1 and for all k ∈ N as long as TK
k+1 < τ̌K , that

(1) ZK
k+1 − ZK

k ⩾ LK
k+1 − LK

k

(2) TK
k+1 − TK

k ⩾ Kσ2 when ZK
k+1 − ZK

k = −1

On the one hand, note that for all k ∈ N, LK
k ⩽ ZK

k . On the other hand, note that Lemma
4.9 implies for all k ∈ N, LK

k+1 − LK
k ∈ {· · · ,−3,−2,−1, 1} which justifies (1) of Lemma 4.12.

In Figure 4.2, we illustrate the coupling between
(
LK

k

)
0⩽k⩽7 and

(
ZK

k

)
0⩽k⩽7. In this figure, we

observe that ξK
k = LK

k+1 − LK
k for all k ∈ {0, 1, 2, 4, 5, 6} and ξK

3 = −1 ⩾ −2 = LK
4 − LK

3 . This
illustrates that ZK

k+1 −ZK
k is always 1 when LK

k+1 −LK
k is equal to 1. Note that ZK

k+1 −ZK
k can

be 1 when LK
k+1 − LK

k is equal to −1.

Time

M2
(
µK

t

)

0
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l
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nI1
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I3

u1

2u1
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Figure 4.2: For K large enough, coupling between
(
LK

k

)
0⩽k⩽7 and

(
ZK

k

)
0⩽k⩽7 up to time T and

before τ̌K and where M2
(
µK

0
)

∈ [0, 2u1 + 1) so that LK
0 = 1 and Z̃K

k := uZK
k

= 3ZK
k Kε/2 for all

k ∈ N.
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4.4.3 Estimates of exit from an attractive domain for random walks

Let us consider NK the number of transitions before reaching
ö

ε
2 log(3) log(K)

ù
for the random

walk
(
ZK

k

)
k∈N.

Remark 4.13. By Lemma 4.12, NK ⩽ k0 where k0 is the first integer such that LK
k0

=ö
ε

2 log(3) log(K)
ù
, so τ̂K ⩾ TK

k0
⩾ TK

NK .

The following lemma gives an estimate on the problem of exit from a domain for ZK . For
all k ∈ N⋆, we denote by Pk the law of the Markov chain ZK given ZK

0 = LK
0 = k.

Lemma 4.14. We have,

lim
K→+∞

P1

Å
NK ⩾ exp

Å
ε2

16 log(3) log2(K)
ãã

= 1.

Proof. For all k ∈ N⋆, let us consider the stopping time T K
k := inf

{
n ∈ N

∣∣∣ZK
n = k

}
and we

set vK
k := Pk

Å
T K

1 < T Kö
ε

2 log(3) log(K)
ùã. Note that vK

1 = 1. By a classical approach and setting

rK := 1+2ηK
1−2ηK

> 1, we prove that

vK
k = 1 − r

−
Äö

ε
2 log(3) log(K)

ù
−k
ä

K

1 − r
−
Äö

ε
2 log(3) log(K)

ù
−1
ä

K

= 1 −
Ä
rk−1

K − 1
ä

exp
Å

−
Åõ

ε

2 log(3) log(K)
û

− 1
ã

log(rK)
ã
.

Note thatNK is greater than the number of transitions from 2 to 1 that occur before T Kö
ε

2 log(3) log(K)
ù.

Hence, under P1, NK ⩾ X where X is random variable with geometric law of parameter
pK := (rK − 1) exp

Ä
−
Äö

ε
2 log(3) log(K)

ù
− 1
ä

log(rK)
ä
. Since rK ∼K→+∞

Kε/2

C , with C > 0
given by Lemma 4.10, pK → +∞ when K → +∞ and using that for all x > 0 small enough,
log(1 − x) ⩾ −2x we deduce that for all K large enough,

P1

Ñ
X ⩾ exp

Ñö
ε

2 log(3) log(K)
ù

− 1
2 log (rK)

éé
= exp

Ñ
exp

Ñö
ε

2 log(3) log(K)
ù

− 1
2 log (rK)

é
log (1 − pK)

é
⩾ exp

Ñ
−2 (rK − 1) exp

Ñ
−

ö
ε

2 log(3) log(K)
ù

− 1
2 log (rK)

éé
.

Using again that rK ∼K→+∞
Kε/2

C , we deduce that for K large enough,

⌊ ε
2 log(3) log(K)⌋ − 1

2 log (rK) ⩾ ε2

16 log(3) log2 (K)

and the announced result follows.
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It is in the next Corollary 4.15 that we see the importance of Assumption (5) where σ must
not be too small.

Corollary 4.15. For all T > 0,

lim
K→+∞

P
Å
Kσ2

2

Å
NK − ε

2 log(3) log(K)
ã
< T

ã
= 0.

Proof. From Lemma 4.14 and Assumption (5) we deduce in a straightfoward manner that

lim
K→+∞

P1

Å
Kσ2

2

Å
NK − ε

2 log(3) log(K)
ã
< T

ã
= 0.

As LK
0 depends on µK

0 note that LK
0 = ZK

0 , is function of the initial condition µK
0 . However, by

Assumptions (4) and Markov’s inequality, we have that

P
Ä
LK

0 > 1
ä
⩽ P
Ä
M2
Ä
µK

0
ä
⩾ K

ε
2
ä
⩽
C⋆

2
Kε

which tends to 0 when K → +∞ and the announced result follows.

4.4.4 Conclusion

We denote respectively by NK
+ and NK

− the number of upward transitions and downward tran-
sitions for

(
ZK

k

)
k∈N before reaching

ö
ε

2 log(3) log(K)
ù
. Let T ⩾ 0 be fixed. Note that

P
Ä
τ̂K ⩽ τ̌K ∧ T

ä
⩽ P
Ä¶
τ̂K ⩽ τ̌K ∧ T

©
∩
¶
τ̌K > TK

NK

©ä
+ P
Ä¶
τ̂K ⩽ τ̌K ∧ T

©
∩
¶
τ̌K ⩽ TK

NK

©ä
.

(36)

Step 1. Control of the first right-hand term of (36). As ZK
0 = 1 with probability

converging to 1 and ZK
NK =

ö
ε

2 log(3) log(K)
ù
, we have NK

+ − NK
− ⩽

ö
ε

2 log(3) log(K)
ù

and NK
+ +

NK
− = NK . Thus,

NK
− ⩾

NK −
ö

ε
2 log(3) log(K)

ù
2 .

Hence, if τ̌K > TK
NK , then by Lemma 4.12 (2),

τ̂K ⩾ TK
NK ⩾

NK∑
i = 1

Ä
TK

i − TK
i−1
ä
⩾ NK

− Kσ
2 ⩾

Kσ2

2

Å
NK − ε

2 log(3) log(K)
ã
.

Therefore,

P
Ä¶
τ̂K ⩽ τ̌K ∧ T

©
∩
¶
τ̌K > TK

NK

©ä
⩽ P
Å
Kσ2

2

Å
NK − ε

2 log(3) log(K)
ã
⩽ T

ã
which tends to 0 when K → +∞ according to Corollary 4.15.
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Step 2. Control of the second right-hand term of (36). If τ̌K ⩽ TK
NK , let us consider‹NK the last index k such that TK

k < τ̌K . We have ‹NK < NK and so ‹NK + 1 ⩽ ‹NK which
implies, thanks to Lemma 4.9, that for all t ⩽ T‹NK+1 and K large enough,

M2
Ä
µK

t

ä
⩽ 2u⌊ ε

2 log(3) log(K)⌋ + 1 ⩽ 2K
ε
2 + 1 < Kε.

As the jump times of νK are isolated, we deduce that τ̂K > TK‹NK+1
. Now, by definition of ‹NK ,

we have TK‹NK+1
⩾ τ̌K and thus τ̂K > τ̌K . Hence, we obtain that

P
Ä¶
τ̂K ⩽ τ̌K ∧ T

©
∩
¶
τ̌K ⩽ TK

NK

©ä
= P (∅) = 0.

Therefore, limK→+∞ P
(
τ̂K ⩽ τ̌K ∧ T

)
= 0 which concludes the proof of Lemma 4.8.

5 Tightness on the torus
The main result of this section is given by Theorem 5.1. This is a stochastic averaging result
inspired by Kurtz [49, Theorem 2.1] establishing a tightness result, in the torus case, of the
sequence of laws of

{(
zK ,ΓK

)}
K∈N⋆ where ΓK is the occupation measure of the fast component

µK . We will use criteria proposed by Ethier-Kurtz in [34, Theorems 3.9.1 and 3.9.4]. In
Sections 6 and 7 we identify the limit and we prove its uniqueness.

Let introduce the torus TR := [x0 − 2R, x0 + 2R] of length 4R with R > 0 fixed and x0 is
the value of the mean trait of νK

0 as in Theorem 2.1. We define M1 (TR) the set of probability
measure on TR. We denote by Mm (M1 (R)) the set of measures Γ on R+ ×M1 (R) such that for
all t ⩾ 0, Γ ([0, t] × M1 (R)) = t. For any t ⩾ 0, we denote by Mt

m (M1 (R)) the set of measures
Γ ∈ Mm (M1 (R)) restricted to [0, t] × M1 (R).

