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Oftentimes, turbulent flows exhibit a high-frequency turbulent component developing on a strong low-frequency periodic motion. In such cases, the low-frequency motion may strongly influence the spatio-temporal features of the high-frequency component. A typical example of such behaviour is the flow around bluff bodies, for which the high-frequency turbulent component, characterized by the Kelvin-Helmholtz structures associated to the thin shear-layers, depends on the phase of the low-frequency vortexshedding motion. In this paper, we propose extended versions of the Spectral Proper Orthogonal Decomposition (SPOD) and of the resolvent analysis that respectively extract and reconstruct the high-frequency turbulent fluctuation field as a function of the phase of the low-frequency periodic motion. These approaches are based on a Quasi-Steady (QS) assumption, which may be justified by the supposedly large separation between the frequencies of the periodic and turbulent components. After discussing their relationship to more classical Floquet-like analyses, the new tools are illustrated on a simple periodically-varying linear Ginzburg-Landau model, mimicking the overall characteristics of a turbulent bluff body flow. In this simple model, we will in particular assess the validity of the QS approximation. Then, we consider the case of turbulent flow around a squared-section cylinder at a Reynolds number of Re = 22000, for which we show reasonable agreement between the extracted spatio-temporal fluctuation field and the prediction of the QS resolvent analysis at the various phases of the periodic vortex shedding motion.

Introduction

Turbulent flows are ubiquitous in nature and in many engineering applications. In addition to the stochastic high-frequency component, they may also exhibit well organized large-scale / low-frequency structures, such as vortex shedding structures in bluff-bodies. In many applications, those structures often hold most of the energy present in the flow. For this reason, their study is mandatory for design, control, state-observation or reduced-order modeling. Such structures may be identified from data (from a numerical simulation or from experiments) or reconstructed from first-principles, where the underlying mathematical model is explored.

The most standard data-driven analysis is the Proper Orthogonal Decomposition (POD, see [START_REF] Berkooz | The proper orthogonal decomposition in the analysis of turbulent flows[END_REF][START_REF] Lumley | Stochastic tools in turbulence[END_REF])) which, if applied to a time-series data (also called 'snapshot POD'), will extract spatial orthogonal modes (together with their timevarying scalar amplitudes) that optimally represent the flowfield two-point correlation tensor, making it well suited for model-reduction. Although POD optimally reconstructs the time-series, the modes produced this way have no dynamical meaning. For this reason, other techniques were designed such as the Dynamic Mode Decomposition (DMD, see [START_REF] Schmid | Dynamic mode decomposition of numerical and experimental data[END_REF]), where modes are identified by supposing a linear relationship within the (nonlinear) time-series data, and the Spectral Proper Orthogonal Decomposition (SPOD) (see [START_REF] Picard | Pressure velocity coupling in a subsonic round jet[END_REF]; [START_REF] Towne | Spectral proper orthogonal decomposition and its relationship to dynamic mode decomposition and resolvent analysis[END_REF]). This last technique considers the cross-spectral tensor (computed from the statistics of several realizations) at given frequencies, from which its eigenvalues/vectors are found, leading to spatial structures and their corresponding energies, at that frequency. It was shown that SPOD is an optimal form of DMD for statistically stationary turbulent flows [START_REF] Towne | Spectral proper orthogonal decomposition and its relationship to dynamic mode decomposition and resolvent analysis[END_REF]).

From the first-principles point of view (operator-driven analysis), linear analyses based on the Navier-Stokes equations linearized around the (time-averaged) mean-flow are now common in literature. In particular, for turbulent flows, we highlight the resolvent analysis (see [START_REF] Mckeon | A critical-layer framework for turbulent pipe flow[END_REF]; [START_REF] Beneddine | Conditions for validity of mean flow stability analysis[END_REF]), that establishes that the turbulent fluctuation field can be modeled with the linearized dynamics forced by nonlinear fluctuations. The input/output relationship between the forcing term and the fluctuation represents the transfer function, or the resolvent operator, whose Singular Value Decomposition (SVD) establishes the most amplified forcing/fluctuation pairs, revealing the most energetic dynamics. This analysis produced modes comparable to those obtained with an SPOD analysis, under some assumptions on the correlations of the forcing terms [START_REF] Towne | Spectral proper orthogonal decomposition and its relationship to dynamic mode decomposition and resolvent analysis[END_REF].

Both SPOD and resolvent analyses have been extensively applied to flows such as wall-bounded flows (see [START_REF] Cossu | Optimal transient growth and very large-scale structures in turbulent boundary layers[END_REF]; [START_REF] Hellström | The energetic motions in turbulent pipe flow[END_REF]; [START_REF] Beneddine | Conditions for validity of mean flow stability analysis[END_REF]; [START_REF] Tutkun | Lumley decomposition of turbulent boundary layer at high reynolds numbers[END_REF]; [START_REF] Abreu | Spectral proper orthogonal decomposition and resolvent analysis of near-wall coherent structures in turbulent pipe flows[END_REF]; [START_REF] Lugrin | Transition scenario in hypersonic axisymmetrical compression ramp flow[END_REF], jets [START_REF] Schmidt | Spectral analysis of jet turbulence[END_REF]; [START_REF] Lesshafft | Resolvent-based modeling of coherent wave packets in a turbulent jet[END_REF]) and airfoils [START_REF] Symon | A tale of two airfoils: resolventbased modelling of an oscillator vs. an amplifier from an experimental mean[END_REF]; [START_REF] Yeh | Resolvent-analysis-based design of airfoil separation control[END_REF]), to mention a few.

In many turbulent flow conditions, a low-frequency large-amplitude oscillation can be present and can have a strong impact on other co-existing turbulent phenomena, modulating them. One very illustrative example is the blood flow in the heart or the air flow lungs where, according to the phase of the heart beat or of the inhalation/exhalation period, different physical phenomena may take place. Another example is rotating machines, where the turbulence emitted by the moving blades strongly depend on its position and thus on the phase of the rotation. This example is intimately connected to a broader category of problems, which are fluid-structure interactions, where mean-flow analyses do not make much sense (in those cases, a change in the reference frame may be needed, see for example, [START_REF] Shinde | Lagrangian approach for modal analysis of fluid flows[END_REF]). Also, flows around bluff bodies typically present a strong vortex-shedding motion where the small-scale turbulent structures evolving on top of them may exhibit different amplitudes, frequencies, and spatial locations depending on the phase and thus the position of the large-scale vortices. In figure 1, we present results pertaining to a squared-section cylinder at a Reynolds number equal to Re = U ∞ D/ν = 22000. In this flow, two very distinct physical mechanisms are at play: the periodic Vortex-Shedding (VS) and the Kelvin-Helmholtz (KH) instabilities in the detached shear-layers. We can see that the frequency of the former is much lower than the frequencies of the latter. Also, from the snapshots provided in figure (b), we can see that, due to the Vortex-Shedding phenomenon, the shear-layers on the top and bottom of the cylinder slowly oscillate, inducing changes in the dynamics of the Kelvin-Helmholtz structures evolving on top of them (see also [START_REF] Brun | Coherent structures and their frequency signature in the separated shear layer on the sides of a square cylinder[END_REF].

We remark that classical techniques such as POD, SPOD and resolvent analyses, although they can certainly identify/reconstruct all the physical structures in a given flowfield, elucidating all present physical mechanisms (see for example, Pickering et al. (2020a) where SPOD could unveil lift-up, Kelvin-Helmholtz and Orr mechanisms in a turbulent jet or [START_REF] Sieber | Spectral proper orthogonal decomposition[END_REF]; [START_REF] Mendez | Multi-scale proper orthogonal decomposition of complex fluid flows[END_REF] where classical POD techniques were adapted to provide a multi-scale analysis, isolating several physical mechanisms), they do not manage to describe the phase-dependency of the small-scale turbulent phenomena. The reason for this is that they all decompose the signal in spatial modes multiplied by a temporal behaviour. This implies that the spatial shape of a particular mode is not allowed to be altered. Indeed, for the squared-section cylinder, we can clearly see the motion of the high-frequency Kelvin-Helmholtz structures with the Vortex-Shedding motion, while classical SPOD and mean-flow resolvent analyses produce fixed spatial structures (see figure 2). Moreover, the SPOD mode shown in figure (a) exhibits, mostly in the bottom shear-layer, a shadow of the Kelvin-Helmholtz structures at different phases of the VS motion, a feature that we would like to mitigate in the present work. We remark that, similarly, those limitations on classical techniques, such as the 'snapshot POD', can also be observed in the case of highly advective flows or wave propagation phenomena, where solutions to those problems, although they may retain their shape, travel through space. In those cases, modified techniques may lead to better results (see for example [START_REF] Iollo | Advection modes by optimal mass transfer[END_REF][START_REF] Reiss | The shifted proper orthogonal decomposition: A mode decomposition for multiple transport phenomena[END_REF][START_REF] Cagniart | Model order reduction for problems with large convection effects[END_REF].

The goal of the present article is to extend SPOD and resolvent analyses so that they describe this phase-dependency. From an operator-driven point of view, when the phase-dependent dynamics evolves periodically, given by a periodic limit-cycle, a linear homogeneous dynamics can be studied by a Floquet-like analysis [START_REF] Barkley | Three-dimensional floquet stability analysis of the wake of a circular cylinder[END_REF][START_REF] Jallas | Linear and nonlinear perturbation analysis of the symmetry-breaking in time-periodic propulsive wakes[END_REF][START_REF] Shaabani-Ardali | Vortex pairing in jets as a global Floquet instability: modal and transient dynamics[END_REF]). In the non-homogeneous case, where an active forcing term (possibly unknown, as in a turbulent configuration) drives the system, a harmonic-resolvent analysis [START_REF] Wereley | Frequency response of linear time periodic systems[END_REF][START_REF] Padovan | Analysis of amplification mechanisms and cross-frequency interactions in nonlinear flows via the harmonic resolvent[END_REF] would provide, in a similar manner as in [START_REF] Mckeon | A critical-layer framework for turbulent pipe flow[END_REF]; [START_REF] Beneddine | Conditions for validity of mean flow stability analysis[END_REF], the most energetic input/output modes. Both approaches provide modes that evolve as a function of the phase of the periodic limit-cycle, which is what we are looking for. Yet, these approaches are very expensive and the question arises if simpler and cheaper approaches could be designed in the case where a separation of time-scales holds between the turbulent component (to be reconstructed) and the periodic motion. As an illustration, we may come back to the case of the squared-section cylinder, where the Kelvin-Helmholtz modes exhibit much higher frequencies than the Vortex-Shedding one (typically 20 to 30 times higher). In such cases, and it is the objective of this paper, we may develop a simplified approach based on a Quasi-Steady (QS) approximation, where the high-frequency dynamics adapts instantaneously to a slow periodic oscillation of the system. This allows us to study each phase of the slow movement independently from each other. This approach can be traced back to, for example, the case of the Stokes layer (Von [START_REF] Kerczek | Linear stability theory of oscillatory stokes layers[END_REF][START_REF] Blennerhassett | The linear stability of high-frequency oscillatory flow in a channel[END_REF], where parallel-flow linear stability analyses of each phase were performed independently. In this work, instead of parallel-flow stability analyses, we will consider the resolvent analysis. As a result, the reconstruction problem is drastically simplified (and therefore also its cost), since, instead of solving a space/time problem, we only have to solve several spatial ones, one for each considered phase. This analysis will be termed QS resolvent analysis.

