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Using first-principle numerical simulations of the lattice SU(3) gauge theory, we calculate the
isothermal moment of inertia of the rigidly rotating gluon plasma. We find that the moment of
inertia unexpectedly takes a negative value below the “supervortical temperature” Ts = 1.50(10)Tc,
vanishes at T = Ts, and becomes a positive quantity at higher temperatures. The negative moment
of inertia indicates a thermodynamic instability of rigid rotation. We derive the condition of ther-
modynamic stability of the vortical plasma and show how it relates to the scale anomaly and the
magnetic gluon condensate. The rotational instability of gluon plasma shares a striking similarity
with the rotational instabilities of spinning Kerr and Myers-Perry black holes.

Introduction. The moment of inertia I is a quan-
tity that expresses the resistance of a physical body to
angular acceleration around a certain axis. In thermo-
dynamic equilibrium, all physical objects have positive
moments of inertia implying that in order to achieve an
angular acceleration, one needs to apply a torque [1].

A negative moment of inertia of a body would im-
ply that its acceleration generates a torque itself as if
the physical body has a negative mass. Impossible in
thermal equilibrium, this effect can be achieved in non-
equilibrium, open systems. In mechanics, the realization
of a I < 0 system requires presence of an active com-
ponent such as a motor [2]. In electronics, the relevant
example is played by electrical negative-impedance con-
verters identified as an active electric circuit with neg-
ative resistivity [3]. A negative moment of inertia can
also be realized in rotating Casimir systems associated
with negative vacuum energy [4–6]. In addition, the neg-
ativity of isothermal moment of inertia can be achieved
in thermodynamically unstable systems such as rotating
black holes [7–11].

In our paper, we show that the rigidly rotating gluon
plasma possesses, in thermal equilibrium, a negative mo-
ment of inertia (I < 0) below the temperature

Ts = 1.50 (10)Tc . (1)

where Tc is the deconfining transition temperature in a
non-rotating plasma. We call Ts the “supervortical tem-
perature” since at T = Ts, the rigidly rotating plasma
looses its moment of inertia, I(Ts) = 0, in a distant sim-
ilarity with a superconductor which looses its resistivity
at a certain critical temperature.

Rotating quark-gluon plasma (QGP) with tempera-
tures around the supervortical temperature (1) is rou-
tinely produced in relativistic heavy-ion collisions. Such
plasma can have exceptionally high vorticity of the order
of ω ≈ (9 ± 1) × 1021 s−1 ∼ 0.03 fm−1c ∼ 7 MeV [12].
The properties of vortical QGP can be probed via spin
polarization of produced hadrons which provide us with

an opportunity to confront theoretical methods with ex-
perimental results [13, 14]. Theoretical approaches to the
thermodynamics of rotating QGP always assume a rigid
rotation of the system, drastically simplifying analytical
treatment [15, 16].

The global consensus on the phase diagram of rotating
quark-gluon plasma is still lacking. The thermal tran-
sition from hadronic to the QGP phase is accompanied
by the restoration of the chiral symmetry and the de-
confinement of color. There is a general agreement in
the community that the rigid rotation, according to all
model estimates, should reduce the critical temperature
of the chiral transition in the fermionic sector [17–23].

However, the situation with the deconfining transi-
tion is not clear: the rigid rotation should either drive
plasma to the deconfinement phase [24–28] or, with an-
other scenario, should not affect the system at the rota-
tional axis, forming, at high vorticity, an inhomogeneous
confining-deconfining phase (the inverse hadronization
effect) [29]. While signatures of the inhomogeneity are
seen in kinematic variables in numerical simulations of
pure gluon plasma [30], the numerical first-principle sim-
ulations have also revealed that the bulk critical temper-
ature of the deconfining phase transition grows with the
increase of the angular frequency [31, 32]. Moreover, it
turned out that gluons and fermions have opposite ef-
fects on the critical temperature in rotating systems. It
seems that the gluon sector wins in this contest and the
deconfinement as well as the chiral critical temperatures
increase with the rotation [33].

Thus, the model-based analytical approaches and the
first-principle numerical simulations of rigidly rotating
gluon plasma do not match. To explore this puzzle
deeper, we look, in our work, at the mechanical prop-
erties of the rotating gluon plasma.