Let bR ∈ C 2
b

(
T2

R,R
)

and θR ∈ C 2
b (TR,R) be two functions satisfying bR = b on [x0 −R, x0 +

R]2 and θR = θ on [x0 − R, x0 + R]. Let T > 0 be fixed. We define on TR, in similar way as in
Section 2, the processes νK,R :=

Ä
νK,R

t

ä
t∈[0,T ]

, zK,R :=
Ä
zK,R

t

ä
t∈[0,T ]

and µK,R =
Ä
µK,R

t

ä
t∈[0,T ]

as follows

νK,R
t := 1

K

K∑
i = 1

δxR
i (t), zK,R

t :=
¨
id, νK,R

t/Kσ2

∂
and µK,R

t :=
(
h 1

σ
√

K

◦ τ−zK
t

)
♯ νK

t/Kσ2

where for all i ∈ {1, · · · ,K}, νK,R
t is defined on M1 (TR) from bR and θR as νK

t was defined
from b and θ and zK,R

t ∈ TR. Note that µK,R
t takes values in M1

Ä
TK,σ

R

ä
where TK,σ

R is the
torus corresponding to the interval

î
1

σ
√

K

(
x0 − 2R− zK

t

)
, 1

σ
√

K

(
x0 + 2R− zK

t

)ó
. However, we

will identify in the sequel M1
Ä
TK,σ

R

ä
as a subset of M1(R) using the natural embedding of TK,σ

R

in R. So, µK,R
t ∈ M1(R). We define also the stopping times

τ̂K,R := inf
ß
t ⩾ 0

∣∣∣∣ M2
Ä
µK,R

t

ä
⩾ Kε

™
,

τ̌K,R := inf
ß
t ⩾ 0

∣∣∣∣ Diam
Ä
Supp νK,R

t

ä
>

1
σK

3+ε
2

™
,
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and τK,R := τ̌K,R ∧ τ̂K,R. We define on MT
m (M1 (R)) the sequence of random measures(

ΓK,R
)

K∈N⋆ as follows
ΓK,R (dt, dµ) = δ

µK,R
t

(dµ) dt.

In the sequel, we study the limit as K tends to +∞ of the sequence of laws of
((
zK,R,ΓK,R

))
K∈N⋆

in M1
(
D ([0, T ] ,TR) × MT

m (M1 (R))
)
.

Theorem 5.1. Let T,R > 0. The sequence of laws of
((
zK,R,ΓK,R

))
K∈N⋆ is tight in the set

of probability measures on D ([0, T ] ,TR) × MT
m (M1 (R)) and for any limiting value Q of this

sequence, the canonical process
(
ζR,ΓR

)
on D ([0, T ] ,TR) × MT

m (M1 (R)) satisfies that for all
f ∈ C 2

b (TR,TR),

Nf,R
t := f

Ä
ζR

t

ä
− f
Ä
ζR

0
ä

−
∫ t

0

∫
M1(R)

LSLOWf
Ä
ζR

s , µ
ä

ΓR (ds, dµ) = 0 (37)

Q−a.s. Moreover, for all t ∈ [0, T ],

EQ

Å∫ t

0

∫
M1(R)

M5 (µ) ΓR (ds, dµ)
ã
< ∞, (38)

so that the definition (37) makes sense.

This result is based on Propositions 3.1 and 4.7, Lemma 4.2. The proof is divided in eight
steps. In Step 1, we establish the tightness of the family of laws of the stopped slow componentÄ
zK,R

•∧τK,R

ä
K∈N⋆

. In Step 2, we establish a compact containement condition for the stopped
fast component

Ä
µK,R

•∧τK,R

ä
K∈N⋆

. In Step 3, we prove the tightness of the family of laws of the
occupation measure. In Step 4, we deduce the tightness of the family of laws of the couple
(slow, occupation measure fast). In Step 5, we prove uniform integrability results for a familyÄ
Nf,K,R

t∧τK,R

ä
t∈[0,T ],K∈N⋆

constructed from zK,R and ΓK,R similarly as Nf,R
t in (37). Step 6 is devoted

to establish the convergence in distribution of
Ä
Nf,K,R

•∧τK,R

ä
K∈N⋆

to Nf,R. In Steps 7 and 8, we
prove that the limit Nf,R is null Q−a.s.

The main modification of Kurtz’s setting of [49, Theorem 2.1] is that we have to work
with stopped times and need to be careful with moment estimates and uniform integrability
properties. This led us to rewrite the proof.

Proof of Theorem 5.1. Step 1. Tightness of the family of laws of
¶
zK,R

•∧τK,R

©
K∈N⋆

on
D ([0, T ],TR). Let f ∈ C 2

b (TR,TR). For all K ∈ N⋆ and for all t ∈ [0, T ], let us consider the two
processes Y K,R

t := f
Ä
zK,R

t∧τK,R

ä
and ZK,R

t defined by the relation

Y K,R
t = Y K,R

0 +
∫ t

0
ZK,R

s ds+Mf,K,R
t∧τK,R

where Mf,K,R
t∧τK,R is the martingale given by (18) in the torus case. Note that, for all s > τK,R,

ZK,R
s = 0. From Proposition 3.2, (30) and Lemma 4.2, note that there exists a constant C > 0
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such that

sup
K∈N⋆

E

[Å∫ T

0

∣∣∣ZK,R
t

∣∣∣2 dt
ã 1

2
]

⩽ sup
K∈N⋆

E
ï
1 +

∫ T

0

∣∣∣ZK,R
t

∣∣∣2 dt
ò

⩽ C

®
1 + sup

K∈N⋆
E
ñ∫ T ∧τK,R

0

Å
M2

2
Ä
µK,R

t

ä
+ 1
K2

î
1 +M2

2
Ä
µK,R

t

äóã
dt
ô´

< ∞.

Hence, from [34, Theorem 3.9.4], the family of laws of
{
Y K,R

}
K∈N⋆ , on D ([0, T ],TR), is tight. Let

us observe that the compact containement condition is satisfied by the stopped slow componentÄ
zK,R

•∧τK,R

ä
K∈N⋆

since TR is compact and

∀T > 0, inf
K∈N⋆

P
Ç

sup
0⩽t⩽T

zK,R
t∧τK,R ∈ TR

å
= 1. (39)

As C 2
b (TR,TR) is a dense subset of C 0

b (TR,TR) in the topology of the uniform norm, we
deduce from (39) and [34, Theorem 3.9.1] that the family of laws of

¶
zK,R

•∧τK,R

©
K∈N⋆

is tight on
D ([0, T ],TR).

Step 2. Compact containement condition.

Lemma 5.2. Let R > 0. For all T ⩾ 0, the family of laws of the marginal random variables of
the stopped fast process

¶
µK,R

t∧τK,R

©
t∈[0,T ],K∈N⋆

is tight on M1 (R) i.e.

∀η > 0, ∃DR,T
ε,η ⊂ M1 (R) compact, ∀t ∈ [0, T ] , ∀K ∈ N⋆, P

Ä
µK,R

t∧τK,R ∈ DR,T
ε,η

ä
⩾ 1 − η.

Proof. Let η > 0 be fixed. From Proposition 4.7, there exists K0 ∈ N⋆ large enough such that for
all K ⩾ K0, for all t ∈ [0, T ], P

(
t > τK,R

)
⩽ η

2 . We consider the R−valued sequence (ap,η)p∈N
satisfying for all p ∈ N, ap,η > 1, and

∑
p∈N⋆

p
a2

p,η
< η

2M2
where M2 := max

{
C⋆

2 , θm2
}

is a

uniform upper bound of E
Ä
M2
Ä
µK,R

t∧τK,R

ää
given by Corollary 4.5. Let (κp,η)p∈N be a sequence

of compact on R, increasing for inclusion, of the form [−ap,η, ap,η]. Let t ∈ [0, T ]. For all p ∈ N⋆,
and K ⩾ K0, note that

M2
Ä
µK,R

t

ä
1t⩽τK,R ⩾ 1t⩽τK,R

∫
κc

p,η

x2µK,R
t (dx) ⩾ a2

p,ηµ
K,R
t∧τK,R

(
κc

p,η

)
1t⩽τK,R ,

and we deduce that
¶
µK,R

t∧τK,R

(
κc

p,η

)
> 1

p

©
∩
{
t ⩽ τK,R

}
⊂
{
M2
Ä
µK,R

t∧τK,R

ä
>

a2
p,η

p

}
∩
{
t ⩽ τK,R

}
.
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Hence,

P
Åß

∃p ∈ N⋆, µK,R
t∧τK,R

(
κc

p,η

)
>

1
p

™ã
⩽ P
Ä
τK,R < t

ä
+

∑
p∈N⋆

P
Åß

µK,R
t∧τK,R

(
κc

p,η

)
>

1
p

™
∩
¶
t ⩽ τK,R

©ã
⩽ P
Ä
τK,R < t

ä
+

∑
p∈N⋆

P
Ç
M2
Ä
µK,R

t

ä
1t⩽τK,R >

a2
p,η

p

å
⩽ P
Ä
τK,R < t

ä
+

∑
p∈N⋆

E
Ä
M2
Ä
µK,R

t

ä
1t⩽τK,R

ä
a2

p,η

p

⩽ η.

Therefore, we have proved that

∀η > 0, ∀t ∈ [0, T ], ∀K ⩾ K0, P
Ä
µK,R

t∧τK,R ∈ Kη

ä
⩾ 1 − η,

where Kη :=
{
µ ∈ M1(R)

∣∣∣ ∀p ∈ N⋆, µ
(
κc

p,η

)
⩽ 1

p

}
which is compact by Prohorov’s theorem.