From the data-driven point of view, we introduce an extended SPOD analysis based on the Short-Time Fourier-Transform (STFT) instead of the Fourier-Transform. This STFT extracts, at a given phase of the slow motion, the local frequency spectrum of the signal, from which the spectral correlation tensor is built, just as in classical SPOD. For this reason, this analysis will be referred to as Phase-Conditioned Localized (PCL) SPOD analysis.

The paper is organized as follows. First, in section 2, the theoretical aspects of the PCL-SPOD and QS resolvent analyses will be presented. For this, after introducing the Floquet stability theory (for homogeneous solution) and the harmonic-resolvent analysis (for the forced solution), we consider the Quasi-Steady approximation, which will result in the QS resolvent analysis. Then, we present the STFT and the PCL-SPOD. In section 3, we consider a simple model, a modified version of the linear Ginzburg-Landau equation, where the instability-parameter has been considered as time-dependent and periodic. We will illustrate the theory on this simple model, and in particular assess the validity of the Quasi-Steady approximation as a function of the time-scale separation between the solution and the instability-parameter. Then, in section 4, we will use those techniques to identify and reconstruct the Kelvin-Helmholtz structures for the squaredsection cylinder case, already presented in figure 1. In order to apply the new tools, the raw velocity/pressure signals of the DNS need first to be separated into a periodic (phase-averaged) motion and the remaining turbulent part. This will be achieved with a triple-decomposition as in [START_REF] Reynolds | The mechanics of an organized wave in turbulent shear flow. part 3. theoretical models and comparisons with experiments[END_REF][START_REF] Mezić | Analysis of fluid flows via spectral properties of the Koopman operator[END_REF][START_REF] Arbabi | Study of dynamics in post-transient flows using Koopman mode decomposition[END_REF].

Theory

The goal of this section is to introduce the tools, both operator-driven and data-driven, which aim at capturing high-frequency turbulent phenomena evolving according to the phase of a low-frequency periodic limit-cycle. They will be introduced with a generic model consisting in a linear periodically-time-varying forced equation.

A generic model

We consider the following generic linear forced system:

B∂ t w + L(t)w = P f (t), (2.1)
where w(t) and f (t) represent the state and forcing, B, L(t) and P are linear operators.

Operator L(t) is a time-periodic operator of fundamental frequency ω 0 = 2π/T 0 (representing the effect of the periodic evolution of the phase-averaged component on the fluctuation field), while f (t) is a generic forcing (due in turbulent flows to nonlinear interactions of fluctuations). Here we are particularly interested in the case of high frequency forcing ω f ω 0 .

Stability of unforced solutions

It is important for forced systems to determine whether the homogeneous solutions (f = 0) are stable or not. This is classically achieved in linear time-periodic systems with a Floquet stability analysis, where we look for solutions under the form w(t) = ŵ(t)e σt , where ŵ(t) is a T 0 -periodic eigenmode and σ its complex eigenvalue. If the real part of σ is larger than zero, then the eigenmode ŵ(t) is said to be Floquet-unstable. By replacing this Ansatz in equation (2.1), we get:

B∂ t ŵ + σB ŵ + L(t) ŵ = 0.
(2.2)

The resolution of this system, with for example, a time-stepping method combined with an eigen-solver, leads to the usual Floquet stability analysis (see ) is to pose the problem in frequency space by Fourier-decomposing the T 0 -periodic solution ŵ(t) and operator L(t) as:

ŵ(t) = lim N h →∞ +N h n=-N h ŵ(n) e inω0t , L(t) = lim N h →∞ +N h n=-N h L (n) e inω0t .
(2.3) Substituting this expression in equation (2.2), we obtain the following infinite-matrix eigenvalue-eigenvector problem:

(H + σB) Ŵ = 0, (2.4)
where B is an infinite block-diagonal matrix with B matrices on the diagonal, H is the so-called Hill matrix (see [START_REF] Lazarus | A harmonic-based method for computing the stability of periodic solutions of dynamical systems[END_REF],

H =         . . . . . . . . . . . . . . . • • • L (0) -iω 0 B L (-1) L (-2) • • • • • • L (1) L (0) L (-1) • • • • • • L (2) L (1) L (0) + iω 0 B • • • . . . . . . . . . . . . . . .         (2.5) and the eigenvector Ŵ = (• • • , ŵ(-1) , ŵ(0) , ŵ(1) , • • • ) T , (2.6)
is a column vector concatenating all harmonics of the time-periodic mode ŵ(t). This is the so-called Floquet-Hill theory, which allows us to see the Floquet eigenvalue/vector problem as a usual (yet infinite) matrix eigen-problem.

Forced solutions

In the case where the system is Floquet-stable, all homogeneous solutions decay to zero for t → ∞. Then, for a given forcing f (t), there exists a unique sustained solution w(t). We consider general forcing terms of the form, f (t) = k f (ω f,k , t)e iω f,k t , with different frequencies ω f,k and envelopes f (ω f,k , t) that are all T 0 -periodic. By linearity, we may then look for solutions under the form w(t) = k ŵ(ω f,k , t)e iω f,k t , where the envelopes ŵ(ω f,k , t) are also T 0 -periodic. Hence, without loss of generality, we may consider the single-frequency forcing case

f (t) = f (t)e iω f t , w(t) = ŵ(t)e iω f t , (2.7)
where the envelopes f (t) and ŵ(t) are both T 0 -periodic. Inserting this assertion into (2.1), we have:

B∂ t ŵ + iω f B ŵ + L(t) ŵ = P f . (2.8)
If f is available, the solution ŵ may be obtained by time-stepping the system until the transient has gone away (the system is Floquet-stable). Alternatively, similarly as before, we may pose this problem in frequency space by expanding the various terms in their Fourier series and rewrite the system (2.8) as:

(iω f B + H) Ŵ = P F.
(2.9)

Here P is a block-diagonal matrix containing the matrices P and F is the forcing term with all its time-harmonics:

F = (• • • , f (-1) , f (0) , f (1) , • • • ) T , f (t) = lim N h →∞ +N h n=-N h f (n) e inω0t .
(2.10)

The advantage of this approach is to show that the forced solution can be obtained by a usual (yet infinite) matrix inverse, which is called the Harmonic Resolvent operator. The latter operator therefore characterizes the input/output dynamics.

Resolvent analyses

Although equation (2.8) (or alternatively (2.9)) does provide the exact solution, given a known forcing term f (t) = f (t)e iω f t , we are interested in situations where the solution is primarily selected by the linear input/output operator and only marginally by the actual forcing. Such conditions are met when the Harmonic Resolvent operator is low-rank, which is a common situation in fluid mechanics due to the existence of strong instability mechanisms. For this purpose, as in [START_REF] Mckeon | A critical-layer framework for turbulent pipe flow[END_REF]; [START_REF] Beneddine | Conditions for validity of mean flow stability analysis[END_REF], we first ( §2.2.1) introduce the singular values/singular vectors of the Harmonic Resolvent operator, which characterize the rank of the operator and the predominant responses. Then ( §2.2.2), we focus on the case where the frequency of the forcing ω f is much higher than the frequency of the limit cycle ω 0 and introduce a Quasi-Steady (QS) approximation, which reduces the problem to a classical Resolvent analysis around a time-instant of the low-frequency motion.

Harmonic Resolvent analysis

Equation (2.9) establishes an input/output relation between a forcing term F and the solution Ŵ. Noting the Harmonic Resolvent operator R(ω f ) = (iω f B + H) -1 P so that Ŵ = R F (see [START_REF] Wereley | Frequency response of linear time periodic systems[END_REF][START_REF] Padovan | Analysis of amplification mechanisms and cross-frequency interactions in nonlinear flows via the harmonic resolvent[END_REF], we look for the most energetic input/output dynamics, maximizing the following energy gain over F: (2.11) subjected to Ŵ = R F. The infinite matrix M is block-diagonal with M Ω matrices on the diagonal, M Ω being linked to the energy norm ||u|| 2 Ω = u, u Ω and u, v Ω = Ω u * vdx. This then leads to the following (infinite-matrix) eigen-problem:

γ 2 (ω f ) = T0 0 || ŵ(t)|| 2 Ω dt T0 0 || f (t)|| 2 Ω dt = Parseval i || ŵi || 2 Ω i || fi || 2 Ω = i ŵ * i M Ω ŵi i f * i M Ω fi = Ŵ * M Ŵ F * M F ,
R * MR Fi (ω f ) = γ 2 i (ω f )M Fi (ω f ), (2.12) 
where R * is the transconjugate of R. The normalized vectors Fi are the optimal forcings such that Fi M Fj = δ ij , for each frequency. The corresponding unit-norm optimal responses are given by the relation Ψi (ω f ) = γ -1 i R Fi (ω f ). Similarly to [START_REF] Beneddine | Conditions for validity of mean flow stability analysis[END_REF], it may be shown that, if

γ 0 (ω f )| F0 (ω f ) * M F| γ i (ω f )| Fi (ω f ) * M F| for i 1 (which is the case if the Harmonic Resolvent operator is strictly rank one, γ 0 (ω f ) > γ 1 (ω f ) = 0), then: Ŵ(ω f )e iω f t ≈ A Ψ0 (ω f )e iω f t .
(2.13)

with A = γ 0 (ω f )[ F0 (ω f ) * M F].
This result states that the spatial structure of the response is at all times proportional to the dominant singular mode of the Harmonic Resolvent operator. Stochastic arguments as in [START_REF] Towne | Spectral proper orthogonal decomposition and its relationship to dynamic mode decomposition and resolvent analysis[END_REF] may also be provided to justify such a result.

Quasi-Steady Resolvent analyis

If the envelope of the forcing f (t) evolves on the slow time-scale T 0 and if ω 0 ω f , then it is reasonable to simplify the term B∂ t ŵ in equation (2.8) (as done in Von [START_REF] Kerczek | Linear stability theory of oscillatory stokes layers[END_REF] for the Stokes layer analysis), which should be small with respect to iω f B ŵ. We therefore end-up with the following simpler equation:

iω f B ŵ(t) + L(t) ŵ(t) = P f (t).
(2.14)

There are actually conditions for this approximation to hold. More insight can be gained by considering the system involving the Floquet-Hill matrix, eq. (2.9). Yet, for brevity, we have put these arguments in appendix A. Eq. (2.14) is the Quasi-Steady (QS) approximation, whose solution can be recast in the following form: (2.15) where R t = (iω f B + L(t)) -1 P is the QS resolvent operator. The solution at each time t 1 , ŵ(t 1 ), is therefore independent of the solution at any other time t 2 , ŵ(t 2 ). We see that each time-instant (or phase, within the period [0, T 0 )) can be analysed separately.