Angular momentum and moment of inertia. A
mechanical response of a thermodynamic ensemble to
a rigid rotation with the angular velocity Ω can be
quantified in terms of the conjugated variable, the total
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angular momentum J which includes orbital and spin
parts. These quantities determine the relation between
the energy E(lab) in the inertial laboratory frame and the
energy in the co-rotating, non-inertial reference frame,
E = E(lab) − JΩ [1]. The angular momentum J can
be expressed via either the energy E or the free energy
F = E − TS in the co-rotating frame:

J = −
(
∂E

∂Ω

)
S

= −
(
∂F

∂Ω

)
T

, (2)

where we used dE = TdS−JdΩ and dF = −SdT−JdΩ.
The moment of inertia is a scalar quantity,

I(T,Ω) =
J(T,Ω)

Ω
= − 1

Ω

(
∂F

∂Ω

)
T

. (3)

which fixes a relation between the angular momentum
J(T,Ω) = I(T,Ω)Ω and the angular velocity Ω = Ωe of
rotation around a fixed axis e. Thus, the basic thermo-
dynamic quantities (2) and the moment of inertia (3) can
be determined with the help of the free energy F in the
co-rotating reference frame.

For simplicity, we start our discussion with a cylinder-
shaped gluon plasma with a radius R, rigidly rotating
with the angular frequency Ω around the symmetry axis.
We consider slowly rotating gluon plasma implying the
velocity

vR = ΩR , (4)

at the boundary of the system to be non-relativistic,
v2
R � 1.
As we work with a large system size, R ∼ (a few) fm,

the condition of the slowness of rotation also requires
that the angular velocity should be much smaller than
the intrinsic QCD energy scale, Ω � ΛQCD. More-
over, in the whole range of temperatures in our work,
T ' (1.0 ∼ 2.0)Tc, the boundary effects can also be ne-
glected because the spatial thermal correlation lengths
in the strongly interacting gluonic plasma at T & Tc
are of the order of Λ−1

QCD or shorter, while below Tc
the correlations are governed by the glueball masses
M0++ = 1.653(26) GeV [34] which correspond to even
shorter correlation lengths. These physical conditions
(system size R, temperature range T , and rotational fre-
quency range Ω) correspond to physical conditions of vor-
tical plasma created at RHIC in noncentral relativistic
heavy-ion collisions [12].

Thermodynamics and velocity at the boundary.
Several theoretical approaches to rigidly rotating gluon
plasma [14, 25] express its thermodynamic properties as
a function of the angular frequency Ω, suggesting inde-
pendence (or a mild dependence) of the thermodynam-
ics on the size of the system perpendicular to the axis
of rotation [25]. However, first-principle numerical sim-
ulations indicate that the size dependence is very pro-
nounced [31, 32] (see also discussion in Ref. [19]). More-
over, it appears that the thermodynamics of the slowly

rotating system can be expressed as a function of the ve-
locity of the system at the boundary (4). This statement,
valid at least in the O(Ω2) order, implies that the ther-
modynamic variables incorporate angular frequency only
via the common product ΩR [35].

Neglecting a shape change for the slowly rotating
plasma, the moment of inertia can be taken as an Ω-
independent quantity, I = I(T,R).[36] Then, the ther-
modynamic relation (3) implies that

F (T,R,Ω) = F0(T,R)− 1

2
I(T,R)Ω2 , (5)

where F0 ≡ F (lab)(Ω = 0) is the free energy of the non-
rotating gas. The quadratic term Ω2 has a minus sign
in the co-rotating free energy (5) because this term rep-
resents a centrifugal energy responsible for particle run-
away forces directed outwards of the axis of rotation.

For a classical system, the moment of inertia is de-
termined by the mass (energy) distribution ρ(T, x⊥,Ω),
where x⊥ is the radial coordinate normal to the axis
of rotation. The effect of non-relativistic rotation on
the uniform spatial mass distribution can be neglected,
ρ(T, x⊥,Ω) = ρ0(T ), implying that the moment of inertia
takes the following familiar form:

I(T,R,Ω) =

∫
V

d3xx2
⊥ρ(T, x⊥,Ω) =

π

2
LzR

4ρ0(T ) , (6)

where the integral is taken over the volume V = πLzR
2

of the rotating cylinder.
While the derivation of Eq. (6) is valid for a non-

relativistic rotation of a classical system, the system it-
self can be described by relativistic thermodynamics sim-
ilarly to the gluon plasma where the relation (6) holds as
well [37]. In this case, the quantity ρ0, which determines
the number of degrees of freedom that couple to rigid
rotation, can have another origin. For example, ρ0 in a
Casimir system is negative so that the moment of inertia
can take negative values as well [4, 5].