Step 3. Tightness of the family of laws of
{

ΓK,R
}

K∈N⋆ on MT
m (M1 (R)). Let η > 0

be fixed. From Proposition 4.7, there exists K0 ∈ N⋆ such that for all K ⩾ K0, for all t ∈ [0, T ],
P
(
t ⩾ τK,R

)
⩽ η

2 . Consider DR,T
ε, η

2
the compact set in Lemma 5.2. It follows that for all t ∈ [0, T ],

K ⩾ K0,

E
(

ΓK,R
(

[0, t] ×DR,T
ε, η

2

))
⩾ E

(
ΓK,R

(
[0, t] ×DR,T

ε, η
2

)
1t<τK,R

)
=

∫ t

0
P
({
µK,R

s∧τK,R ∈ DR,T
ε, η

2

}
∩ {t < τK,R}

)
ds

⩾
∫ t

0
P
(
µK,R

s∧τK,R ∈ DR,T
ε, η

2

)
ds−

∫ t

0
P
Ä
t ⩾ τK,R

ä
ds

⩾ t (1 − η) .

Therefore, the tightness of the family of laws of
{

ΓK,R
}

K∈N⋆ follows from [49, Lemma 1.3].

Step 4. Tightness of the family of laws of
{(
zK,R,ΓK,R

)}
K∈N⋆ on D ([0, T ],TR) ×

MT
m (M1 (R)). From Steps 1 and 3 and Prohorov’s theorem, we deduce that the family of laws

of the couple
¶Ä
zK,R

•∧τK,R ,ΓK,R
ä©

K∈N⋆
is relatively compact in M1

(
D ([0, T ],TR) × MT

m (M1 (R))
)
.

Hence, there exists a probability measure Q on the canonical space D ([0, T ],TR)×MT
m (M1 (R))

and an increasing function n : N⋆ → N⋆ such that the subsequence of laws of
¶Ä
z

n(K),R
•∧τn(K),R ,Γn(K),R

ä©
K∈N⋆

converges weakly to the limiting value Q when K → +∞. Thanks to Proposition 4.7, we deduce
that the family of laws of

¶Ä
zn(K),R,Γn(K),R

ä©
K∈N⋆

converges weakly to Q when K → +∞
and therefore that the family of laws of

{(
zK,R,ΓK,R

)}
K∈N⋆ is relatively compact, thus tight on

D ([0, T ],TR) × MT
m (M1 (R)) by Prohorov’s theorem.
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Step 5. Uniform integrability. For all f ∈ C 2
b (TR,TR), let us consider

Ä
Nf,K,R

t

ä
t∈[0,T ]

the stochastic process defined by

Nf,K,R
t := f

Ä
zK,R

t

ä
− f
Ä
zK,R

0
ä

−
∫ t

0

∫
M1(R)

LSLOWf
Ä
zK,R

s , µ
ä

ΓK,R (ds, dµ).

From (9), we have for all f ∈ C 2
b (TR,TR), there exists a constant C > 0 such that

∀t ∈ [0, T ], ∀K ∈ N⋆,
∣∣∣Nf,K,R

t∧τK,R

∣∣∣ ⩽ C

Å
1 +

∫ t

0
M2
Ä
µK,R

s

ä
1s⩽τK,Rds

ã
,

Hence, the uniform integrability of
Ä
Nf,K,R

•∧τK,R

ä
K∈N⋆

follows from Corollary 4.3.

Step 6. Proof of (38) and almost sure convergence of
Ä‹Nf,K,R

•∧τK,R

ä
K∈N⋆

to ‹Nf,R.
From Step 4, Proposition 4.7 and Skorohod’s representation theorem, there exists an increas-
ing function n̄ : N⋆ → N⋆ and a probability space on which we define, the random variable
τ̃ n̄(K),R, the families

¶
z̃n̄(K),R

©
K∈N⋆

and
¶

Γ̃n̄(K),R
©

K∈N⋆
and ζ̃R, Γ̃R copies of

¶
zn̄(K),R

©
K∈N⋆

,¶
Γn̄(K),R

©
K∈N⋆

, ζR, ΓR under Q such that for allK ∈ N⋆, the sequence
Ä
z̃n̄(K),R, Γ̃n̄(K),R, τ̃ n̄(K),R

ä
K∈N⋆

converges a.s. to
Ä
ζ̃R, Γ̃R,+∞

ä
when K → +∞. Note that for all t ∈ [0, T ],

Γ̃n̄(K),R
Äî

0, t ∧ τ̃ n̄(K),R
ó

× M1 (R)
ä

= t ∧ τ̃ n̄(K),R a.s.−−−−−−→
K−→+∞

t = Γ̃ ([0, t] × M1 (R)) .

From [49, Lemma 1.5 (b)(c)(d)] and Corollary 4.3, we have∫ t∧τ̃K,R

0

∫
M1(R)

M5 (µ) Γ̃K,R (ds, dµ) a.s.−−−−−−→
K−→+∞

∫ t

0

∫
M1(R)

M5 (µ) Γ̃ (ds, dµ)

and (38) follows. From [49, Lemma 1.5 (b)(c)(d)], we also deduce that for all f ∈ C 2
b (TR,TR),

for all t ∈ [0, T ], a.s.

lim
K→+∞

∫ t∧τ̃ n̄(K),R

0

∫
M1(R)

LSLOWf
Ä
z̃n̄(K),R

s , µ
ä

Γ̃n̄(K),R (ds, dµ)

=
∫ t

0

∫
M1(R)

LSLOWf
Ä
ζ̃R, µ

ä
Γ̃R (ds, dµ)

and thus the sequence
Ä‹Nf,n̄(K),R

•∧τ̃ n̄(K),R

ä
K∈N⋆

converges a.s. to the process
Ä‹Nf,R

t

ä
t∈[0,T ]

where ‹Nf,K,R
t

and ‹Nf,R
t are respectively defined for all K ∈ N⋆ by‹Nf,K,R

t := f
Ä
z̃K,R

t

ä
− f
Ä
z̃K,R

0
ä

−
∫ t

0

∫
M1(R)

LSLOWf
Ä
z̃K,R

t , µ
ä

Γ̃K,R (ds, dµ), t ⩽ T ∧ τ̃K,R‹Nf,R
t := f

Ä
ζ̃R

t

ä
− f
Ä
ζ̃R

0
ä

−
∫ t

0

∫
M1(R)

LSLOWf
Ä
ζ̃R

t , µ
ä

Γ̃R (ds, dµ), t ⩽ T.

Step 7. Nf,R is a martingale. Let us consider the filtration
Ä‹FK,R

t

ä
t∈[0,T ]

defined by‹FK,R
t := σ

(
z̃K,R

s , Γ̃K,R ([0, s] ×H)
∣∣∣ s ⩽ t,H ∈ B (M1 (R))

)
, (fi)1⩽i⩽p, p ∈ N⋆ bounded Lips-

chitz functions from TR to TR and 0 < t1 ⩽ · · · ⩽ tp ⩽ s < t. Let us denote for all K ∈ N⋆, for
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all t ⩽ τ̃K,R ∧ T , M̃f,K,R
t := ‹Nf,K,R

t + Ẽf,K,R
t where M̃f,K,R is constructed from z̃K,R and µ̃K,R

as in (18) and Ẽf,K,R
t is an error term. Note that M̃f,K,R

t is a
Ä‹FK,R

t

ä
t∈[0,T ]

−martingale as in
Proposition 3.1. Hence,

E
Ç
M̃

f,n̄(K),R
t∧τ̃ n̄(K),R

p∏
i = 1

fi

Ä
M̃

f,n̄(K),R
ti∧τ̃ n̄(K),R

äå
= E
Ç
M̃

f,n̄(K),R
s∧τ̃ n̄(K),R

p∏
i = 1

fi

Ä
M̃

f,n̄(K),R
ti∧τ̃ n̄(K),R

äå
.

From Proposition 3.2 and (30), Ẽf,K,R
t∧τ̃K,R = 1

KO
Ä∫ t

0
[
1 +M2

(
µ̃K,R

s

)]
1s⩽τ̃K,Rds

ä
and then satisfy

the condition limK→+∞ E
(

sup0⩽t⩽T

∣∣∣Ef,K,R
t∧τ̃K,R

∣∣∣) = 0. As for all i ∈ {1, · · · , p}, fi is Lipschitz,
there exists a constant C > 0 such that

E
(∣∣∣fi

Ä
M̃

f,n̄(K),R
ti∧τ̃ n̄(K),R − Ef,n̄(K),R

ti∧τ n̄(K),R

ä
− fi

Ä
M̃

f,n̄(K),R
ti∧τ̃ n̄(K),R

ä∣∣∣)
⩽

C

n̄ (K)E
Å∫ ti

0

î
1 +M2

Ä
µn̄(K),R

r

äó
1r⩽τ̃ n̄(K),Rdr

ã
where the term of the right hand side of the previous inequality goes to 0 when K → +∞
according to Lemma 4.2. We deduce that for all u ∈ {s, t},

lim
K→+∞

E
Ç
M̃

f,n̄(K),R
u∧τ̃ n̄(K),R

p∏
i = 1

fi

Ä
M̃

f,n̄(K),R
ti∧τ̃ n̄(K),R

äå
= lim

K→+∞
E
Ç‹Nf,n̄(K),R

u∧τ̃ n̄(K),R

p∏
i = 1

fi

Ä‹Nf,n̄(K),R
ti∧τ̃ n̄(K),R

äå
.