ŵ(t) = R t f (t),
Under the Quasi-Steady (QS) approximation given by (2.14), we then look for the most energetic input/output dynamics, maximizing the following energy gain over f [START_REF] Mckeon | A critical-layer framework for turbulent pipe flow[END_REF]; [START_REF] Beneddine | Conditions for validity of mean flow stability analysis[END_REF]):

γ 2 (ω f , t) = || ŵ|| 2 Ω || f || 2 Ω = ŵ * M Ω ŵ f * M Ω f , (2.16)
under the constraint ŵ = R t f . This leads to the following (finite-matrix) eigen-problem:

R * t M Ω R t f i (ω f , t) = γ 2 i (ω f , t)M Ω f i (ω f , t), (2.17)
where R * t is the transconjugate of the resolvent R t . The normalized vectors f i (ω f , t) are the optimal forcings such that f * i M Ω f j = δ ij , for each frequency and phase. The corresponding optimal fluctuations are given by the relation ψ

i (ω f , t) = γ i (ω f , t) -1 R t f i (ω f , t).
Similarly to the previous section, it may be shown that, in the presence of a nearly rank-one R t operator:

ŵ(ω f , t)e iω f t ≈ A(t) ψ 0 (ω f , t)e iω f t .
(2.18)

with A as a complex constant. This result states that the spatial structure of the highfrequency response is at all times proportional to the dominant singular mode of the QS Resolvent. Stochastic arguments as in [START_REF] Towne | Spectral proper orthogonal decomposition and its relationship to dynamic mode decomposition and resolvent analysis[END_REF] may also be provided to obtain such a result.

Data-driven approach

In this section, we address the problem of identifying from data high-frequency structures evolving on slowly-varying periodic limit-cycles. This analysis is based on the Short-Time Fourier-Transform (STFT), which is used as input to define an extended version of Spectral Proper Orthogonal Decomposition (SPOD). This approach is termed Phase-Conditioned Localized SPOD.

Short-Time Fourier-Transform analysis

The Quasi-Steady approach is well suited for the determination, from the knowledge of the governing equations, of high-frequency fluctuations at every phase within a slowlyvarying limit-cycle. In this paragraph, we look at the data-driven side where, from the raw signal w(t), we will try to answer this same question and identify within the signal high-frequency patterns that behave as ŵW (t)e iωt . Again, the envelope ŵW (t) evolves on a slow time-scale of the order T 0 while the exponential is based on a rapid frequency ω ω 0 . For this, we consider the signal around a phase t by multiplying it by a window function W (τ -t), leading to a phase-conditioned localized signal:

w W (τ, t) = W (τ -t)w(τ ), (2.19)
where the notation (•) W is for the windowed function. This window function W (η) will be chosen to have a compact support of duration ∆T , with W (η) > 0 for η ∈ (-∆T /2, ∆T /2) and 0 elsewhere, and unit integral over η. 

(∆T ωη/2)(1-(∆T ωη/2π) 2 ) .
content of the signal in the vicinity of the phase t, we Fourier-transform this quantity:

ŵW (ω, t) = +∞ -∞ w W (τ, t)e -iωτ dτ = +∞ -∞ W (τ -t)w(τ )e -iωτ dτ.
(2.20)

This is exactly the Short-Time Fourier-Transform (STFT) or Windowed Fourier-Transform (see [START_REF] Griffin | Signal estimation from modified short-time Fourier transform[END_REF]).

For simplicity, let us choose a signal of the form w(t) = ŵ(t)e iω f t , with |ω f | ω 0 . For the case where several frequencies ω f,k are present, the arguments given in the following also apply. Since ŵ(t) is a slowly-evolving envelope on the time-scale T 0 , if ∆T T 0 , then ŵ(t) is nearly constant within the window W (t -τ ) and may be taken out of the integral:

ŵW (ω, t) = +∞ -∞ W (τ -t) ŵ(τ )e iω f τ e -iωτ dτ ≈ ŵ(t) +∞ -∞ W (τ -t)e i(ω f -ω)τ dτ ≈ ŵ(t)e i(ω f -ω)t +∞ -∞ W (τ )e -i(ω-ω f )τ dτ ≈ ŵ(t)e i(ω f -ω)t Ŵ (ω -ω f ).
(2.21)

This shows that the STFT of the signal is approximately proportional to ŵW ≈ ŵ(t)e i(ω f -ω)t , with a constant of proportionality equal to the Fourier transform of the Window function Ŵ (ω -ω f ). The latter is shown in figure 3 (b) for the Hann window.

From this, we can see that we have two cases:

(i) If ω is close to ω f but still satisfying |ω -ω f |/ω 0 (∆T /T 0 ) -1 , then the constant Ŵ (ω -ω f ) is close to 1. In such a case, we have ŵW (t) ≈ ŵ(t)e i(ω f -ω)t , (2.22)
and the actual frequency of the structure ω f may be determined by looking for the frequency ω for which ŵW (t) is T 0 -periodic. In such a case, we finally have ŵW (t)e iωt ≈ ŵ(t)e iω f t , which shows that the STFT accurately identifies the spatio-temporal structure.

In practice, the STFT ŵW (ω, t) is computed using a Fast Fourier Transform (FFT) algorithm, which provides ŵW (ω, t) on a frequency grid. This first scenario corresponds to the case where a frequency ω on that grid approximately corresponds to ω f . Note that when the time-resolution is very high, ∆T /T 0 1, the range of frequencies |ω -ω f | over which Ŵ (ω -ω f ) remains equal to 1 becomes very large, which translates in the fact that the frequency-resolution ∆ω = 2π/∆T in the FFT becomes very bad.

(ii

) If the frequency ω is very different from ω f , such that |ω -ω f |/ω 0 (∆T /T 0 ) -1 ,
Ŵ (ω-ω f ) tends to zero, making ŵW → 0. For far enough frequencies, the STFT therefore filters out the signal.

Those remarks are especially important in the case where several different frequencies ω f,k are present in the signal, w(t) = k ŵ(ω f,k , t)e iω f,k t . In that case, ŵW (ω, t), computed at ω will be influenced by nearby frequencies ω f,k in the interval (ω-π/∆T, ω+ π/∆T ). For this reason, if we want to isolate specific frequencies ω f,k with ŵW , a large ∆T must be chosen, but still with the constraint ∆T T 0 , so that the phase-dependency ŵW (t) is not entirely lost (time-resolution). A further discussion on this compromise will be provided in the next section on a numerical problem. We also point out that if two distinct frequencies ω f,k are close to each other, it may no longer be possible to distinguish their modes ŵ(ω f,k , t).

Phase-Conditioned Localized SPOD analysis

In turbulent configurations, we are often interested in the stochastic framework, where several realizations of the flow are considered. From the data-driven point of view, this will be accounted for by a Proper Orthogonal Decomposition (POD) analysis of the realizations of the STFT, ŵW . Since this approach considers the signal conditioned by the phase of the low-frequency motion of the dynamics and since each phase is evaluated locally and independently of the other phases (due to the Quasi-Steady considerations), we will refer to it as Phase-Conditioned Localized (PCL) SPOD analysis.

This PCL-SPOD analysis is very closely related to the classical SPOD (see [START_REF] Towne | Spectral proper orthogonal decomposition and its relationship to dynamic mode decomposition and resolvent analysis[END_REF])) where, from a practical point of view, the only difference is that we perform the POD with modes issuing from a STFT performed on a small interval of length ∆T rather than from a Fourier Transform (FT) or STFT, performed on the full length of the bin. Basically, we are trying to maximize over φ(x, ω, t) the energy:

λ 2 (ω, t) = E ŵW (x, ω, t), φ(x, ω, t) Ω 2 φ(x, ω, t), φ(x, ω, t) Ω , (2.23)
where u, v Ω = Ω u * vdx is the energy inner-product. The quantity ŵW (x, ω, t) is stochastic and depends on the realization. The notation E[•] is the expected value operator, and is defined to be an average over all realizations, each of size T 0 . This problem is equivalent to solving the following eigenvalue/vector problem:

Ω S(x, x , ω, t) φi (x , ω, t) dx = λ i (ω, t) 2 φi (x, ω, t), (2.24)
where S(x, x , ω, t) is the cross-spectral tensor, evaluated at the phase (or time) t, and is defined as:

S(x, x , ω, t) = E [ ŵW (x, ω, t) ŵ * W (x , ω, t)] ,
(2.25)

We believe that, in a similar way that classical SPOD is related to space/time POD [START_REF] Towne | Spectral proper orthogonal decomposition and its relationship to dynamic mode decomposition and resolvent analysis[END_REF], this PCL-SPOD is related to the conditional space/time of [START_REF] Schmidt | A conditional space-time pod formalism for intermittent and rare events: example of acoustic bursts in turbulent jets[END_REF]; [START_REF] Hack | Extreme events in wall turbulence[END_REF] when the conditioning signals are the phases of the lower-frequency dynamics. A proof of this is given in appendix B.

Phase-average and numerical implementation of the PCL-SPOD

We will now precise how to estimate the operator E[•]. Since the low-frequency oscillation is T 0 -periodic, we will consider here N p individual periods as independent realizations of the fluidflow. In this context, the expected value operator writes:

E[w](t) ≡ w (t) = 1 N p Np k=1 w(x, t + kT 0 ), for t ∈ [0, T 0 ). (2.26)
This is precisely the definition of the phase-average • introduced by [START_REF] Reynolds | The mechanics of an organized wave in turbulent shear flow. part 3. theoretical models and comparisons with experiments[END_REF], where they also looked for capturing turbulent oscillations around a periodic wave of period T 0 at different phases of the period [0, T 0 ). We remark that this operator readily considers the signal w(t) at the same phases of the slowly-varying dynamics since we evaluate the signal w(t) at time instants modulo T 0 . With that in mind, the spectral tensor S defined in (2.25) can be approximated as:

S(x, x , ω, t) = 1 N p Np k=1 ŵW (ω, t + kT 0 ) ŵ * W (ω, t + kT 0 ) ≡ Ŵ(ω, t) Ŵ(ω, t) * , (2.27)
where Ŵ(ω, t) is a matrix containing the STFT (normalized by 1/ N p ) of all the periods considered for a given phase t and frequency ω. In figure 4, we provide a schematic representation of how this matrix Ŵ(ω, t) is computed from data. Also, from now on, we will no longer consider the problem posed in the continuous framework, and we will consider that all the space integrals presented so far are given, in a discrete formalism, by the matrix M Ω , containing the integration weights. In this framework, the PCL-SPOD problem is re-written as:

Ŵ Ŵ * M Ω φ(ω, t) = λ 2 (ω, t) φ(ω, t).
(2.28)

It is worth-mentioning that this problem involves finding the eigenvalues/eigenvectors of a large dense matrix Ŵ Ŵ * . Instead, we solve the following eigenvalue/eigenvector problem:

Ŵ * M Ω Ŵŷ(ω, t) = λ 2 (ω, t)ŷ(ω, t), (2.29)
involving a much smaller matrix Ŵ * M Ω Ŵ, whose dimension is the number of bins. The PCL-SPOD mode can then be recovered as φ = λ -1 Ŵŷ.