Combining Eqs. (5) and (6) we get that the co-rotating
free energy can be expressed via the velocity vR at the
border of the cylinder x⊥ = R, given in Eq. (4):

F (T, vR) = F0(T,R)
(

1 +
1

2
K2v

2
R +O

(
v4
R

))
, (7)

where F0 is the free energy in the absence of rotation.
The response of the system with respect to the rigid ro-
tation is represented in Eq. (7) by the dimensionless coef-
ficient K2 = V ρ0/(2F0), where V = πLR2 is the volume
of the cylinder. The dimensionless moment of inertia K2

relates the moment of inertia I to the free energy at a
vanishing angular frequency, F0 (notice that F0 < 0):

I(T ) ≡ lim
Ω→0

I(T,Ω) = −K2(T )F0(T )R2 . (8)

Thus, the angular frequency Ω enters the free energy (7)
only as the velocity vR at the boundary of the system (4).
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Scale anomaly and equation of state. The free
energy density, f , is determined via the scale (trace)
anomaly [38]:

〈Tµµ〉 = −T 5 d

dT

(
f

T 4

)
. (9)

Integrating (9), we get the free energy density:

f(T ) = −T 4

∫ T

0

dT ′

T ′
〈Tµµ〉(T ′)
T ′4

, (10)

highlighting the role of the anomaly 〈Tµµ〉 6= 0. When
defining the integral in Eq. (10), we used the fact that the
anomalous trace vanishes rapidly at low temperatures,
〈Tµµ〉 ∼ exp(−M/T ), due to the mass gap M 6= 0.

The trace of the energy-momentum tensor 〈Tµµ〉 is
computable in lattice simulations thus making it possi-
ble to calculate the free energy density (10) numerically
from the first principles. However, this thermodynami-
cally transparent expression can be rewritten in the lat-
tice form which is more suitable for numerical computa-
tions [38]:

f(T )

T 4
= −N4

t

∫ β

β0

dβ′∆s(β′) , T =
1

Nta(β)
, (11a)

∆s(β) = 〈s(β)〉T=0 − 〈s(β)〉T , s =
S

NtNzN2
s

, (11b)

where the SU(Nc) lattice coupling β = 2Nc/g
2
0 is ex-

pressed in terms of the bare continuum coupling g0, while
the lattice action S will be specified below. In Eq. (11a),
the lower integration limit β0 is chosen in a deep con-
finement phase where the integrand, represented by the
difference (11b) in the expectation values of the action
at vanishing and finite temperature, is negligibly small.

The lattice formula (11a) has the same meaning as
the continuum relation (10), with the right-hand-side
of Eq. (11a) expressed via the lattice form of the scale
anomaly. The latter includes the running coupling which
is computable via the scale dependence of the lattice
spacing a = a(β).

The lattice form (11a) is also suitable for direct cal-
culation of the free energy density f in the non-inertial
co-rotating reference frame. To this end, the action S
should be formulated in the curved background with
the Euclidean metric corresponding to the co-rotating
frame [39]:

gEµν =


1 0 0 x2ΩI
0 1 0 −x1ΩI
0 0 1 0

x2ΩI −x1ΩI 0 1 + x2
⊥Ω2

I

 , (12)

written in the Euclidean coordinates xµ = (x1, . . . , x4),
where x4 = −it is the imaginary time coordinate and
x2
⊥ = x2

1 + x2
2. The system rotates around the x3 axis.

The angular velocity in Eq. (12) is put in the purely
imaginary form ΩI = −iΩ to avoid the sign problem [39].
The expressions for the Minkowski spacetime can be
obtained by the analytical continuation. In particular,
the velocity vR at the boundary (4) becomes imaginary
vI = −ivR, with the following relation:

v2
I = −v2

R . (13)

The action in the co-rotating frame in the continuum
Euclidean spacetime has the following form:

S =
1

4g2

∫
d4x
√
gE g

µν
E gαβE F aµαF

a
νβ , (14)

where gEµν = (gµνE )−1 is the curved Euclidean metric (12)
with the determinant gE = det (gµν) = 1 and F aµν is the
field strength of SU(3) gauge field.