From Steps 5 and 6, we deduce letting K → +∞ that

E
Ç‹Nf,R

t

p∏
i = 1

fi

Ä‹Nf,R
ti

äå
= E
Ç‹Nf,R

s

p∏
i = 1

fi

Ä‹Nf,R
ti

äå
.

Hence,

E
Ç
Nf,R

t

p∏
i = 1

fi

Ä
Nf,R

ti

äå
= E
Ç
Nf,R

s

p∏
i = 1

fi

Ä
Nf,R

ti

äå
.

Since the last property is true for all p ∈ N⋆, t1 ⩽ · · · ⩽ tp ⩽ s < t and for all bounded Lipschitz
functions (fi)1⩽i⩽p, the monotone class theorem ensures us that

E
Å
Nf,R

t

∣∣∣∣σ (Nf,R
u

∣∣∣u ⩽ s
)ã

= Nf,R
s .

Hence the announced result.

Step 8. Nullity of Nf,R. On the one hand, from Itô’s formula [71, Theorem 32 of Chapter
II], for all f ∈ C 2

b (TR,TR) and t ∈ [0, T ]

f2
Ä
ζR

t

ä
= f2

Ä
ζR

0
ä

+ 2
∫ t

0

∫
M1(R)

f
Ä
ζR

s

ä
LSLOWf

Ä
ζR

s , µ
ä

ΓR (ds, dµ)

+ 2
∫ t

0
f
Ä
ζR

s

ä
dNf,R

s +
¨
Nf,R

∂
t
+

∑
0<s⩽t

¶
f
Ä
ζR

s

ä
− f
Ä
ζR

s−

ä©2
.

(40)
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On the other hand, applying (37) with f2 ∈ C 2
b (TR,TR), we obtain that for all t ∈ [0, T ]

f2
Ä
ζR

t

ä
= f2

Ä
ζR

0
ä

+
∫ t

0

∫
M1(R)

LSLOWf
2
Ä
ζR

s , µ
ä

ΓR (ds, dµ) +Nf2,R
t . (41)

Comparing (40) and (41) leads for all t ∈ [0, T ] to

Nf2,R
t − 2

∫ t

0
f
Ä
ζR

s

ä
dNf,R

s =
¨
Nf,R

∂
t
+

∑
0<s⩽t

¶
f
Ä
ζR

s

ä
− f
Ä
ζR

s−

ä©2

and thus by [42, Theorem 4.1] that Q−a.s. for all t ∈ [0, T ],¨
Nf,R

∂
t

= −
∑

0<s⩽t

¶
f
Ä
ζR

s

ä
− f
Ä
ζR

s−

ä©2
⩽ 0

so that
〈
Nf,R

〉
t

= 0. Hence, Q−a.s. Nf,R = 0 which completes the proof.

6 Characterisation of the occupation measure limit on the torus
Consider a probability measure Q on D ([0, T ],TR) × MT

m (M1 (R)) and the canonical process(
ζR,ΓR

)
as in Theorem 5.1. The following lemma gives us a desintegration result of the occu-

pation measure ΓR that we characterise below.

Lemma 6.1. Let T ⩾ 0 be fixed. With the notations of Theorem 5.1, there exists a random
probability measure-valued process

(
γR

t

)
t∈[0,T ] that is predictable in (ω, t) and such that for all

bounded measurable function ψ : [0, T ] × M1 (R) → TR,∫ t

0

∫
M1(R)

ψ(s, µ)ΓR (ds, dµ) =
∫ t

0

∫
M1(R)

ψ(s, µ)γR
s (dµ)ds. (42)

Proof. The desintegration result of ΓR follows directly from [49, Lemma 1.4].

Corollary 6.2. Let T ⩾ 0 be fixed. With the notations of Theorem 5.1, we have that ζR ∈
C 0 ([0, T ],TR) is differentiable of derivative in L1(R) Q−a.s.

Proof. Applying (37) with f = id ∈ C 1
b (TR,TR), we deduce from Theorem 5.1, (9) and (42),

Q−a.s., for all t ∈ [0, T ]

ζR
t = ζR

0 +
∫ t

0

Å∫
M1(R)

M2 (µ) γR
s (dµ)

ã
∂1Fit

Ä
ζR

s , ζ
R
s

ä
ds.

From Assumptions (A) and (38), the integrand of the previous time integral is in L1(R) Q−a.s.
Hence, the announced result follows from the fundamental theorem of calculus.

We now want to characterise the limiting value ΓR (dt, dµ) = γR
t (dµ) dt under Q.
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Proposition 6.3. With the notations of Theorem 5.1, for a.e. t ∈ [0, T ], Q−a.s., γR
t = πλ(ζR)

where πλ is the unique invariant probability measure of the centered Fleming-Viot process with
resampling rate λ (see [16, Section 4]).

It is here that we exploit ergodicity properties for the fast limit component. The proof
of Proposition 6.3, given in Section 6.1 is based on the following technical lemma giving a
characterisation of πλ and proved in Section 6.2. To state this lemma, let us first recall from
(21) the definition of polynomials in µ:

Pf,n (µ) := ⟨f, µn⟩ :=
∫
R

· · ·
∫
R
f (x1, · · · , xn)µ (dx1) · · ·µ (dxn)

with n ∈ N⋆, µ ∈ Mc
1(R), f ∈ C 3

b (Rn,R). For all n ∈ N⋆, for any function f : Rn → R whose
second derivatives exist, we denote by Hess(f) :=

Ä
∂2

ijf
ä

1⩽i,j⩽n
the Hessian matrix of f . For all

n ∈ N⋆, let us denote by C 2
∥·∥ (Rn,R) the setß

f ∈ C 2 (Rn,R)
∣∣∣∣∃C > 0, ∀x ∈ Rn, |f(x)| + ∥∇f(x)∥∞ + ∥Hess(f)(x)∥∞ ⩽ C

Ä
1 + ∥x∥2

∞

ä™
.

From (25), we can see that if f ∈ C 4
b (Rn,R), Lλ

FVcPf,n (µ) is a polynomial in µ of the form
PJ,n+1 (µ) for some function J ∈ C 2

∥·∥
(
Rn+1,R

)
. We recall from [16, Proposition 2.11] that if

µ ∈ Mc,5
1 (R), then sup0⩽t⩽T Eµ (M5 (Xt)) < ∞ where (Xt)t⩾0 denotes the centered Fleming-

Viot process with resampling rate λ. Since, by (25), for all µ ∈ Mc,4
1 (R),

|LFVcPJ,n+1(µ)| ⩽ C (1 +M4 (µ)) ,

for some constant C > 0, we can apply the martingale problem (26) to the function PJ,n+1(µ)
using classical localisation techniques to obtain that the process

Ä
M̂

PJ,n+1
t

ä
t⩾0

defined by

M̂
PJ,n+1
t := PJ,n+1 (Xt) − PJ,n+1 (X0) −

∫ t

0
Lλ

FVcPJ,n+1 (Xs) ds (43)

is a Pµ−martingale for all µ ∈ Mc,5
1 (R).

Lemma 6.4. Let be fixed λ ∈ R. If γ ∈ M1 (M1(R)) satisfies
∫

M1(R)M4 (µ) γ (dµ) < ∞ and

∀n ∈ N⋆, ∀f ∈ C 2
∥·∥ (Rn,R) ,

∫
M1(R)

Lλ
FVcPf,n (µ) γ (dµ) = 0,

then, γ = πλ.

6.1 Proof of Proposition 6.3

Let us define for all ℓ ∈ N, C ℓ
K (Rn,R) the space of real functions of class C ℓ (Rn,R) with compact

support. From Lemma 3.4 and (12), for all t ∈ [0, T ], for all n ∈ N⋆ we have for all f ∈ C 3
K (Rn,R)

that

K2σ2M
K,Pf,n

t∧τK,R =
3∑

i = 1
(A)K,R

i

Ä
t ∧ τK,R

ä
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where for all t ⩽ τK,R ∧ T

(A)K,R
1 (t) := K2σ2

Ä
Pf,n

Ä
µK,R

t

ä
− Pf,n

Ä
µK,R

0
ää
,

(A)K,R
2 (t) := −

∫ t

0

∫
M1(R)

θ
Ä
zK,R

s

ä
m2
Ä
zK,R

s

ä
Lλ(zK,R

s )
FVc Pf,n (µ) ΓK,R (ds, dµ),

(A)K,R
3 (t) := O

Ç
1√
K

+ σK
3
2 +ε +

∫ t

0

M3
(
µK,R

s

)
K

ds
å
,

is a martingale. Since σK → 0 by Assumption (5), (A)K,R
1

(
t ∧ τK,R

)
→ 0 when K → +∞. From

Corollary 4.3, the sequence
Ä
(A)K,R

2
(
t ∧ τK

)ä
t∈[0,T ],K∈N⋆

is uniformly integrable and converges
in law, when K → +∞, to

M
Pf,n

t := −
∫ t

0
θ
Ä
ζR

s

ä
m2
Ä
ζR

s

ä ∫
M1(R)

Lλ(ζR
s )

FVc Pf,n (µ) ΓR (ds, dµ).