Application to the case of modified linear forced Ginzburg-Landau model

In this section, we illustrate the theory on a simple and well understood model, the linear Ginzburg-Landau equation. This equation has served as a prototype for modeling and understanding fluid dynamics instabilities in parallel and non-parallel wake flows (see, for example, [START_REF] Chomaz | Bifurcations to local and global modes in spatially developing flows[END_REF][START_REF] Roussopoulos | Nonlinear modelling of vortex shedding control in cylinder wakes[END_REF][START_REF] Cossu | Global measures of local convective instabilities[END_REF]) and for the design of control strategies (see [START_REF] Lauga | The decay of stabilizability with reynolds number in a linear model of spatially developing flows[END_REF]Bagheri et al. 2009;[START_REF] Chen | H2 optimal actuator and sensor placement in the linearised complex ginzburg-landau system[END_REF]. For this simple 1-D model, we are able to perform all the analyses presented in the previous section, compare them and also assess the QS approximation. Here, B = P = I are identity matrices and

L = U ∂ x -ν∂ xx -µ, and µ = µ 0 -c 2 u + µ 2 x 2 2 , (3.1)
with |w(x → ±∞, t)| → 0. This model mimicks an open-flow around a bluff-body, which is characterized by downstream advection U , diffusion ν and an instability term (µ 0 , c u , µ 2 ) standing for production of perturbations due to shear in the recirculation region. The spatial extent of the unstable region is governed by µ 2 : when considering a parallel (µ 2 = 0), unforced (f (t) = 0) case, a solution under the form w = qe ikx-iωt is unstable Figure 4: Schematic representation of how to compute the PCL-SPOD from data of a single run w(t), divided in N p periods (or bins). This is equivalent to the Welch algorithm [START_REF] Welch | The use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms[END_REF]) where no overlap between the bins is used, in order to keep the phasedependency.

for wavenumbers in the interval k

∈ (c u - √ µ 0 , c u + √ µ 0 ) (see Bagheri et al. (2009)),
showing that µ 0 = 0 is the critical value for local temporal instabilities, above which waves of size around k = c u are amplified. For the nonparallel case, µ 2 = 0, the stability of the system can be interrogated by the ansatz w = q(x)e λt , leading to:

λ n = µ 0 -c 2 u -(U 2 /4ν) -(n + 1/2)h, qn = e (U/2ν)x-χ 2 x 2 /2 H n (χx) (3.2)
where h = √ -2µ 2 ν and χ = (-µ 2 /2ν) 1/4 . The system is thus globally stable when the real part of λ 0 is less than zero, or, µ 0 < µ 0,cr . For the following set of parameters (Bagheri et al. (2009)):

c u = 0.1, µ 2 = -0.01, U = 2 + 2ic u , ν = 1 -i. (3.3)
the critical value is µ 0,cr ≈ 0.4827. However, although the system is stable, it may strongly amplify external noise (pseudo-resonance phenomenon due to the non-normality of the linear operator). To quantify this behavior, we resort to resolvent analysis where we suppose that both the forcing term and the solution can be written as f (x, t) = f (x)e iωt and w(x, t) = ŵ(x)e iωt , and maximize the energy gain γ (ω) = || ŵ|| Ω /|| f || Ω , leading to the figure 5. We can see that those gains can be very high, even for subcritical values of µ 0 . The discretization of the spatial operators in the Ginzburg-Landau model is handled with 2nd-order P2 continuous elements using the code FreeFEM [START_REF] Hecht | New development in freefem++[END_REF], the source code used here having been adapted from [START_REF] Sipp | Nonlinear model reduction: A comparison between pod-galerkin and pod-deim methods[END_REF]. The mesh is uniform with ∆x = 0.05 and extends over x ∈ [-30, 100], well enough for discretizing the regions where the instability term is positive (µ(x) > 0 roughly for |x| 20). The optimal forcings / responses were obtained using Arpack [START_REF] Lehoucq | ARPACK users' guide: solution of large-scale eigenvalue problems with implicitly restarted Arnoldi methods[END_REF]) combined with a direct LU-solver [START_REF] Amestoy | Performance and Scalability of the Block Low-Rank Multifrontal Factorization on Multicore Architectures[END_REF] for the matrix inverses.

In order to obtain a model whose dynamics varies periodically, we choose to make µ 0 time-dependent in the following manner:

µ 0 (t) = µ 0 + A µ0 sin(ω 0 t -π/2), (3.4)
where µ 0 is the average value, A µ0 is the amplitude and ω 0 the frequency for the oscillation of µ 0 (t). We may expect that the dynamics presented in figure 5 can be recovered at all phases within t ∈ [0, T 0 ) for a sufficient low oscillation frequency ω 0 ω. This is essentially the Quasi-Steady approach, which will be investigated in the following.

Floquet-stability analysis

In this section, we present the Floquet stability analysis. This analysis is carried out using the Floquet-Hill theory. The eigen-value problem (2.9) is solved using a shift-andinvert strategy (the matrix inverses being handled with the sparse LU solver), associated to an Arnoldi method. The number of harmonics considered was N h = 60, corresponding to a frequency-discretization ranging from -0.94 to 0.94. In figure 6 (a), we provide the Floquet spectrum for the parameters µ 0 = 0.4 and A µ0 = 0.05, which shows that all the modes present are stable.

One interesting feature shown in this figure is the ω 0 -periodicity of the spectrum. To understand this feature, we rewrite the eigen-solution solution w as:

w(t) = e σt n ŵn e inω0t ŵ(t) = e (σ+imω0)t n ŵn e i(n-m)ω0t = e σmt n ŵn+m e inω0t shifted ŵ(t) . (3.5) Hence, if a mode Ŵ = (• • • , ŵ-1 , ŵ0 , ŵ+1 , • • • ) is an eigenvector with eigenvalue σ, so is Ŵm = (• • • , ŵm-1 , ŵm , ŵm+1 , • • • ) with eigenvalue σ m = σ + imω 0 .
We remark that the property, although valid theoretically, may not fully hold when truncating the series representation in (2.7) to N h harmonics, since, for some m, the mode Ŵm may not be well represented with the considered harmonics. Also, we verified that for other values of µ 0 , A µ0 and ω 0 , the system remains Floquetstable. In the following, we will use the set of parameters:

ω 0 = 2π × 0.0025 ≈ 0.016, µ 0 = 0, A µ0 = 0.45.
(3.6)

Single-frequency forcing case

We consider the single frequency forcing case, f (t) = f (t)e iω f t , for which the solution can be sought under the form w(t) = ŵ(t)e iω f t . The latter is computed by solving the linear system involved in eq. (2.9) with the direct LU solver. In figure 7, we provide the solution for the case ω f = -30ω 0 ≈ -0.47, near the peak of the energy gain curve in figure 5, and a constant in time envelope f (x, t) = g(x), where g

(x) = e -(x-x f ) 2 /σ 2
x is a spatial gaussian localized at x f = -11 and of width σ x = 0.4. In figure (a), we can see that the instability parameter µ 0 (t) presents large values around t/T 0 ≈ 0.5. In (b) we show the real part of the forcing term f (t) = g(x)e iω f t , which shows that the envelope is constant over the interval t/T 0 ∈ [0, 1) and that the forcing frequency ω f is high. In (c) we show the solution (real part) in the (x, t) plane, with a snapshot at t/T 0 = 0.5 in (e). We can see that it has a similar oscillatory behavior as the forcing term but, now, due to the advection term present in the model (which displaces the structure seen in (e) in the downstream direction), we can see elongated "streaks" (that oscillate in time and space). This "streaky" behavior is not present in figure (d), which shows the real part of the envelope ŵ(t). We indeed see that it evolves slowly on the T 0 -time-scale, which motivates a Quasi-Steady approach, discussed in the next paragraphs. It is also interesting to notice that the advection term makes the solution exhibit its maximum a little later than t/T 0 = 0.5 (for which the instability term µ 0 (t) is maximum).

Harmonic Resolvent analysis

We address now the Harmonic-Resolvent analysis. We restrict the analysis to the value of ω f = -30ω 0 used in the previous paragraph. Similarly to the eigen-spectrum, it may be shown that the singular values of the Harmonic Resolvent operator R(ω f ) are also ω 0 -periodic, which means that it is enough varying ω f in the interval [ω, ω + ω 0 ) (see [START_REF] Wereley | Linear time periodic systems: transfer function, poles, transmission zeroes and directional properties[END_REF]).

In figure 8, we plot the first five modes. Interestingly, the first mode exhibits strong oscillations only in a narrow interval around t/T 0 ≈ 0.5. Looking now to the sub-optimal modes, we realize that more and more peaks can be seen in the envelopes, each peak being localized around different times within [0, T 0 ). We believe that the larger the frequency separation ω f /ω 0 , the more peaky the envelopes of the resolvent modes. Indeed, in the limiting case where the terms related to ω 0 can be neglected in the shifted Floquet-Hill matrix (leading to eq. (A 1)), it can be diagonalised using the discrete Fourier Transform (see app. A), leading to the Quasi-Steady approximation. Since this approximation yields

µ0(t) f (x, t) w(x, t) ŵ(x, t) t T 0 x x x (a) (b) (c) (d)
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Figure 8: Harmonic-resolvent response modes for ω f = -30ω 0 ≈ -0.47: in (a-e) we plot the real part of the first five modes, { Ψi (ω f , t)e iω f t }.

independent blocks at each time, its corresponding singular modes should also be localized at given time instants, as suggested by the Harmonic resolvent analysis if ω f /ω 0 is increased. Also, we can see from table 1 that the singular values are quite close to each other. This fact implies that the use of the first mode only (as in [START_REF] Beneddine | Conditions for validity of mean flow stability analysis[END_REF]) to represent the fluctuation field may not be enough. Indeed, in that same table, we also plot the cumulative projection of the exact solution presented in figure 7 on the Harmonic Resolvent modes. We can see that, to recover 95% of the fluctuation's energy, we need at least three modes. Also, the first mode is only able to recover 67% of the 

= n-1 i=0 | T 0 0 Ψi(t), ŵ(t) Ω | 2 dt T 0 0 || ŵ(t)|| 2 Ω dt
, for the solution w(t) = ŵ(t)e iω f t presented in figure 7.

n = 0 n = 1 n = 2 n = 3 n = 4
γn 461.2 280.8 203.9 157.9 127.0 pn 66.8% 89.5% 96.9% 97.1% 97.9%

fluctuation's energy. In the next section, we will exploit the basis generated by the QS resolvent approximation, and compare it with the harmonic resolvent approach.

Quasi-Steady Resolvent analysis

To assess the validity of the Quasi-Steady approach, we compare here two aspects. First, we evaluate, as a function of the frequency ratio ω f /ω 0 , how close the solution w(t), computed by equation (2.8) or (2.9) is to its Quasi-Steady approximation, given by equation (2.14), for a given forcing term equal to f (x, t) = g(x). According to the arguments presented in the previous section, they should be closer to each other for high frequency ratios. Second, we will investigate how well a basis, formed by the Singular Value Decomposition (SVD) of the QS Resolvent R t , captures the features of the above solution w(t), also according to the frequency ratio.