Numerical first-principle results. We discretize
rotating terms in the action (14) following Ref. [32, 39]
and use the tree-level improved Symanzik gauge action
for the terms without rotation [40, 41]. To set the tem-
perature scale we use the results from Ref. [42].

Our calculations are performed on the lattices of size
Nt ×Nz ×N2

s = Nt × 40 × 412 with Nt = 5, 6, 7, 8. We
used periodic boundary conditions in all directions. For
the zero temperature subtraction (11b) we use data from
the lattice with the same spatial sizes and Nt = 40. The
imaginary velocity at the boundary is identified with the
velocity at the middle of the boundary side, vI = ΩILs/2,
where Ls = a(Ns− 1) is the length of the lattice in the x
and y directions. More details on numerical simulations
can be found in Appendix.

In the inset of Fig. 1, we show the normalized differ-
ence of lattice action densities ∆s (11b) which enters the
free energy density (11a). At vanishing velocity of the
rotation, vI = 0, we recover the known result [38, 43].
The steep rise of ∆s, which happens close to the critical
coupling β ' βc, points to the first order nature of the
phase transition in the non-rotating plasma.

As the imaginary velocity vI increases, the transition
shifts towards smaller lattice couplings β signaling that
the critical temperature Tc = Tc(vI) decreases as the
imaginary angular frequency ΩI (the velocity vI of the
rotation) raises. This result is in agreement with previous
numerical calculations [31–33].

The normalized free energy density in the co-rotating
frame, −f/T 4, calculated via Eq. (11a), is shown in
Fig. 1. This quantity is a monotonically raising func-
tion of the temperature T at all imaginary velocities vI ,
indicating the presence of a plateau at T → ∞ for each
fixed vI .

The free energy density f , shown in Fig. 1, is a rising
(diminishing) function of v2

I at fixed temperature T < Ts
(T > Ts). This property can be quantified by fitting of
the free energy density at a fixed temperature T by a
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FIG. 1. The free energy density f in the co-rotating frame as
a function of the temperature T for the Nt = 6 lattice. The
vertical line shows the supervortical temperature Ts for this
lattice. The inset shows the expectation value of the lattice
action density ∆s corresponding to the scale anomaly (11b) as
a function of the lattice gauge coupling β. Both plots are given
for several imaginary velocities squared v2I at the boundary
R = Ls/2 ≡ 20a of the system, Eqs. (13) and (4), for the
same lattice. Periodic boundary conditions are employed.

parabolic function

f(T, vI) = f0(T )
(

1− 1

2
K2(T )v2

I

)
, (15)

where f0 and K2 serve as fit parameters (we remind that
f0 < 0). The expression in the Euclidean spacetime (15)
represents the first two terms of the free energy (7) in
the co-rotating frame in the Minkowski spacetime after
the Wick transformation for the boundary velocities (13).
The dimensionless moment of inertia K2 for several lat-
tices and the corresponding continuum limit (a→ 0, or,
equivalently, 1/Nt → 0 at a fixed temperature T ) are
shown in Fig. 2.

A striking feature of the free energy, Fig. 1, is that
the curves corresponding to different vI intersect at the
same “supervortical” temperature Ts, signaling that at
this temperature, the free energy (15) looses, at least for
slow rotation v2

I � 1, the dependence on the rotational
frequency. Therefore, the rigidly rotating gluon plasma
looses its moment of inertia at T = Ts. We use this
property as a definition of the supervortical temperature,
K2(Ts) = 0, and show its continuum limit in Fig. 2.

The continuum limit of the dimensionless moment of
inertia can be well reproduced by a rational function

K
(fit)
2 (T ) = K

(∞)
2 − c

T/Tc − 1
, (16)

where the best-fit parameters are the high-temperature

asymptotics K
(∞)
2 = 2.23(39) and the slope coefficient

c = 1.11(20). The high-temperature limit of the moment

1.2 1.4 1.6 1.8 2.0
T/Tc

−5

−4

−3

−2

−1

0

1

2

K
2

Ts

rational fit

cont. limit

5× 40× 412

6× 40× 412

7× 40× 412

8× 40× 412

FIG. 2. The dimensionless moment of inertia K2 of the gluon
plasma as a function of the temperature T for several tem-
poral lattice extensions Nt. The red shaded region, with the
central values marked by the red solid line, denotes the con-

tinuum extrapolation, K2 = K
(cont.)
2 + C/N2

t at Nt → ∞ or,
equivalently, a→ 0. The best fit (16) of the continuum curve
is shown by the dashed black line. The position of the su-
pervortical temperature Ts, extrapolated to continuum limit,
is marked by the vertical line which separates the unstable
(T < Ts) and stable (T > Ts) regimes of rigid plasma ro-
tation. The error estimations (the shaded regions for Ts and