Note that, from Cauchy-Schwarz’s inequality and Lemma 4.1, there exists a constant C > 0
such that

E
Ç

sup
0⩽t⩽T

∫ t∧τK,R

0

M3
(
µK,R

s

)
K

ds
å2

⩽
T

K2E
Ç∫ T ∧τK,R

0
M6
Ä
µK,R

s

ä
ds
å

⩽
CT

K2 .

Hence, limK→+∞ sup0⩽t⩽T (A)K,R
3 (t ∧ τK,R) = 0 in L2(R). In particular, we deduce that a

subsequence of
Ä
sup0⩽t⩽T (A)K,R

3 (t ∧ τK,R)
ä

K∈N⋆
converges almost surely to 0 and the familyÄ

sup0⩽t⩽T (A)K,R
3 (t ∧ τK,R)

ä
K∈N⋆

is uniformly integrable along this subsequence [75, Theorem
13.7]. Using the same method based on Skorohod’s representation theorem as in the proof
of Theorem 5.1, we deduce that the process

Ä
M

Pf,n

t

ä
t⩾0

is a Q−martingale. As it is also a
continuous and finite variation process by Lemma 6.1, it must hence be Q−almost surely null
[42, Theorem 4.1]. Hence, using Lemma 6.1 again, we have proved that

∀f ∈ C 3
K (Rn,R) , Q − a.s., dt− a.e.,

∫
M1(R)

Lλ(ζR
t )

FVc Pf,n (µ) γR
t (dµ) = 0.

The space C 2
K (Rn,R) equipped with the norm ∥f∥

W 2,∞
0

= ∥f∥∞ + ∥∇f∥∞ + ∥Hess(f)∥∞ is
separable. So, we can choose a dense countable family B ⊂ C 3

K (Rn,R) such that

∀f ∈ C 2
K (Rn,R) , ∃ (fp)p∈N⋆ ∈ BN⋆

, fp

∥·∥
W

2,∞
0−−−−−→

p−→+∞
f.

Then,
Q − a.s., dt− a.e., ∀p ∈ N⋆,

∫
M1(R)

Lλ(ζR
t )

FVc Pfp,n (µ) γR
t (dµ) = 0.

From (38) and Lemma 6.1, we have that
∫

M1(R)M4 (µ) γR
t (dµ) < ∞. As for all p ∈ N⋆,

Lλ(ζR
t )

FVc Pfp,n (µ) ⩽ C1 (1 +M2 (µ)) ∥fp∥
W 2,∞

0
.
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for some constant C1 > 0, we obtain by the dominated convergence theorem that

Q − a.s., dt− a.e., ∀f ∈ C 2
K (Rn,R) ,

∫
M1(R)

Lλ(ζR
t )

FVc Pf,n (µ) γR
t (dµ) = 0. (44)

Let us consider f ∈ C 2
∥·∥ (Rn,R) and for all q ∈ N⋆, x 7→ χq(x) = exp

(
− 1

q2−∥x∥2
∞

)
1∥x∥∞<q

of class C ∞ (Rn,R) with compact support. Then, for all q ∈ N⋆, fχq ∈ C 2
K (Rn,R). Noting

that,
∣∣∣∣∫M1(R) Lλ(ζR

t )
FVc Pfχq ,n (µ) γR

t (dµ)
∣∣∣∣ is dominated by C2

∫
M1(R) (1 +M4 (µ)) γR

t (dµ) for some

constant C2 > 0, and since
∫

M1(R)M4 (µ) γR
t (dµ) < ∞, we deduce from (44) applied to fχq, by

the dominated convergence theorem, that

Q − a.s., dt− a.e., ∀f ∈ C 2
∥·∥ (Rn,R) ,

∫
M1(R)

Lλ(ζR
t )

FVc Pf,n (µ) γR
t (dµ) = 0.

Therefore, it follows from Lemma 6.4 that Q−a.s, dt−a.e., γR
t (dµ) = πλ(ζR

t ) (dµ) which concludes
the proof.

6.2 Proof of Lemma 6.4

In Section 6.2.1 we extend some duality results for the centered Fleming-Viot process, obtained
in [16], which are be useful to prove Lemma 6.4 in Section 6.2.2.

6.2.1 Extension of the duality result for the centered Fleming-Viot process

Let us recall that the dual process (ξt)t⩾0 of the centered Fleming-Viot process (Xt)t⩾0 with
resampling rate λ, on the state space

⋃
n∈N⋆ C 2 (Rn,R), obtained in [16, Section 3.2] is defined

as below.

Let us consider M := (M(t))t⩾0 a Markov’s birth and death process in N whose transition
rates qi,j from i to j are given by:

(1) qn,n+1 = λn2 (2) qn,n−1 = λn(n− 1) (3) qi,j = 0 otherwise.

For all M(0) ∈ N⋆, ξ0 ∈ C 2
b

Ä
RM(0),R

ä
and λ > 0, we define

ξt := T
(M(τn))
λ (t− τn) ΛnT

(M(τn−1))
λ (τn − τn−1) Λn−1 · · · Λ1T

(M(0))
λ (τ1) ξ0,

τn ⩽ t < τn+1, n ∈ N, (45)

where (τn)n∈N is the sequence of jump times of M with τ0 = 0,
Ä
T

(n)
λ (t)

ä
t⩾0

is the semi-group

of operator associated to the generator B(n)
λ given by (22) and where (Λn)n∈N is a sequence of

random operators. These are conditionally independent given M and satisfy for all k ∈ N, n ⩾ 1
and 1 ⩽ i ̸= j ⩽ n,

P
Å

Λk = Φi,j

∣∣∣∣ {M (
τ−

k

)
= n,M (τk) = n− 1

}ã
= 1
n(n− 1)
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and for all n ⩾ 1 and 1 ⩽ i, j ⩽ n,

P
Å

Λk = Ki,j

∣∣∣∣ {M (
τ−

k

)
= n,M (τk) = n+ 1

}ã
= 1
n2 ,

where Φi,j and Ki,j are respectively defined in (23) and (24). Note that if M(0) = 1, the dual
process can only jump from ξ0 to Kijξ0. As for all t ⩾ 0, ξt ∈ C 2

Ä
RM(t),R

ä
, Ki,jξt is well

defined. Moreover, the dual process (ξt)t⩾0 with initial condition ξ0 is constructed on the same
probability space and independently of the centered Fleming-Viot process (Xt)t⩾0 with resam-
pling rate λ and initial condition µ ∈ Mc,2

1 (R). We shall denote by P(µ,ξ0), the law of the couple
(Xt, ξt)t⩾0 on this probability space.

We denote by St the number of jumps of the process M on [0, t]. We start with a result
giving bounds on the dual process, which is an extension of similar estimates obtained in [16,
Lemma 6.4].

Lemma 6.5. For all ξ0 ∈ C 2
b

Ä
RM(0),R

ä
there exists a function C0 from

⋃
k∈N⋆ (0,+∞)k−1 × {k}

to R+, locally bounded, such that

C0 (τ1, 1) := ∥ξ0∥∞ + 3
M(0) ∥Hess (ξ0)∥∞

and, for all (tj)j∈N ∈ (0,+∞)N, k 7→ C0
(
(ti)0⩽i⩽k−1 , k

)
is non-decreasing and satisfying

∀k ∈ N⋆, ∀t ⩽ τk, ∀x ∈ RM(t), |ξt(x)| ⩽ C0
(
(τi+1 − τi)0⩽i⩽k−1 , k

) Ä
1 + ∥x∥2St

∞

ä
. (46)

Proof. By induction on k ∈ N⋆, we prove the property

(Qk) : ∀x ∈ RM(τk), |ξτk
(x)| ⩽ C0((τi+1 − τi)0⩽i⩽k−1 , k)

Ä
1 + ∥x∥2k

∞

ä
.

Step 1. Initial case: computation of C0 (τ1, 1). Let us recall some notations of [16, Theorem
6.1]. For all n ∈ N⋆, we denote by 1 ∈ Rn, the vector whose coordinates are all 1. For all
n ∈ N⋆, t ⩾ 0, x ∈ Rn and λ > 0, let us consider gλ

t,x the density of the Gaussian distribution
N (n) (mλ

t,x,Σλ
t

)
where mλ

t,x := x− (1−exp(−2λnt))
n (x · 1)1 and Σλ

t := Pσλ
t P

−1 with

σλ
t :=



1−exp(−4λnt)
4λn 0 . . . . . . 0
0 t 0 . . . 0
... 0 . . . . . . ...
...

... . . . . . . 0
0 0 . . . 0 t

 and P :=



1√
n

1√
2 · · · · · · 1√

n(n−1)
... −

»
1
2

. . . · · · 1√
n(n−1)

... 0 . . . . . . ...

...
... . . . . . . 1√

n(n−1)
1√
n

0 · · · 0 −
»

n−1
n


.

Note that for all i, j ∈ {1, · · · , n}, ∂xim
λ
t,x = ϵi − 1−exp(−2γnt)

n 1 and ∂2
xixj

mλ
t,x = 0 where

(ϵ1, · · · , ϵn) is the canonical basis of Rn. For all λ > 0, the key identity for the sequel is

∀f ∈ L∞ (Rn) , ∀t ⩾ 0, ∀x ∈ Rn, T
(M(0))
λ (t)f(x) =

Ä
f ∗ gλ

t,0
ä Ä
mλ

t,x

ä
(47)
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where ∗ stands for the convolution product (see (41) in [16, Theorem 6.1]).