In figure 9, we plot the real component of the exact and QS solutions w(t) for three different frequency ratios, ω f /ω 0 = -10, -20 and -30. The forcing frequency is kept constant and equal to ω f ≈ -0.47 while the frequency ω 0 is varied. We can see that for lower frequency ratios ω f /ω 0 , the exact solution is weaker and exhibits a time-lag with respect to the QS solution. Obviously, it is the (neglected) time-derivative term ∂ t ŵ in the QS approximation that is responsible for these discrepancies. However, when the frequency ratio is increased, both approaches produce very similar solutions. Indeed, for ω f /ω 0 = -20, both solutions exhibit similar amplitudes and the Quasi-Steady solution is nearly in phase in comparison with the exact one. For ω f /ω 0 = -30, both solutions are exactly the same. Finally, it is important to note that the validity of the Quasi-Steady approach can be inferred a posteriori from the sole knowledge of the QS solution by checking its frequency content ŵ

(t) = R t f (t) = n ŵ(n) e inω0t
, that is all energetic frequencies nω 0 should satisfy |nω 0 | |ω f |. We now turn our attention to the QS resolvent analysis, and its use as a basis to represent the above solution. In figure 10, we plot the QS resolvent gains γ , together with the cumulative projection of the above solution w(t) onto the QS resolvent basis (similarly to what was done for the harmonic resolvent), for every time t. The leading resolvent mode γ 0 ψ 0 , computed at the frequency ω f /ω 0 = -30, whose phase was adjusted according to the solution in figure 7 (d), is shown in (d). From the resolvent gains, we can see that for the three frequency ratios, the first singular value γ 0 (t) is much larger than the suboptimal ones at the phase t/T 0 = 0.5, where µ 0 is maximal. This phase is not necessarily close to the phase where the energy of the actual solution is maximal (presented in dashed lines), as already noted before. Also, we can see that the projection of the solution onto the leading resolvent mode (blue region) is very close to 100% at

Exact QS Exact QS Exact QS t T 0 x x x x x x (a) ω f ω 0 = -10 (b) ω f ω 0 = -20 (c) ω f ω 0 = -30
Figure 9: Comparison between exact (2.9) and QS (2.14) solutions for a single-frequency forcing term with f (x, t) = g(x) and three frequency ratios ω f /ω 0 = -10, -20 and -30.

The zero level of the function µ(x, t) = µ 0 (t) -c 2 u + µ 2 x 2 /2 is also given.

the peak of the energy of the solution, for all three frequencies. As the frequency ratio is increased, the phase-interval where the projection is close to 100% gets wider and thus the leading mode exactly represents the solution over a large time-interval. We point out that, in all cases, more singular modes are required to represent the actual solution when the energy of the solution becomes low. However, at these times, the amplitude of the solution is very weak, so that the failure of the dominant mode to represent the solution is not very relevant. Interestingly, even for the lowest frequency case (and thus the least favorable for the QS approximation), only two or three QS resolvent modes are necessary to represent the solution over the whole time-interval [0, T 0 ). For this reason, we conclude that the QS Resolvent basis may correspond, at high frequencies, to a better basis than the Harmonic Resolvent basis since it leads to a more compact representation of the solution (one spatial mode may be enough at all phases, whereas two or three modes may be required for the Harmonic Resolvent case, see table 1). This good agreement between the QS resolvent analysis and the solution itself can be appreciated in the figure (d), showing the leading singular mode, which is very similar to figure 7 (d).

Lastly, other set of parameters c u (such as c u = 0.5 and c u = 2) and U (such as U = 0.5+2ic u and U = 4+2ic u ) have also been investigated to check whether the spatial structure of the perturbations (number of wavelengths within the amplified solution) and the advection velocity had an effect on the QS steady approximation. It was found that even for thise cases, increasing the frequency ratio ω f /ω 0 made the QS solution to approach the exact one, in a similar manner as presented in figures 9 and 10. The same was true when considering a spatially and time varying advection velocity, U = U 0 + U 1 cos(x -ω 0 t), mimicking the case of high-frequency perturbations developing on the upstream shear-layers of cylinder flows.

Short-Time Fourier-Transform analysis

We investigate here the capacity of the Short-Time Fourier-Transform, ŵW , to recover the envelope ŵ(t) of the solution w(t) = ŵ(t)e iω f t . More precisely, we investigate here two aspects discussed before: the impact of the time-resolution ∆T /T 0 when ω ≈ ω f and the effect of spectral leakage when ω = ω f .

For the first aspect, in figure 11 (a,b,c), we provide ŵW (x, t), computed at ω = ω f for three different time-resolutions ∆T /T 0 = 1/15, 1/5 and 1/2. We can clearly see that, for very large ∆T /T 0 , the time-resolution becomes very poor, spreading the solution over the whole time-interval [0, T 0 ), while the solution is strongly localized around t/T 0 ≈ 0.5 Gains Cumul. Proj. Gains Cumul. Proj. Gains Cumul. Proj. γ 0 (t) ψ 0 (x, t) t T 0 (a)

ω f ω 0 = -10 (b) ω f ω 0 = -20 (c) ω f ω 0 = -30 (d)
Figure 10: Normalized Resolvent gains γ i=0,1 (t)/(max t γ 0 (t)) (red and blue solid lines)

together with the cumulative projection p n (t) =

n-1 i=0

| ψ i (t), ŵ(t) Ω | 2 || ŵ(t)|| 2 Ω
of the exact solution on the first SVD modes (colour shaded areas). The blue shaded area corresponds to the projection on the first mode (p 0 ), the red shaded area on the two-first ones (p 1 ), and so on (green for p 2 , purple for p 3 and grey for p 4 ). For comparison (dashed black lines), we also plot the normalized energy of the solution || ŵ(t)|| 2 Ω . For the frequency ω f /ω 0 = -30, the leading mode γ 0 (t) ψ 0 (x, t) is shown in (d) with the same colour bar as the exact solution shown in figure 7 (d). Its phase and overall amplitude (the complex A coefficient in (2.18)) was adjusted to match the one of the exact solution.

(see figure 7 (d)). On the other hand, if we reduce the parameter ∆T /T 0 we may recover the time-resolution, making ŵW (t) to be closer to the envelope ŵ(t), as is the case when ∆T /T 0 = 1/15. However, one has to keep in mind that the higher the time-resolution is, the lower is the spectral resolution, favoring the phenomenon of spectral leakage, where large amplitudes (which should be weak) can be obtained when ω = ω f . This is illustrated in figure (d), where we have computed ŵW for ω/ω 0 = -25 = -30 (for ∆T /T 0 = 1/15) and we still obtain large amplitude signals. As seen in eq. (2.22), this signal should be close to the original mode shifted in frequency, ŵ(t)e i5ω0t , also provided in (e). Although in this single-frequency forcing case this phenomenon is not too relevant, this can affect the results in the multi-frequency forced case, as we will see in the following.

Multi-frequency forcing case

We consider now the case where the forcing term f (t) contains several frequencies ω f,k , so that f (t) = k f (ω f,k , t)e iω f,k t . The solution of this system, as mentionned previously, is of the form w(t) = k ŵ(ω f,k , t)e iω f,k t , where ŵ(ω f,k , t) can be obtained as before by solving eq. (2.9). Since the conclusions related to the solution itself, the Quasi-Steady approximation and its projection on resolvent modes should apply in the same manner for each of those modes ŵ(ω f,k ), we will focus this section mainly on the Short-Time Fourier-Transform and its use for the Phase-Conditioned Localized SPOD. We consider the case corresponding to the sum of three incommensurable forcing frequencies:

ω f,1 ω 0 = -30 + 0.1, ω f,2 ω 0 = -38 + 1 3 , ω f,3 ω 0 = -22 + 2 3 , (3.7)
each being applied with the same spatial forcing structure as before, namely f (ω f,k=1,2,3 , t) = g(x). The multi-frequency forcing is no longer T 0 -periodic. In figure 12, we plot (a) the forcing term f (t) and (b) the solution w(t) for three successive periods. We can see that the solution now presents different features in each of the periods, and due to incommensurability of the frequencies, will be different in all subsequent periods. This simple multi-frequency case should therefore be seen as a simplified model of a turbulent system where a "stochastic-"like forcing is applied.

ŵW (x, t) ŵW (x, t) ŵ(x, t)e i5ω 0 t ∆T T 0 = 1 15 ∆T T 0 = 1 5 ∆T T 0 = 1 2 ω ω 0 = -25 t T 0 t T 0 x x x x x (a) (b) (c) (d) (e)

Short-Time Fourier-Transform and PCL-SPOD analyses

We present now the Short-Time Fourier-Transform results and their use in the PCL-SPOD analysis. We are particularly interested in the impact of the chosen time-resolution in the STFT on the PCL-SPOD results, which is a novelty that we would like to briefly discuss. In figure 13 (a,b,c), we present the STFT ŵW (ω, t) of a given period for three different time-discretizations, ∆T /T 0 = 1/15, 1/5 and 1/2, similarly to what was done in the single-frequency forcing case. The chosen frequency for this analysis is ω/ω 0 = -30, close to ω f,1 . We can see that, for the two higher values of ∆T /T 0 , the signal ŵW has a shape somewhat similar to the one in figure 7 (d). However, this approximate agreement deteriorates for the smallest values of ∆T /T 0 , contrary to the single frequency-case. Indeed, in that case, we are more prone to the phenomenon of spectral leakage where the dynamics of other frequencies (in this case ω f,2 and ω f,3 ) may corrupt the STFT that is meant to isolate ω f,1 . This can be illustrated in figure 14, where we plot the frequency-distribution of the full solution w can distinctly see three "bumps", each one corresponding to one different frequency ω f,k (each colored differently). Also, we provide with blue-shaded areas the three frequency bands, corresponding to ∆T /T 0 = 1/2 (dark blue), ∆T /T 0 = 1/5 (blue), ∆T /T 0 = 1/15 (light blue), within which the frequencies pass without attenuation (ranges of ω where Ŵ (ω-ω f ) ≈ 1). For this reason, the analysis with ∆T /T 0 = 1/2 recovers the shape of the single-frequency case, since the two other "bumps" (from ω f,2,3 ) have been filtered out at the frequency ω ≈ ω f,1 . Taking now the other time-resolutions, ∆T /T 0 = 1/15, we can see that a large portion of the other two "bumps" falls within the associated frequencyband, which contaminates and distorts the mode extracted by STFT at ω/ω 0 = -30, as seen in figure 13 (a). Those remarks have impacts on the PCL-SPOD results, presented in figure 13 (d,e). Indeed, we can see that the energy curve (normalized by the maximal value of λ 0 ) presents a smooth and wide distribution over time for ∆T /T 0 = 1/2 and a more irregular and sharper distribution for ∆T /T 0 = 1/15. Also, in the latter case, we can see that a nonnegligible suboptimal mode exists, which is not present in the QS-resolvent analysis (in figure 10 (c)). This suboptimal mode is actually a consequence of a richer crossspectral tensor due to leaked dynamics of surrounding frequencies. For the case ∆T /T 0 = 1/5, we found that neither of those phenomena were actually present, with a smooth dominant energy curve, a negligible suboptimal energy and a leading-order PCL-SPOD mode similar to the QS-resolvent one (figure 10 (d)). For those reasons, we believe that ∆T /T 0 = 1/5 is the good compromise between time-resolution and frequency resolution here.
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In this section, we have illustrated on a simple time-periodic example how to identify a mode from data trough the PCL-SPOD analysis and how to reconstruct it through an extended version of Resolvent analysis. We have in particular established, that for high forcing frequencies ω f ω 0 , the QS Resolvent modes constitute a more compact basis than the Harmonic Resolvent modes. In the next section, which deals with turbulent flow around a squared-section cylinder, we focus on the QS Resolvent modes and their link with the PCL-SPOD analysis.

Figure 14: Frequency distribution of the solution in the multi-frequency forcing case. We can see three distinct "bumps", each one colored accordingly to each of the forcing frequencies ω f,k . The shaded bands correspond to three frequency resolutions that will be considered in the following for the STFT in the following, namely ∆ω/ω 0 = (∆T /T 0 ) -1 = 2 (dark blue), 5 (blue) and 15 (light blue).