K
(cont.)
2 , and the bars of the data) include both statistical and

systematic uncertainties.

of inertia, K
(∞)
2 , is a non-universal quantity that may

depend on the geometry of the rotating system and the
boundary conditions.

In order to estimate systematic errors related to our
determination of Ts, we repeat the whole procedure with
several methods of numerical integration in Eq. (11a)

and several upper limits v
(max)
I for the fit of the free en-

ergy density by the function (15). The final result for
the lattices with periodic boundary conditions is given
in Eq. (1), where the estimated uncertainty incorporates
both statistical and systematic contributions.

As mentioned above, the absence of the massless exci-
tations in the deconfinement phase implies the indepen-
dence of our results on the type of boundary conditions
in the transverse spatial directions, provided the spatial
volume is large enough. To verify this property, we calcu-
lated the K2 coefficient for the system with open bound-
ary conditions and found an agreement with the periodic
lattices, albeit more significant uncertainties. The corre-
sponding supervortical temperature for the open system,
Ts/Tc = 1.53(15) agrees with the estimate for periodic
boundary conditions (1).

(In)stability and sign of the moment of inertia.
Formally, the negative moment of inertia, observed in
the region of temperatures T < Ts, might imply that
the rotation causes the quark-gluon plasma to cool down
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(the faster rotation, the lower thermal energy). However,
physically, this counter-intuitive effect, contradicting the
kinematic Tolman-Ehrenfest picture [44, 45], indicates
that the rigid rotation is impossible thermodynamically.
The plasma experiences an instability which makes the
rotation non-rigid. Similar instabilities occur in curved
gravitational backgrounds of rotating Kerr and Myers-
Perry black holes [7–9].

For a system in stable equilibrium at a given temper-
ature T and angular velocity Ω, any deviation from the
equilibrium should obey the following condition [37]:

δE − TδS −ΩδJ > 0 , (17)

which implies that all eigenvalues of the inverse Weinhold
metric, defined in the thermodynamic space [46],

g(W ),µν = −∂
2f(T,Ω)

∂Xµ∂Xν
, Xµ = (T,Ωi) , (18)

must be positively defined (see a discussion in [10]).
The positivity of the matrix (18) is achieved provided

the specific heat at constant angular momenta CJ and the
eigenvalues (spectrum) of the tensor of isothermal differ-
ential moment of inertia Iij ≡ Iji are positive quantities:

CJ > 0 , CJ = T

(
∂S

∂T

)
J

, (19)

spec(Iij) > 0 , Iij =

(
∂J i

∂Ωj

)
T

. (20)

The inequality (19) is a standard requirement for the
thermodynamic stability [37]. Given the cylindrical ge-
ometry of our system, the condition (20) reduces to the
requirement I > 0 for the principal moment of inertia (3)
at infinitesimally slow rotations, Ω→ 0. In terms of the
coefficient K2, Eqs. (7) and (8), the thermodynamic sta-
bility requires:

K2(T ) > 0 (thermodynamic stability), (21)

which is violated below the supervortical temperature,
T < Ts.

This instability has a thermodynamic origin. It has no
obvious relation to the hydrodynamic instabilities that
might be generated by the viscous flow of hot gluons.

Moment of inertia and scale anomaly. The mo-
ment of inertia I is directly related to the trace anomaly
as one can see from Eqs. (8), (10), and (15):

I(T ) = −T 4

∫ T

0

dT ′

T ′
〈Tµµ〉(2)(T ′)

T ′4
, (22)

where 〈Tµµ〉(2k) are the moments of the anomalous trace

〈Tµµ〉(2k)(T ) =
1

(2k)!

[
∂2k

∂v2k
I

〈Tµµ〉(T, vI)
] ∣∣∣∣∣
vI=0

, (23)

for k ∈ Z. The equation (23) can readily be written for
the real angular velocity using the correspondence (13).