On the one hand, note that for all t < τ1, M(t) = M(0). In this case, for all x ∈ RM(0),
λ > 0, ξt(x) = T

(M(0))
λ (t)ξ0(x) and so, from [16, Theomem 6.1], |ξt(x)| ⩽ ∥ξ0∥∞. On the other

hand, at time τ1, we make a partition of cases according to whether the dual process loses or
gains a variable. Let i, j ∈ {1, · · · ,M(0)} be fixed.

• Case Λ1 = Φi,j. In this case, M(τ1) = M(0) − 1 and we deduce from (45) that

∀x ∈ RM(0)−1, ξτ1(x) = Φi,jT
(M(0))
λ (τ1) ξ0(x).

By (23), we deduce that for all x ∈ RM(0)−1, |ξτ1(x)| ⩽ ∥ξ0∥∞.

• Case Λ1 = Ki,j. In this case, M(τ1) = M(0) + 1 and we deduce from (45) and (24)
then from (3) of [16, Theorem 6.1] and properties of the convolution product that for all
x ∈ RM(0)+1,

ξτ1(x) = Ki,jT
(M(0))
λ (τ1) ξ0(x) = ∂xixjT

(M(0))
λ (τ1) ξ0 (x̃)x2

M(0)+1

=
Ä
∂xjm

λ
τ1,x̃

ät îÄ
Hess (ξ0) ∗ gλ

τ1,0
ä Ä
mλ

τ1,x̃

ä
∂xim

λ
t,x̃

ó
x2

M(0)+1

where x̃ =
(
x1, · · · , xM(0)

)
∈ RM(0). As,Ä

Hess (ξ0) ∗ gλ
τ1,0
ä Ä
mλ

τ1,x̃

ä
=
Å∫

RM(0)
∂2

ijξ0(u)gλ
τ1,0
Ä
mλ

τ1,x̃ − u
ä

du
ã

1⩽i,j⩽M(0)

we obtain that
∥∥∥(Hess (ξ0) ∗ gλ

τ1,0
) Ä
mλ

τ1,x̃

ä∥∥∥
∞

⩽
∥∥∥∂2

ijξ0
∥∥∥

∞
. Noting that

∣∣∣Ä∂xjm
λ
τ1,x̃

ät
∂xim

λ
t,x̃

∣∣∣ ⩽
3

M(0) , we deduce that for all x ∈ RM(0)+1,

|ξτ1(x)| ⩽ 3
M(0) sup

1⩽i,j⩽M(0)

∥∥∥∂2
ijξ0

∥∥∥
∞
x2

M(0)+1 ⩽
3

M(0) ∥Hess(ξ0)∥∞ ∥x∥2
∞

and (Q1) follows.

Step 2. Inductive Step. We assume that, for k ∈ N \ {0, 1}, (Qk−1) is satisfied and prove
that (Qk) is also. We make again a partition of cases according to whether the dual process loses
or gains a variable. Let i, j ∈ {1, · · · ,M (τk−1)} be fixed.

• Case Λk = Φi,j at the kth jump. In this case, M(τk) = M(τk−1) − 1 and we deduce from
(45) that for all x ∈ RM(τk−1)−1, ξτk

(x) = Φi,jT
(M(τk−1))
λ (τk − τk−1)ξτk−1(x). By using (23)

and (Qk−1), we deduce from [16, Corollary 6.2 (1)] that for all x ∈ RM(τk−1)−1,∣∣∣Φi,jT
(M(τk−1))
λ (τk − τk−1) ξτk−1(x)

∣∣∣
⩽ C2 (τk − τk−1,M (τk−1))C0

(
(τi+1 − τi)0⩽i⩽k−1 , k

) Ä
1 + ∥x∥2(k−1)

∞

ä
,

(48)

where C2C0 is locally bounded. As t 7→ C2 (t,M (τk−1)) is non-decreasing, we deduce (Qk)
in that case.
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• Case Λk = Ki,j at the kth jump. In this case, M(τk) = M(τk−1) + 1. From (45), (24)
and [16, Theorem 6.1 (3)], we have for all x ∈ RM(τk−1)+1,

|ξτk
(x)| =

∣∣∣Ki,jT
(M(τk−1)+1)
λ (τk − τk−1) ξτk−1(x)

∣∣∣
=
∣∣∣Ä∂xjm

λ
τk−τk−1,x̃

ät îÄ
ξτk−1 ∗ Hess

Ä
gλ

τk−τk−1,0
ää

(mλ
τk−τk−1,x̃)∂xim

λ
τk−τk−1,x̃

ó∣∣∣x2
M(τk−1)+1,

where x̃ =
Ä
x1, · · · , xM(τk−1)

ät
∈ RM(τk−1). From (Qk−1) and [16, Corollary 6.2 (2)], we

deduce that∣∣∣Ki,jT
(M(τk−1)+1)
λ (τk − τk−1) ξτk−1(x)

∣∣∣
⩽ C3 (τk − τk−1,M (τk−1))C0

(
(τi+1 − τi)0⩽i⩽k−1 , k

) Ä
1 + ∥x∥2k

∞

ä
,

(49)

where C3C0 is locally bounded and (Qk) follows in that case.

We conclude by the principle of induction.

Step 3. Proof of (46) for t < τk. Note that from (45), for all k ∈ N and t ∈ ]τk, τk+1[,

∀x ∈ RM(t), ξt(x) = T
(M(τk))
λ (t− τk) ξτk

(x),

so the announced result follows from [16, Corollary 6.2 (1)].

Let us consider for all k ∈ N⋆, ℓ,m ∈ N the stopping times

ϑk,ℓ := inf
ß
t ⩾ 0

∣∣∣∣St ⩾ k or ∃s ∈ [0, t],
¨
ξs, X

M(s)
t−s

∂
⩾ ℓ

™
,

ϑ′
k,m := inf

ß
t ⩾ 0

∣∣∣∣St ⩾ k or C0
(
(τi+1 − τi)0⩽i⩽k−1 , k

)
⩾ m

™
,

ϑ′
k,ℓ,m := inf

ß
t ⩾ 0

∣∣∣∣St ⩾ k or ∃s ∈ [0, t],
¨
ξs, X

M(s)
t−s

∂
⩾ ℓ

or C0
(
(τi+1 − τi)0⩽i⩽k−1 , k

)
⩾ m

}
.

As (M(t), ξt)t⩾0 is independent of (Xt)t⩾0, note that for all k ∈ N⋆, m ∈ N, ϑ′
k,m is indepen-

dent of (Xt)t⩾0. Recall that for all t ⩾ 0, ξt ∈ C 2
Ä
RM(t),R

ä
. For all n ⩾ M(t), for all x ∈ Rn,

we denote by ξ(n)
t (x) = ξ

(n)
t (x1, · · · , xn) := ξt

(
x1, · · · , xM(t)

)
so that for all µ ∈ Mc,2

1 (R),¨
ξ

(n)
t , µn

∂
=
¨
ξt, µ

M(t)
∂
.

The next lemma is an extension of the duality identity proved in [16].

Lemma 6.6. Given (Xt)t⩾0, (ξt)t⩾0 as above with X0 := µ ∈ Mc,2k
1 (R), k ∈ N⋆ and ξ0 ∈

C 2
b

Ä
RM(0),R

ä
, we have that P(µ,ξ0)−a.s., for all t ⩾ 0, for all m ∈ N,

E(µ,ξ0)

(〈
ξ0, X

M(0)
t∧ϑ′

k,m

〉)
=
Æ
Eξ0

Ç
ξ

(M(0)+k)
t∧ϑ′

k,m
exp
Ç
λ

∫ t∧ϑ′
k,m

0
M2(u)du

åå
, µM(0)+k

∏
. (50)
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Compared to the duality identity of [16], the key point of this lemma is that the right-hand
side of the last equation, is a polynomial in µ.

Proof. Let us consider t ⩾ 0, k ∈ N⋆, ℓ,m ∈ N. As ϑ′
k,ℓ,m ⩽ ϑk,ℓ, the weak duality identity of

[16, Theorem 3.4] implies that:

E(µ,ξ0)

(〈
ξ0, X

M(0)
t∧ϑ′

k,ℓ,m

〉)
= E(µ,ξ0)

Ç〈
ξt∧ϑ′

k,ℓ,m
, µM

Ä
t∧ϑ′

k,ℓ,m

ä〉
exp
Ç
λ

∫ t∧ϑ′
k,ℓ,m

0
M2(u)du

åå
= E(µ,ξ0)

Ç〈
ξ

(M(0)+k)
t∧ϑ′

k,ℓ,m
, µM(0)+k

〉
exp
Ç
λ

∫ t∧ϑ′
k,ℓ,m

0
M2(u)du

åå
.

Now, from Lemma 6.5 and the definition of ϑ′
k,ℓ,m, note that for all x ∈ RM(0)+k,

E(µ,ξ0)

Ç
ξ

(M(0)+k)
t∧ϑ′

k,ℓ,m
(x) exp

Ç
λ

∫ t∧ϑ′
k,ℓ,m

0
M2(u)du

åå
⩽ m

Ä
1 + ∥x∥2k

∞

ä
exp
Ä
λt (M(0) + k)2

ä
.