Flow around a squared section cylinder at Re = 22000

In this section, we apply the tools presented previously to the turbulent flow around a squared-section cylinder, at Reynolds number of Re = U ∞ D/ν = 22000, where D is the cylinder's diameter and U ∞ the incoming uniform velocity. These two reference scales are used to non-dimensionalize all quantities in the following. We remind that this flowfield has two clear distinct features: first, a low-frequency periodic Vortex-Shedding (PVS) motion and second, high-frequency modes in the fin shear-layers arising from the Kelvin-Helmholtz (KH) instability mechanisms (see figure 1).

The dataset used throughout the paper came from a DNS run, generated by the FastS code, developed by ONERA, which is a highly optimised solver for high performance computing clusters, solving the three-dimensional compressible Navier-Stokes equations [START_REF] Dandois | Large-eddy simulation of laminar transonic buffet[END_REF]). The code is run at a low inflow Mach number, M = 0.1, to be close to an incompressible flow regime. The spatial discretization used in the solver corresponds to a second-order accurate finite-volume method based on a modification of the AUSM+(P) scheme [START_REF] Mary | Large eddy simulation of flow around an airfoil near stall[END_REF]. The time-integration is handled with a second-order accurate backward scheme of Gear, with a time step of 3.3×10 -4 . The size of the simulated time-window (after an initial transitory phase was convected away) was of around 300 time units, corresponding to approximately 40 vortex shedding periods. The spatial domain for the DNS consists of a circle of diameter 100. This domain is discretized with a mesh built by extruding a 2D mesh, of around 255 × 10 3 cells, clustered around the cylinder, along 4 diameters in the span, discretized with equally-spaced 960 planes.

The frequency content of that signal, shown in figure 1 (a), indicates the presence of a first low-frequency peak corresponding to the Vortex-Shedding at ω 0 ≈ 0.837 (Strouhal number of St = ω 0 /2π = 0.133, in accordance with [START_REF] Trias | Turbulent flow around a square cylinder at reynolds number 22,000: A DNS study[END_REF]), and also a bump, corresponding to the Kelvin-Helmholtz modes at higher frequencies, around ω/ω 0 ≈ 20, 30, a frequency ratio close to the one in the Ginzburg-Landau model. The spanwiseaveraged quantities (velocity and pressure) were stored on disk every ∆t = 0.0209, which corresponds to a sampling frequency discretizing the frequency ω = 30 with 10 points.

We remark here that the raw signals q(x, t) cannot directly be used for the analyses presented in the previous section since they contain both the low-frequency behaviour (Vortex-Shedding mode) and the high-frequency one (Kelvin-Helmholtz structures). For this reason, in the next paragraph, we will introduce a triple decomposition concept, which will allow us to separate them.

Triple Decomposition

In order to separate the PVS and the KH structures from the full signal q(x, t), we rely on a triple decomposition (see [START_REF] Reynolds | The mechanics of an organized wave in turbulent shear flow. part 3. theoretical models and comparisons with experiments[END_REF], such that: q(x, t) = q(x) + q(x, t) q (x,t) +q (x, t), (4.1)

where q(x) is the mean-flow, q(x, t) is the periodic component, which together compose the phase-average q (t) = E[q](t), as already given in (2.26). The remainder q = q-q is the signal that will be fed in the analyses presented in the previous sections. This remainder of the signal has recently been used [START_REF] Heidt | Analysis of forced subsonic jets using spectral proper orthogonal decomposition and resolvent analysis[END_REF]) in classical SPOD analyses (and subsequently compared to mean-flow resolvent analyses) in a periodically forced jet, in order to focus the analysis solely on the Kelvin-Helmholtz structures without the periodic motion. We suppose that the flowfield is governed by the incompressible (which is a good approximation, due to low Mach number) non-dimensional Navier-Stokes equations, so that q = (u, p) denotes velocity and pressure fields and

∂ t u + u • ∇u + ∇p -∇ • (Re -1 (∇u + ∇u T )) = 0, ∇ • u = 0. (4.2)
The application of the phase-average to the variables q leads (see [START_REF] Reynolds | The mechanics of an organized wave in turbulent shear flow. part 3. theoretical models and comparisons with experiments[END_REF]) to a forced linear system under the form of equation (2.1), where the state w is now w = q , the forcing term

f being f = f = ∇•( u ⊗ u -u ⊗ u
) and the operators B, L(t) and P :

B = 1 0 0 0 , P = 1 0 , L = u (t) • ∇(•) + (•) • ∇ u (t) -Re -1 ∆(•) ∇(•) ∇ • (•) 0 .
(4.3) More recently, this triple decomposition was reformulated by [START_REF] Mezić | Analysis of fluid flows via spectral properties of the Koopman operator[END_REF]; [START_REF] Arbabi | Study of dynamics in post-transient flows using Koopman mode decomposition[END_REF] in terms of a harmonic-averaging procedure:

q(ω j ) = lim T f →+∞ 1 T f T f 0 e -iωj t q(t) dt, (4.4) 
which, in the limit of large T f converges to a non-zero quantity for a countable set of frequencies {ω j }. We remark that the harmonic-average, computed at ω = 0 leads to the mean-flow, q = q(ω = 0). The phase-average can now be re-defined as:

q (x, t) ≡ q(x) +   ωj =0 e iωj t q(ω j ) + c.c.   , (4.5) 
where q groups together all non-zero harmonic averages of q described by equations (4.4). We remark that this is a more general definition than (2.26) since there may be incomensurable frequencies in ω j , leading to a so-called quasi-periodic signal. This generalization may describe better for example complex fluid systems where several instability mechanisms are present (such as the lid-driven cavity [START_REF] Arbabi | Study of dynamics in post-transient flows using Koopman mode decomposition[END_REF] or the open-cavity [START_REF] Leclercq | Linear iterative method for closed-loop control of quasiperiodic flows[END_REF][START_REF] Bengana | Bifurcation analysis and frequency prediction in shear-driven cavity flow[END_REF]). In the context of fluidstructure interactions, it may also be adapted to the description of quasi-periodic flowinduced vibrations observed for a single spring-mounted cylinder [START_REF] Prasanth | Vortex-induced vibrations of a circular cylinder at low reynolds numbers[END_REF] or airfoil [START_REF] Menon | Flow physics and dynamics of flow-induced pitch oscillations of an airfoil[END_REF] and for a double spring-mounted plate (Moulin 2020b). We chose the harmonic-averaging approach to compute q (instead of the conditionalaveraging procedure), since it has better convergence properties, filtering out more efficiently the high-frequencies (see [START_REF] Sonnenberger | Fourier averaging: a phase-averaging method for periodic flow[END_REF], for a discussion on a similar approach). The mean-flow q and the first four harmonics of ω 0 ≈ 0.83 (the Vortex-Shedding frequency, defined as the value of maximal amplitude of the signal in figure 1), ω j = jω 0 , j = 1, 2, 3, 4 were computed. The streamwise component of the mean-flow and of the first harmonic was represented in figure 15. The periodic component presents a space/time symmetry for q , namely ( u , v , p )(x, y, t) = ( u , -v , p )(x, -y, t + T 0 /2) [START_REF] Jallas | Linear and nonlinear perturbation analysis of the symmetry-breaking in time-periodic propulsive wakes[END_REF]. It states that the flow at a time t is the (quasi) mirror-image (with respect to the symmetry axis y = 0) of the flow half-a-period later, at time t + T 0 /2. Although those fields are appropriate for us to understand the general mean-flow and first harmonics, they will not be used for the actual computation of q due to a lowfrequency meandering phenomenon present in the signal. This will be discussed in the next paragraph.

Taking into account low-frequency meandering

In this paragraph, we briefly address the meandering phenomenon, a known feature in cylinder flow (see [START_REF] Lehmkuhl | Low-frequency unsteadiness in the vortex formation region of a circular cylinder[END_REF]), whose characteristic frequency is much lower than the Vortex-Shedding one. This phenomenon, is present in the spectrum shown in figure 1(a) where a small "bump" occurs at ω < 10 -1 . The VS motion, q , is thus modulated by this low-frequency, making it difficult to be captured with harmonic averages (4.4) considering the limited length of the signal available, T f = 40T 0 (convergence is expected to occur only for very large time spans, typically T f = O(10 3 T 0 )). We therefore decided to compute a different q k for each bin of length T 0 , using still the harmonic-average procedure (eq. (4.4)), with T f = T 0 . q k is therefore allowed to fluctuate slowly from bin to bin according to the low-frequency meandering. The fluctuating field is then defined within in each bin as q k = q k -q k . This procedure was shown to mitigate the impact of the low frequency meandering and produced a signal q containing fewer low-frequency structures in comparison with the one using the periodic component q obtained with data for T f = 40T 0 . We have represented in figure 16 (a), for a given bin, the deterministic periodic field (the span-wise averaged pressure field), composed of the mean-flow and first four harmonic averages determined from the bin. We can see that the Vortex-Shedding motion is properly recovered and that all small scale features seen in the raw data q (figure 1) for the exact same phases have been filtered out. In figure (b), we provide the fluctuation field q , computed by subtracting q (figure (a)) from the raw snapshots q (figure 1 (b)). We can see that the large-scale vortices associated to the VS fluctuation field have been removed: the smooth and regular lines above and below the cylinder in (a) together with the largescale structures highlighted by red circles in figure 1 (a) are now gone. The remaining structures are composed mostly of complex high-frequency fluctuations, which clearly exhibit a dependence on the phase of the VS motion. We remark, however, that, in some phases (namely the second one here), the iso-values are all positive indicating that the procedure to extract q is not perfect.

In the next section, we discuss the PCL-SPOD procedure implemented to unveil the high-frequency dynamics, followed by the QS-resolvent analysis, to model them.

PCL-SPOD results

We now turn our attention to the PCL-SPOD results. They are obtained by considering the dataset split in N p = 40 bins. We remark that a small overlap between those bins was used, in order to accommodate, at half of the window-size ∆T at the beginning and at the end of it. The short-time (fast) Fourier transform is computed for each bin using a time-window of size ∆T /T 0 = 1/6, leading to a fundamental frequency discretisation of ∆ω = 2π/∆T = 6ω 0 ≈ 5. The frequency grid of the STFT is therefore j∆ω, j = 1, 2, 3, • • • ≈ 5, 10, 15, • • • . The PCL-SPOD is subsequently performed by solving the eigenvalue problem (2.28) using the integration domain Ω = (-0.5 x 0.7)×(0.5 y 1.2) ∪ (-0.5 x 0.7) × (-1.2 y -0.5), shown with green boxes in figure 15.

In figure 17, we present some characteristics of the energy distribution of the PCL-SPOD modes as a function of frequency ω. Figure 17 (a) shows the maximal value of the dominant energy λ 0 (t) over [0, T 0 ), i.e. max t λ 2 0 (t). A bump is clearly observed around frequencies ω = 20, 25 and 30, indicating that the dominant optimal PCL-SPOD mode, which is the most coherent among all of them, exhibits its strongest features within this frequency band. We have also shown in figure 17(b) the mean-total energy, which is the sum of all eigenvalues λ 2 k (t) averaged over the period T 0 . In contrast, this plot exhibits a "plateau" over 10 ω 30, suggesting that part of the energy content at frequencies ω = 15, 20 stems from sub-optimal branches. This behavior will be discussed further in the following, especially for ω = 20 and 30 for which a detailed analysis will be provided. The case ω = 25, the dominant one, will not be presented due to its similarities with the two others. We also remark that, for higher frequencies (ω 35), there is a clear cut-off in the energy content, while for the lowest frequencies (ω = 5, 10), we can see an energy increase of the dominant mode. We believe that this large amount of energy at these lower frequencies can be due to low-frequency dynamics around ω 0 that cascades nonlinearly up to ω ≈ 5, 10 and thus does not necessarily represent fluctuations arising from linear mechanisms triggered at high frequencies. Another possibility is spectral leakage of the zero-frequency mode (the time-average of q k is zero over the whole period T 0 but not over the window W (τ -t)).