Role of the magnetic gluon condensate. Using
Eq. (3) or Eq. (20), we can derive, via a path-integral
representation of Yang-Mills theory in a curved space-
time (14), the moment of inertia of gluons, I ≡ I33:

I = Ifluct + Icond =

∫
V

d3x

∫
V

d3x′〈〈M12
0 (x)M12

0 (x′)〉〉T

+

∫
V

d3x〈〈(εijF ai3xj)2 + (F a12)2(x2
1 + x2

2)〉〉T . (24)

We used Eq. (5) and the relation Ω2 = −Ω2
I . In Eq. (24),

M ij(x) = xiT j0(r)− xjT i0(x) , i, j = 1, 2, 3 , (25)

is the local angular momentum, which is related to the
Ω→ 0 limit of the stress-energy tensor of gluons:

Tµν = F a,µαF a,να −
1

4
ηµνF a,αβF aαβ . (26)

We also used the notation 〈〈O〉〉T = 〈O〉T − 〈O〉T=0 to
denote the thermal part of the expectation value of an
operator O. The normalization of the moment of in-
ertia (24) is chosen such that the cold vacuum has no
inertia.

The first term in the moment of inertia (24) describes
fluctuations of the angular momentum and has a stan-
dard linear-response form

Ifluct = 〈〈(J3)2〉〉T , J i =
1

2

∫
V

d3x εijkM jk(x) , (27)

were we used the fact that
〈
J3
〉

= 0 at Ω = 0 at any
temperature. One might expect that Ifluct > 0 because
thermal fluctuations always increase the susceptibility in
addition to quantum fluctuations.

The second term in (24) involves a nonperturbative
magnetic gluon condensate in the static, Ω → 0, limit.
Using the SO(3) rotational symmetry and the transla-
tional invariance of the plasma in spatial dimensions, we
get the relation 〈〈F ai3F aj3〉〉T = δij〈〈(F a12)2〉〉T , which can be
expressed via the magnetic gluon condensate at a finite
temperature 〈〈(F aij)2〉〉T ≡ 6〈〈(F a12)2〉〉T . We get:

Icond =
1

3

∫
V

d3xx2
⊥〈〈(F 2

ij)
2〉〉 =

π

6
LzR

4〈〈(F aij)2〉〉T . (28)

Surprisingly, this relation has the same form as the clas-
sical formula for the moment of inertia (6), where the
mass density ρ corresponds to the thermal part of the
magnetic gluon condensate ρ(T ) = 〈〈(F aij)2〉〉T /6.

The full gluon condensate
〈
G2
〉

(a sum of its electric
and magnetic parts) is a phenomenologically important
quantity which takes a positive value at T = 0 [47, 48].
It decreases monotonically with the increase of the tem-
perature, implying that the thermal part of the conden-
sate, 〈〈G2〉〉T , always takes a negative value [49, 50]. This
property, which is interpreted as melting of the gluon con-
densate, is in agreement with the relation of the thermal
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condensate to the scale anomaly: 〈〈G2〉〉T = −
〈
Tµµ
〉
T
< 0

(see a discussion in Ref. [38]).

However, the magnetic contribution to the scale
anomaly (11b) reverses its sign at T ' 2Tc [38] indi-
cating that the magnetic part of the thermal gluon con-
densate becomes positive and implying that I > 0 above
2Tc. This effect is associated with the evaporation of the
magnetic component of the gluon plasma [51, 52] and the
associated string dynamics [51, 53]. Thus, the negative-
valued condensate in Icond should nullify the positive con-
tribution of the correlator term Ifluct in a region below
2Tc in agreement with our estimate of the supervortical
temperature (1), Ts < 2Tc.

In short, the thermal magnetic condensate takes a neg-
ative value right above Tc suggesting that the negative
contribution of the condensate Icond overwhelms the pos-
itive standard contribution Ifluct thus leading to a nega-
tive total moment of inertia (24), I = Ifluct + Icond < 0,
above Tc. At T > Ts, the perturbative hot gluons prevail
the non-perturbative scale counterpart, and the moment
of inertia becomes positive.