(51)
Since µ ∈ Mc,2k

1 (R), we deduce from Fubini’s theorem that

E(µ,ξ0)

(〈
ξ0, X

M(0)
t∧ϑ′

k,ℓ,m

〉)
=
Æ
E(µ,ξ0)

Ç
ξ

(M(0)+k)
t∧ϑ′

k,ℓ,m
exp
Ç
λ

∫ t∧ϑ′
k,ℓ,m

0
M2(u)du

åå
, µM(0)+k

∏
.

On the one hand, from [16, Section 6.2.1], limℓ→+∞ ϑ′
k,ℓ,m = ϑ′

k,m P(µ,ξ0)−a.s., and since
(Xt)t⩾0 has continous paths for the topology of weak convergence, we have P(µ,ξ0)−a.s.

lim
ℓ→+∞

〈
ξ0, X

M(0)
t∧ϑ′

k,ℓ,m

〉
=
〈
ξ0, X

M(0)
t∧ϑ′

k,m

〉
.

Therefore, we deduce from the dominated convergence theorem, that for all ξ0 ∈ C 2
b

Ä
RM(0),R

ä
,

lim
ℓ→+∞

E(µ,ξ0)

(〈
ξ0, X

M(0)
t∧ϑ′

k,ℓ,m

〉)
= E(µ,ξ0)

(〈
ξ0, X

M(0)
t∧ϑ′

k,m

〉)
.

On the other hand, Lemma 6.5 and the dominated convergence theorem imply that for all
x ∈ RM(0)+k,

lim
ℓ→+∞

E(µ,ξ0)

Ç
ξ

(M(0)+k)
t∧ϑ′

k,ℓ,m
(x) exp

Ç
λ

∫ t∧ϑ′
k,ℓ,m

0
M2(u)du

åå
= E(µ,ξ0)

Ç
ξ

(M(0)+k)
t∧ϑ′

k,m
(x) exp

Ç
λ

∫ t∧ϑ′
k,m

0
M2(u)du

åå
and the limit satisfies the inequality (51). As µ ∈ Mc,2k

1 (R), we deduce again from the dominated
convergence theorem that

lim
ℓ→+∞

Æ
E(µ,ξ0)

Ç
ξ

(M(0)+k)
t∧ϑ′

k,ℓ,m
exp
Ç
λ

∫ t∧ϑ′
k,ℓ,m

0
M2(u)du

åå
, µM(0)+k

∏
=
Æ
E(µ,ξ0)

Ç
ξ

(M(0)+k)
t∧ϑ′

k,m
exp
Ç
λ

∫ t∧ϑ′
k,m

0
M2(u)du

åå
, µM(0)+k

∏
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and the announced result follows from the fact that ϑ′
k,m is independent of (Xt)t⩾0, which implies

E(µ,ξ0)

Ç
ξ

(M(0)+k)
t∧ϑ′

k,m
(x) exp

Ç
λ

∫ t∧ϑ′
k,m

0
M2(u)du

åå
= Eξ0

Ç
ξ

(M(0)+k)
t∧ϑ′

k,m
(x) exp

Ç
λ

∫ t∧ϑ′
k,m

0
M2(u)du

åå
.

From Lemma 6.5, we deduce that we can choose m ∈ N large enough such that ϑ′
1,m = τ1.

In this case, the function inside the brackets in the left-hand side of (50) is defined, for all t ⩾ 0
and for all x ∈ RM(0)+1, by

ψt(x) := E(µ,ξ0)

Å
ξ

(M(0)+1)
t∧τ1 (x) exp

Å
λ

∫ t∧τ1

0
M2(u)du

ãã
.

For all t ⩾ 0, n ∈ N⋆, f ∈ C 2
b (Rn,R) and µ ∈ Mc,2

1 (R) let us denote

PFVc(t)Pf,n (µ) := Eµ (Pf,n (Xt))

the semi-group of the centered Fleming-Viot process (Xt)t⩾0 with resampling rate λ.

The following result is the main result of this section. It gives an extension of Lemma 6.5 to
a function which appears naturally in the proof of Lemma 6.4.

Proposition 6.7. For all t ⩾ 0, for all µ ∈ Mc,2
1 (R), for all ξ0 ∈ C 2

b

Ä
RM(0),R

ä
PFVc(t)Pξ0,M(0)(µ) = PVt,M(0)+1 (µ) :=

¨
Vt, µ

M(0)+1
∂

where
Vt := exp (α0t)ψt − α0

∫ t

0
exp (α0s)ψsds (52)

and α0 := λM(0) [2M(0) − 1]. In addition, for all t ⩾ 0, there exist a constant Ct > 0 such that
for all x ∈ RM(0)+1,

|Vt(x)| ⩽ Ct

(
1 + ∥x∥2

∞
)
.

Proof. Let t ⩾ 0, µ ∈ Mc,2
1 (R), ξ0 ∈ C 2

b

Ä
RM(0),R

ä
be fixed. Note that from Lemma 6.5, there

exists a constant ‹Ct, depending only on ξ0 and t such that for all x ∈ RM(0)+1,

|ψt(x)| ⩽ C0 (τ1, 1)
Ä
1 + ∥x∥2

∞

ä
E(µ,ξ0)

(
exp

(
λtM2(0)

))
⩽ ‹Ct

Ä
1 + ∥x∥2

∞

ä
. (53)

Now, from Lemma 6.6 and the fact that τ1 is independent of (Xt)t⩾0, we obtain that¨
ψt, µ

M(0)+1
∂

= E(µ,ξ0)
(
Pξ0,M(0) (Xt∧τ1)

)
= Eξ0

(
PFVc (t ∧ τ1)Pξ0,M(0) (µ)

)
.

As τ1 follows an exponential law of parameter α0 we have that¨
ψt, µ

M(0)+1
∂

= PFVc (t)Pξ0,M(0) (µ) exp (−α0t) + α0

∫ t

0
PFVc (s)Pξ0,M(0) (µ) exp (−α0s) ds.

(54)
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Thanks to (53) and since µ has its moment of order 2 finite, the Fubini theorem ensures us
that ≠∫ t

0
exp (α0s)ψsds, µM(0)+1

∑
=

∫ t

0
exp (α0s)

¨
ψs, µ

M(0)+1
∂

ds.

From (54) we deduce that≠∫ t

0
exp (α0s)ψsds, µM(0)+1

∑
= α0

∫ t

0
exp (α0s)

∫ s

0
exp (−α0u)PFVc(u)Pξ0,M(0)duds+

∫ t

0
PFVc(s)Pξ0,M(0)(µ)ds

= exp (α0t)
∫ t

0
exp (−α0u)PFVc(u)Pξ0,M(0)(µ)du.

(55)

Then, the first announced result follows from (54) and (55) and the second one from (53).

6.2.2 Proof of Lemma 6.4

The key point of this proof is to establish that for all ξ0 ∈ C 4
b

Ä
RM(0),R

ä
, t ⩾ 0 and µ ∈ Mc,4

1 (R),

PFVc(t)Pξ0,M(0)(µ) =
¨
ξ0, µ

M(0)
∂

+
∫ t

0
Lλ

FVcPFVc(s)Pξ0,M(0)(µ)ds

= Pξ0,M(0)(µ) +
∫ t

0
Lλ

FVcPVs,M(0)+1(µ)ds.
(56)

where we use Proposition 6.7 in the second equality. To do this, we will first prove that for
all t ⩾ 0, there exists a constant Ct > 0 such that for all x ∈ RM(0)+1, ∥Hess (Vt) (x)∥∞ ⩽

Ct

Ä
1 + ∥x∥2

∞

ä
, so that Vt ∈ C 2

∥·∥

Ä
RM(0)+1,R

ä
.

For all n ∈ N⋆, for any function f : Rn → R, k ∈ N times differentiable, we denote by Dk the
differential of order k of f . Let t ⩾ 0, λ > 0, µ ∈ Mc,2

1 (R) and ξ0 ∈ C 4
b

Ä
RM(0),R

ä
be fixed.

Step 1. Preliminary bounds. Let x ∈ RM(0). It follows from (47) that

∂4
xixjxkxℓ

T (M(0))(t)ξ0(x)

=
M(0)∑

m,p,q,r = 1
∂xi

Ä
mλ

t,x

ä
m
∂xj

Ä
mλ

t,x

ä
p
∂xk

Ä
mλ

t,x

ä
q
∂xℓ

Ä
mλ

t,x

ä
r

Ä
gλ

t,0 ∗ ∂4
ymypyqyr

ξ0
ä Ä
mλ

t,x

ä
where

(
mλ

t,x

)
p

designates the pth component of mλ
t,x. Then, for all k ∈ {0, · · · , 4}, there exists a

constant C1 > 0 independent of x and t such that∥∥∥DkT (M(0))(t)ξ0(x)
∥∥∥

∞
⩽ C1

(
1 +

∥∥∥Dkξ0
∥∥∥

∞

)
.

From (45), (23) and (24), we deduce that there exists a constant C2 > 0 independent of t such
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that for all x ∈ RM(0)+1, for all k ∈ {0, 1, 2},

∥∥∥Dkξ
(M(0)+1)
t∧τ1 (x)

∥∥∥
∞

⩽ C1

(
1 +

∥∥∥Dkξ0
∥∥∥

∞

)
+

n∑
i,j = 1
i ̸= j

∥∥∥DkΦi,jT
(M(0))
λ (τ1) ξ0

(
x1, · · · , xM(0)−1

)∥∥∥
∞

+
n∑

i,j = 1

∥∥∥DkKi,jT
(M(0))
λ (τ1) ξ0(x)

∥∥∥
∞

⩽ C2

(
1 +

∥∥∥Dkξ0
∥∥∥

∞
+

∥∥∥Dk+2ξ0
∥∥∥

∞
x2

M(0)+1

)
.