In figure 18, we now represent the results of the PCL-SPOD analysis as a function of the phase t/T 0 ∈ [0, 1) for ω = 20. In figure 18 (a), we plot the eight strongest branches λ 2 k (t), k = 0, 1, • • • , 7. The two dominant branches are highlighted with red and blue colors. We can see that those branches do not clearly display any preferential phase within [0, T 0 ) and present similar energies over the period. The latter point is in accordance with the observation made before, where for frequencies ω = 15, 20 the maximum value of the energies, max t λ 2 1 (displayed in figure 17 (a)), is smaller than the sum of all the branches (displayed in figure 17 (b)). The scaled PCL-SPOD modes, λ(t) φ(t), corresponding to the two dominant branches, are respectively represented in figures 18 (b) and (c), at the four phases of the fundamental period marked by vertical lines in figure 18 (a). They correspond to the phases shown in figures 1 (b) and 16. We can clearly recognize the KH structures (colors) that evolve according to the VS motion (black solid lines).

Figure 19 displays similar results but for ω = 30. By continuation in phase, we distinguish several branches that clearly exhibit an oscillating behavior within the fundamental period. For example, the two most energetic ones (red and blue) oscillate in an antiphase manner. The red curve displays a bump for t/T 0 ∈ (0.1, 0.6) and a valley for t/T 0 ∈ (0, 0.1)∪(0.6, 1). A similar behavior is observed for the blue curve but the "bump" occurs at phases where the red curve presents a valley and vice-versa. Moreover, since only one branch (either red or blue) is dominant for a given phase, it holds most of the fluctuation energy, which is in accordance with previous comments on figure 17. We discuss now the two dominant PCL-SPOD modes (shown in (b,c)) and scaled with λ k (t)). We can clearly see that the bump in the red (resp. blue) curve is associated to KH structures developing only on the upper (resp. lower) shear-layer. Interestingly, those largest energetic amplification occur when the shear layers are closest to the walls, that is when the gradients of q are strongest. This observation agrees with figure 16 where more fluctuations can be observed at those phases and locations as well. The symmetry observed is in accordance with the symmetry of the VS motion where the (almost) mirror image of the field q (t) is observed at t + T 0 /2. Also, it is seen that all the modes at this frequency have their support only on the upper or the lower shear layer. This is due to a statistical decorrelation property between the dynamics at the top and bottom of the cylinder, which stems from a separation of the spatial supports of the modes. Indeed, as the number of bins increases, the spectral correlation matrix Ŵ(t) Ŵ * (t) = (1/N p )

Np-1 m=0 qtm q * tm ≡ A can be split in an upper left block A uu and a lower right block A ll , where crossing terms, A ul and A lu , tend to zero as N p → +∞ due to the separation of the supports and therefore the decorrelation of the top and bottom dynamics. This separation trend was already slightly present for ω = 20 (see for example figure 18 (a) in first, second and fourth phases and (b) first and third phases) and is enforced here due to a smaller and more compact spatial support of the modes on the top/bottom shear-layers.

QS-Resolvent results

We now present the results of the QS Resolvent analysis. Those results were produced by discretizing the linear Navier-Stokes equations (4.3) with the Finite-Element Method (FEM) in the open source software FreeFEM++ [START_REF] Hecht | New development in freefem++[END_REF]). The refinement of the mesh was similar to the spatial discretization of a longitudinal plane in the DNS. Moreover, since the focus of the present work is on the spanwise averaged fields, we only looked at spanwise invariant modes. To deal with high-Reynolds number flows, we employ a second-order Streamline-Upwind Petrov-Galerkin (SUPG) method [START_REF] Brooks | Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations[END_REF][START_REF] Franceschini | Mean-flow data assimilation based on minimal correction of turbulence models: Application to turbulent high reynolds number backward-facing step[END_REF]. The Resolvent modes are obtained by solving the eigenvalue problem (2.17) using ARPACK, interfaced with FreeFEM++. We recall that the inner product used for the energy gain definition (γ ) is the same as the one used for the SPOD and corresponds to the integration of the velocity fields over Ω (see green windows in fig. 15 (b)). Note however that, contrary to the PCL-SPOD analysis, the results of the Resolvent analysis turned out to be quite insensitive to the precise choice of Ω (some tests were done where Ω was much larger and no significant changes in the results were observed).

First, similarly to what was done for the PCL-SPOD analysis, we plot overall char- acteristics of the energy gains as a function of frequency in figure 20. In (a) we show the maximal value of γ 2 0 (t) for t ∈ [0, T 0 ) and in we plot their sum, averaged over t ∈ [0, T 0 ). These two plots are close indicating that the maximal value of γ 2 0 (t) is representative of the overall linear extraction mechanism of energy. We can see in particular that both present a maximal value for ω = 15 and that the "bump" in frequency extends up to ω = 25. This maximal frequency is slightly smaller than the one highlighted for the PCL-SPOD analysis (ω = 30), but we believe that this is a minor difference. We remark that the large values at ω = 5 observed for the PCL-SPOD analysis are much less pronounced here, reinforcing that those large energies were due to a cascade initiated at lower frequencies rather than to the extraction of energy from q at this frequency through a linear mechanism.

In figures 21 and 22, we show the detailed results for the frequencies ω = 20 and 30, respectively. We can see, in both cases, two very strong branches (in red and blue) exhibiting the same symmetries in time as those observed for the PCL-SPOD modes at ω = 30. This clearly stems from the fact that the sole input of the QS resolvent analysis is the u field, which displays the mirror-symmetry discussed before. Also, we can see that the modes are much stronger during the first two phases on the top shear-layer and inversely on the bottom layer during the last two phases, in a similar manner as for the PCL-SPOD results. The modes at frequency ω = 30 exhibit, as expected, smaller structures and smaller spatial supports than those at frequency ω = 20. The dominant and sub-dominant gains γ 2 i=0,1 (t) oscillate in a perfect anti-phase manner for frequency ω = 30, while the energetic phases at ω = 20 are slightly capped (see for example t/T 0 < 0.5 where the red gain exhibits a plateau) due to the larger wavelengths of the KH structures whose development is obviously constrained by the geometry.

Overall, we conclude that the agreement between PCL-SPOD and QS Resolvent modes is very good, establishing that high-frequency unsteadiness developing on a low-frequency motion may be well captured by a QS resolvent analysis. More precisely, if we wish to compare the SPOD and resolvent modes in a more quantitative way, we may compute the inner product

| ψ i , φi Ω |/(|| ψ i || Ω || φi || Ω )
, which has been extensively used as a measure of quality for the SPOD/resolvent agreement (see Pickering et al. 2020b). In figure 23 we provide those results on the two cases, namely, ω = 20 and ω = 30. For the case ω = 20, we can see that the coefficient remains, in average, close to 0.5, indicating a rather good but not excellent alignment. This can be explained by the fact that the inner product is defined both on the upper and lower sides of the square, which makes the coefficient decrease whenever the SPOD modes are strong on both sides of the cylinder while the resolvent modes are mainly on top/bottom sides. This is confirmed if alignements restricted to either the top or bottom sides are considered, in which case the projection coefficients increase up to values of 0.8. For the case ω = 30, since the SPOD modes are either on the top or bottom sides (as the resolvent modes), we obtain projection coefficients of the order of 0.8 in phases where the modes exhibit strong energies (λ(t) and γ (t)) are high.

Conclusion

In this paper, we have proposed a Phase-Conditioned-Localized SPOD and a Quasi-Steady resolvent analysis for the identification and reconstruction of turbulent highfrequency fluctuation content evolving as function of the phase of a lower-frequency periodic motion. The PCL-SPOD consists in the use of the Short-Time Fourier-Transform to construct a phase-dependent spectral cross-correlation tensor, whose eigenvalues/vectors provide energies and modes of the dynamics at that given phase/frequency, similarly to classical SPOD analysis. The Quasi-Steady resolvent analysis corresponds to a Singular Value Decomposition of the linearized operator around the lower frequency motion, at a given phase. These time/frequency approaches rely on the frequency separation between the high-frequency fluctuations and the low-frequency periodic motion. The QS-Resolvent analysis can be seen as a Quasi-Steady approximation of Floquet-like analyses such as the Harmonic-Resolvent analysis [START_REF] Wereley | Linear time periodic systems: transfer function, poles, transmission zeroes and directional properties[END_REF][START_REF] Padovan | Analysis of amplification mechanisms and cross-frequency interactions in nonlinear flows via the harmonic resolvent[END_REF]. It is in particular much less expensive because it only involves solving only a spatial problem instead of a time-space problem. We illustrated the various tools (Floquet-Stability, Harmonic-Resolvent, QS-Resolvent and PCL-SPOD analyses) on an idealized linear periodically-varying Ginzburg-Landau model and assessed the ranges of validity of the QS approximation. In particular, we have shown that the QS-Resolvent modes offer a more compact basis for the representation of high-frequency dynamics than the Harmonic Resolvent Analysis. We therefore restricted the analysis of flow around a squared-section cylinder at Re = 22000 to the QS-Resolvent and the PCL-SPOD analyses. We have shown that the high-frequency fluctuation content (the Kelvin-Helmholtz motion) can be efficiently extracted (by the PCL-SPOD analysis) and reconstructed (by the QS-Resolvent analysis) as a function of the phase and that both analyses showed reasonable agreement.

We believe that those techniques could be applied to many other flow configurations exhibiting high-frequency fluctuations evolving on top of a low-frequency deterministic flowfield, such as biological flows (blood and air flows), rotating machine flows [START_REF] Lignarolo | Tip-vortex instability and turbulent mixing in wind-turbine wakes[END_REF][START_REF] Tucker | Computation of unsteady turbomachinery flows: Part 1-progress and challenges[END_REF], etc. Other possible applications are turbulence developing around the periodic shock motion in buffet [START_REF] Sartor | Stability, receptivity, and sensitivity analyses of buffeting transonic flow over a profile[END_REF][START_REF] Sartor | Unsteadiness in transonic shock-wave/boundary-layer interactions: experimental investigation and global stability analysis[END_REF][START_REF] Bonne | Analysis of the two-dimensional dynamics of a mach 1.6 shock wave/transitional boundary layer interaction using a rans based resolvent approach[END_REF] or the low-frequency oscillation around an airfoil in stall condition [START_REF] Almutairi | Large-eddy simulation of natural lowfrequency oscillations of separating-reattaching flow near stall conditions[END_REF], or to analyse limit cycle oscillations of spring-mounted wings in transitional Reynolds number flows [START_REF] Yuan | Simulations of pitch-heave limit-cycle oscillations at a transitional reynolds number[END_REF].
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Appendix A. Quasi-Steady approximation

The high-frequency condition ω f ω 0 induces that the shifted Floquet-Hill matrix may be approximated as follows: 

H + iBω f =         . . . . . . . . . . . . . . . • • • L (0) -iω 0 B + iω f B L (-1) L (-2) • • • • • • L (1) L (0) + iω f B L (-1) • • • • • • L (2) L ( 
(0) + iω f B L (-1) L (-2) • • • • • • L (1) L (0) + iω f B L (-1) • • • • • • L (2) L (1) L (0) + iω f B • • • . . . . . . . . . . . . . . .         , ( A 1) 
where all the terms involving ω 0 were simplified. This approximation actually holds only if the energy of the solution ŵ(t) is contained in harmonics ω n = ω f + nω 0 satisfying |nω 0 | |ω f |. There are a number of conditions for this to be valid. The idea behind is that the energy always cascades from the frequency where it is injected around ω f to neighboring frequencies ω f + nω 0 , due to the off-diagonal blocks related to the interaction with the frequencies of the oscillating base-flow -nω 0 . Also the intrinsic amplification behaviour of the diagonal blocks, which are associated to the resolvent operator around the time-averaged base-flow oscillation, (L (0) + i(nω 0 + ω f )B) -1 P , is important: large gains around ω f will favour the high-frequency property, while large gains for frequencies away from ω f will tend to produce energy at those frequencies if the cascade triggers even a small amount of energy there (which may invalidate the highfrequency property of the solution). In any case, it is important to check a posteriori that the solution obtained with the QS approximation actually satisfies the conditions for the high-frequency approximation.