By the theorem of differentiation under the integral sign, for all k ∈ {0, 1, 2} and x ∈ RM(0)+1,
we deduce that∥∥∥Dkψt(x)

∥∥∥
∞

⩽ exp
(
λM(0)2t

)
E(µ,ξ0)

(∥∥∥Dkξ
(M(0)+1)
t∧τ1 (x)

∥∥∥
∞

)
⩽ C2 exp

(
λM(0)2t

) Ä
1 + ∥x∥2

∞

ä
.

Then, from the definition of Vt in (52) we deduce that there exists a constant Ct such that for all
k ∈ {0, 1, 2}, for all x ∈ RM(0)+1,

∥∥∥DkVt(x)
∥∥∥

∞
⩽ Ct

Ä
1 + ∥x∥2

∞

ä
, so that Vt ∈ C 2

∥·∥

Ä
RM(0)+1,R

ä
.

Step 2. Proof of the key point (56). Thanks to (26), for all t ⩾ 0,

PFVc(t)Pξ0,M(0)(µ) = Pξ0,M(0)(µ) + Eµ

Å∫ t

0
Lλ

FVcPξ0,M(0) (Xs) ds
ã
.

From (25), there exists a constant C3 > 0 such that for all t ⩾ 0, Eµ

(∣∣Lλ
FVcPξ0,M(0) (Xt)

∣∣) ⩽

C3 (1 + Eµ (M2 (Xt))) which is finite from [16, Proposition 2.11] since µ ∈ Mc,4
1 (R). Hence, from

Fubini’s theorem we obtain that

PFVc(t)Pξ0,M(0)(µ) = Pξ0,M(0)(µ) +
∫ t

0
Eµ

Ä
Lλ

FVcPξ0,M(0) (Xs)
ä

ds. (57)

As Lλ
FVcPξ0,M(0)(µ) is a polynomial in µ and since

∣∣Lλ
FVc
(
Lλ

FVcPξ0,M(0)(µ)
)∣∣ ⩽ C4 (1 +M4 (µ))

for some constant C4 > 0, we deduce as in (43) that

Eµ

Ä
Lλ

FVcPξ0,M(0) (Xt)
ä

− Eµ

Ä
Lλ

FVcPξ0,M(0) (X0)
ä

= Eµ

Å∫ t

0
Lλ

FVc
Ä
Lλ

FVcPξ0,M(0)
ä

(Xs) ds
ã
.

In particular, t 7→ Eµ

(
LFVcPξ0,M(0) (Xt)

)
is continuous, so

Eµ

Ä
Lλ

FVcPξ0,M(0) (Xt)
ä

= lim
h→0

1
h
Eµ

Å∫ t+h

t
LFVcPξ0,M(0) (Xs) ds

ã
= lim

h→0

1
h
Eµ

(
Pξ0,M(0) (Xt+h) − Pξ0,M(0) (Xt)

)
= lim

h→0

1
h
Eµ

(
PFVc (t)Pξ0,M(0) (Xh)

)
− PFVc (t)Pξ0,M(0)(µ)

= lim
h→0

1
h
Eµ

(
PVt,M(0)+1 (Xh) − PVt,M(0)+1 (µ)

)
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where we used Markov’s property in the third equality and Proposition 6.7 in the last equality.
From Step 1, we deduce that there exists a constant C5 > 0 such that∣∣∣Lλ

FVcPVt,M(0)+1(µ)
∣∣∣ ⩽ C5 (1 +M4 (µ)) . (58)

Thus, from the martingale problem (43) and the continuity of t 7→ Eµ

(
LFVcPVt,M(0) (µ)

)
, we

have that

lim
h→0

1
h
Eµ

(
PVt,M(0)+1 (Xh) − PVt,M(0)+1 (µ)

)
= lim

h→0

1
h
Eµ

Å∫ h

0
Lλ

FVcPVt,M(0)+1 (Xs) ds
ã

= Lλ
FVcPVt,M(0)+1 (µ).

Therefore, we have proved that for all t ⩾ 0, for all µ ∈ Mc,4
1 (R),

Eµ

Ä
Lλ

FVcPξ0,M(0) (Xt)
ä

= Lλ
FVcPVt,M(0)+1(µ),

and so, by (57), we obtain (56).

Step 3. Conclusion. From (56) and (58) and since
∫

M1(R)M4 (µ) γ(dµ) < ∞, we deduce
that ∫

M1(R)
PFVc(t)Pξ0,M(0)(µ)γ(dµ)

=
∫

M1(R)
Pξ0,M(0)(µ)γ(dµ) +

∫ t

0

∫
M1(R)

Lλ
FVcPVs,M(0)+1 (µ)γ(dµ)ds

=
∫

M1(R)
Pξ0,M(0)(µ)γ(dµ),

where we used the assumption of Lemma 6.4 in the last equality.

As the set of test functions
{
Pf,n

∣∣∣ f ∈ C 4
b (Rn,R), n ∈ N⋆

}
is M1 (M1(R)) −convergence

determining [22, Lemma 2.1.2], it is M1 (M1(R)) −separating [34, Chapter 3, Section 4, p.112],
so we have for any bounded continuous function ϕ from M1(R) to R that∫

M1(R)
PFVc(t)ϕ(µ)γ(dµ) =

∫
M1(R)

ϕ(µ)γ(dµ).

Hence γ is an invariant probability measure for the centered Fleming-Viot process with resam-
pling rate λ. Now, from [16, Theorem 4.1], πλ is its unique invariant probability measure which
ends the proof of Lemma 6.4.

7 Characterisation of the limiting values of the slow component
Combining the results of Sections 5 and 6, we have proved that for all R > 0, the sequence of laws
of
(
zK,R,ΓK,R

)
K∈N⋆ is tight in M1

(
D ([0, T ],TR) × MT

m (M1(R))
)

and for any limiting value Q
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of this sequence, the canonical process
(
ζR,ΓR

)
on C 0 ([0, T ],TR) × MT

m (M1(R)) satisfies for
all f ∈ C 1

b (TR,TR), for all t ∈ [0, T ], Q−a.s.,

f
Ä
ζR

t

ä
= f
Ä
ζR

0
ä

+
∫ t

0

∫
M1(R)

LSLOWf
Ä
ζR

s , µ
ä
πλ(ζR

s ) (dµ) ds. (59)

From now on, we will establish in Section 7.1 with Lemma 7.1 that the sequence of laws of(
zK,R

)
K∈N⋆ converges weakly in D ([0, T ],TR) to the solution of an ODE in the torus. Finally,

Section 7.2 allows us to get away from the torus and to prove Theorem 2.1.

7.1 Convergence of the slow component on the torus

Lemma 7.1. The sequence
(
zK,R

)
K∈N⋆ converges in law in D ([0, T ],TR) to the unique solution

of
∀t ∈ [0, T ], zt = x0 +

∫ t

0
∂1Fit (zs, zs)β (zs)m2 (zs) ds (60)

on the torus TR.

Proof. For any limiting value Q of the sequence of laws of
(
zK,R

)
K∈N⋆ , from (9) and applying

(59) with f = id ∈ C 2
b (TR,TR), we deduce that Q−a.s.,

∀t ∈ [0, T ], ζR
t = ζR

0 +
∫ t

0

Å∫
M1(R)

M2 (µ)πλ(ζR
s )(dµ)

ã
∂1Fit

Ä
ζR

s , ζ
R
s

ä
ds.

From [16, Corollary 4.16], for all s ∈ [0, t],∫
M1(R)

M2 (µ)πλ(ζR
s ) (dµ) = 1

λ (ζR
s ) = β

Ä
ζR

s

ä
m2
Ä
ζR

s

ä
,

so ζR is solution of (60) Q−a.s. By uniqueness of the solution of (60), the announced result
follows.

7.2 End of the proof of Theorem 2.1

Let T > 0 be fixed and recall that and x0 is the mean trait value of νK
0 . From Lemma

7.1 and since the ODE (60) is non-explosive, we can choose R > 0 large enough such that
limK→+∞ P

Ä
zK,R

t ∈
[
x0 − R

2 , x0 + R
2
]
,∀t ∈ [0, T ]

ä
= 1. From Proposition 4.7 and (7), we have

that, limK→+∞ P
Ä
Diam

Ä
Supp νK,R

t

ä
⩽ 1

K1+ε/2 ,∀t ∈ [0, T ]
ä

= 1. Hence,

lim
K→+∞

P
Ä
Supp νK,R

t/Kσ2 ⊂ [x0 −R, x0 +R] ,∀t ∈ [0, T ]
ä

= 1.

Now, on the event
¶

Supp νK,R
t/Kσ2 ⊂ [x0 −R, x0 +R] ,∀t ∈ [0, T ]

©
, νK,R

t/Kσ2 = νK
t/Kσ2 for all t ∈

[0, T ], identifying x ∈ TR with its unique representant in [x0 − 2R, x0 + 2R]. In particular,

∀t ∈ [0, T ], zK,R
t = zK

t .

Theorem 2.1 then follows from Lemma 7.1.
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