If the high-frequency simplification holds, then the resulting matrix, is block-circulant (see Moulin (2020a)), which can be diagonalized with the discrete Fourier transform matrix, leading to equation (2.14).

Appendix B. Derivation of PCL-SPOD from conditional space/time POD

The goal of this appendix is to make the connection between the conditional space/time POD from [START_REF] Schmidt | A conditional space-time pod formalism for intermittent and rare events: example of acoustic bursts in turbulent jets[END_REF][START_REF] Hack | Extreme events in wall turbulence[END_REF]) and the present PCL-SPOD. We start doing so by remarking that, by multiplying the raw signal w(t) by a window function W (τ -t) in (2.19), we target the signal around a given phase t = τ , which will serve as conditioning parameter, similar to the time windows where rare or extreme events occurred in [START_REF] Schmidt | A conditional space-time pod formalism for intermittent and rare events: example of acoustic bursts in turbulent jets[END_REF][START_REF] Hack | Extreme events in wall turbulence[END_REF]. Their goal was then to maximize the energy: C(x, x , τ, τ , t)φ τ (x , τ , t) dτ dx = λ 2 (t) φ(x, τ, t), (B 2)

λ 2 (t) = E[| w W (x,
where C(x, x , τ, τ , t) = E[w W (x, τ, t)w * W (x , τ , t)] is the cross-correlation tensor, here parametrized by the time t and such that C(x, x , τ, τ , t) = 0 for |τ -τ | > ∆T . Again, the averaging is performed over the realizations using the expectation operator E[•]. If we use the following hypothesis: C(x, x , τ, τ , t) → C(x, x , τ -τ , t) (B 3) meaning that, for each fixed time (or phase) t, the cross-correlation tensor, around that phase, only depends on the time-lag τ -τ , the cross-correlation tensor may be rewritten as:

C(x, x , τ -τ , t) = 1 2π +∞ -∞ S(x, x , ω, t)e iω(τ -τ ) dω, (B 4)

where S(x, x , ω, t) denotes the Fourier transform of the tensor C(x, x , τ, t). Taking the Fourier transform of (B 2) and simplifying similarly to what is discussed in [START_REF] Towne | Spectral proper orthogonal decomposition and its relationship to dynamic mode decomposition and resolvent analysis[END_REF], we obtain the eigenvalue problem given by equation (2.24), where φ(x, ω, t) = +∞ -∞ φ W (t, τ )e -iωt dt.

We see that the connection between the PCL-SPOD and the conditional space/time POD relies on the approximation given by equation (B 3). In order to understand this approximation, we provide in figure 24, computed for the multi-frequency case, presented in section 3, where the expected value operator E[•] was computed for N p = 3 periods. We can see the high-frequency structures at some specific phases, τ /T 0 ≈ 0.5 (same as shown before in, for example, figure 7), and very little signal elsewhere. The quantity E[w W (τ, t)w W (τ , t)] focuses the analysis on correlations within small windows (τ, τ ) ∈ [t -T /2, t + T /2] × [t -T /2, t + T /2] (with T T 0 ) around the principal diagonal, an example of which being given by the green window. Accordingly, we remark that energetic regions on that figure change on a slow time-scale of the order T 0 and that correlations are approximately constant in windows of size T (green window) centred along the principal diagonal (τ = τ ). We indeed distinguish blue and red diagonal segments (see in particular green window, zoomed in figure 24(b)), which indicate that C(τ, τ , t) approximately exhibits constant values along τ -τ = cste so that C(τ, τ , t) = C(τ -τ , t).

Figure 1 :

 1 Figure 1: DNS of squared-section cylinder at Re = 22000. (a) Spectrum at point (-0.4, 0.63) in the shear-layer region. (b) Snapshots of the (spanwise-averaged) pressure field at four different phases, exhibiting the high-frequency Kelvin-Helmholtz phenomenon (blue circles) and its dependency on the lower-frequency vortex-shedding (red circles). The green point represents the probe used in fig. (a). All variables are made non-dimensional with the side of the square and the inflow velocity while the cylinder is centred at (0, 0)).

Figure 2 :

 2 Figure 2: Classical SPOD (a) and mean-flow resolvent (b) modes for the flow around a squared-section cylinder, presented in figure 1, at ω = 20. They produce modes that are "steady" and do not oscillate with the vortex-shedding.
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 3 Figure 3: (a): Normalized Hann window W (η) := 1+cos(2πη/∆T ) ∆T within -1/2 η/∆T 1/2 and zero outside. (b): Fourier-Transform Ŵ (ω η ) = sin(∆T ωη/2)
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 56 Figure 5: Optimal energy amplifications γ i=1 (ω) by the Linear GL equation, as a function of the frequency ω for a few values of µ 0 < µ 0,cr = 0.4827.

Figure 7 :

 7 Figure 7: Solution of the forced problem (eq. (2.8)) for f (x, t) = g(x)e iω f t and ω f = -30ω 0 ≈ -0.47. (a): time-evolution of instability paramater µ 0 (t). (b): real part of forcing term f (x, t). (b): real part of solution w(t) = e iω f t ŵ(t), together with (e), a snapshot at t/T 0 = 0.5, showing its typical spatial structure. (d): real part of envelope ŵ(t) of the solution. In (b,c,d) the zero level of the function µ(x, t) = µ 0 (t) -c 2 u + µ 2 x 2 /2 is also given.

Figure 11 :Figure 12 :

 1112 Figure 11: STFT of solution w(t) = ŵ(t)e iω f t shown in fig. 7 (ω f /ω 0 = -30), computed at ω = -30ω 0 . (a,b,c): Effect of time-resolution ∆T /T 0 = 1/15, 1/5 and 1/2 for ω = ω f . (d,e): Comparison between ŵW (t) as obtained for ω/ω 0 = -25 and ∆T /T 0 = 1/15 and the frequency-shifted envelope ŵ(t)e 5iω0t . These two quantities should be equal due to eq. (2.22).

Figure 13 :

 13 Figure13: STFT transform modes of a given period for three different time-resolutions, ∆T /T 0 = 1/15 (a), 1/5 (b) and 1/2 (c), evaluated at ω = -30ω 0 . In (d) we plot the two dominant (red and blue) PCL-SPOD energies (normalized by the maximum value of the leading gain) for those three time-resolutions (dashed, solid and dotted) and in (e) we plot the leading mode λ 0 (t) φ0 (t) for ∆T /T 0 = 1/5.

Figure 15 :

 15 Figure 15: Stream-wise component of (a) Mean-flow and (b) real part of first harmonic of periodic component (VS) obtained by harmonic averaging at frequency ω 0 = 0.837, for which the spectrum shown in figure 1 (a) was maximum. Both were computed from a time series of around 40 periods. The green window represents the integration region Ω (defining M Ω ) used for both the PCL SPOD and Resolvent analysis.

Figure 16 :

 16 Figure 16: Deterministic periodic spanwise-averaged pressure fluctuation field p , computed with harmonic-averages based on data from a given bin (a) and the fluctuation field p , obtained by subtracting the raw snapshots from the deterministic field (b). Both series of plots are presented for the same phases as in figure 1(b).

Figure 17 :

 17 Figure 17: PCL-SPOD: (a) maximum value of dominant optimal energy λ 2 1 (t) over 0 t < T 0 as a function of frequency and (b) sum of all energies averaged over the same time interval as a function of frequency.

Figure 18 :

 18 Figure 18: PCL-SPOD modes for ω = 20. (a): eigenvalues λ 2 0,••• ,7 (t) as a function of the phase t/T 0 , (b,c): absolute value of pressure fluctuations for the optimal (red iso-lines) and suboptimal (blue iso-lines) modes λ 0,1 φ0,1 at four different (and equidistant) phases (indicated by vertical lines in (a) and corresponding to the same phases as in figure 1 (b)). The black solid lines are the streamlines of the PVS motion at the given phase.

Figure 19 :

 19 Figure 19: PCL-SPOD modes for ω = 30: eigenvalues (a) λ 2 0,••• ,7 (t) and absolute value of pressure fluctuations for the two dominant modes (b,c) λ 0,1 φ0,1 corresponding to the red/blue curves in (a) at four different phases (same as in 18).

Figure 20 :

 20 Figure 20: QS-Resolvent modes: (a) maximum value of dominant energy gain γ 2 0 (t) over 0 t < T 0 as a function of frequency and (b) average energy gain over 0 t < T 0 , summed over all eigenvalues, as a function of frequency.

Figure 21

 21 Figure 21: QS-Resolvent analysis for ω = 20: the first four gains γ 0,••• ,3 (t) 2 as a function of time (a) and the absolute value of the pressure fluctuations of the two dominant red/blue modes, scaled by the amplitude, γ i (t) ψ i (t). The vertical lines in fig. (a) depict the 4 phases represented in fig. (b).

Figure 22 :

 22 Figure 22: QS-Resolvent analysis for ω = 30: same caption as in figure 21.

Figure 23 :

 23 Figure 23: Projection coefficients (thick solid lines) between SPOD and resolvent modes, | ψ i , φi Ω |/(|| ψ i || Ω || φi || Ω ), as a function of phase t/T 0 for (a) ω = 20 and (b) ω = 30. The thick red and blue lines designate the same modes as presented in figures 18, 19, 21 and 22. We provide as well, in both plots (thin solid lines), the top / bottom alignments, with inner products restricted to either top or bottom sub-regions (see green rectangles in figure 15 (b)): the thin red (resp. blue) curves corresponds to the top (resp. bottom) alignements.

Figure 24 :

 24 Figure24: Correlation tensor (a) E[w(x, τ )w * (x , τ )], computed at x = x = 7.5 for the three-frequencies case, presented in section 2. A zoom of this tensor, around τ /T 0 ≈ 0.5 is also provided, where this tensor is well approximated by diagonal lines, motivating the approximation C(τ, τ , t) = C(τ -τ , t).

  

Table 1 :

 1 Optimal energy gains γ n for the first five Harmonic-Resolvent modes at ω f = -30ω 0 and cumulative projection, p n

  1) L (0) + iω 0 B + iω f B • • •
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