The suggested mechanism is also in a qualitative agree-
ment with previous numerical observations indicating
that rigid rotation increases the critical transition tem-
perature Tc [31, 32]. Indeed, if the rigid rotation makes
the plasma colder, then stronger thermal fluctuations
(and, consequently, higher temperature) are needed to
destroy the confinement phase in the rotating plasma as
compared to the non-rotating plasma. This simple obser-
vation explains the effect of raising critical temperature
Tc with increasing angular frequency Ω. Moreover, the
crucial role of the magnetic condensate in our mecha-
nism suggests that this effect should be absent for non-
gluonic degrees of freedom. The latter hypothesis is per-
fectly consistent with the recent first-principle observa-
tion made, separately, for quarks and gluons in Ref. [33]

Our paper focuses on the investigation of pure gluon
plasma, which exhibits the fundamental nonperturba-
tive properties of its realistic quark-gluon counterpart.
To clarify the contribution of quarks to the moment of
inertia, we notice that Eq. (24) remains also valid in
QCD. Namely, the total angular momentum M12 now
includes not only the gluon part (25), but also the or-
bital, ψ̄γ4(xDy − yDx)ψ, and spin, i/2ψ̄γ4σ12ψ, angu-
lar momenta of quarks. While the quark fields make
a positive thermal contribution to the fluctuation term
Ifluct, the gluomagnetic contribution Icond stays negative
in QCD [54]. Following our discussions of gluon plasma,
we conclude that I ≡ Ifluct +Icond < 0 also for the quark-
gluon plasma in a certain range of temperatures. Thus,
we believe that the rigid rotation of quark-gluon plasma
is also unstable in a certain temperature range around

the transition temperature.

Conclusions. All field-theoretical analytical and
first-principle numerical approaches dedicated to the in-
vestigation of the thermodynamics of rotating quark-
gluon plasma consider a rigidly rotating plasma, mean-
ing the angular velocity Ω at all points in the system,
regardless of the distance to the rotational axis, takes
the same value [55]. In other words, the plasma rotates
like a solid body. While this assumption sounds unnat-
ural from, at least, a hydrodynamic point of view (after
all, the plasma is not a solid), the rigid rotation is very
convenient in treating the system analytically. Moreover,
the rigid approximation could sound reasonable for a suf-
ficiently small, slowly rotating system as a first-order ap-
proximation to a more complicated, spatially inhomoge-
neous rotation.

In our work, we show that below the supervortical tem-
perature (1), the rigid rotation of the gluon plasma is
thermodynamically unstable even at slow rotation ve-
locities. This effect exhibits a striking similarity with
spinning black holes [7–11]. While the back-hole rota-
tional instability is promoted by the curved gravitational
background, the instability in the gluon plasma origi-
nates from the scale anomaly via the thermal part of the
magnetic gluon condensate. Therefore, we conclude that
the model of rigid rotation cannot be used, for thermo-
dynamic reasons, for a realistic study of the rotation of
the gluon plasma.

Our results also suggest that the puzzling discrep-
ancy between numerical [31–33] and analytical (includ-
ing holography [24], Tolman-Ehrenfest kinematic estima-
tions [30], hadron-gas approach [25], and perturbative ar-
guments [27] based on imaginary rotation [29]) models’
predictions about the critical temperature in the center
of rotating QCD (gluon) plasma might originate from the
scale anomaly which should be taken into account appro-
priately. In particular, our work shows that the magnetic
gluon condensate – which has a nonperturbative compo-
nent at any temperature – plays a crucial role in rotating
quark-gluon plasma.
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Appendix: Simulation details

We use the following lattice gluon action:

http://ckp.nrcki.ru/
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SG = β
∑
x

(
(c0 + r2Ω2

I)(1−
1

Nc
Re Tr Ūxy) + (c0 + y2Ω2

I)(1−
1

Nc
Re Tr Ūxz) +

+ (c0 + x2Ω2
I)(1−

1

Nc
Re Tr Ūyz) + c0

(
3− 1

Nc
Re Tr (Ūxτ + Ūyτ + Ūzτ )

)
−

+
∑
µ 6=ν

c1(1− 1

Nc
Re Tr W̄ 1×2

µν )− 1

Nc
Re Tr

(
yΩI(V̄xyτ + V̄xzτ )− xΩI(V̄yxτ + V̄yzτ ) + xyΩ2

I V̄xzy
))
, (29)

where Ūµν denotes the clover-type average of four pla-
quettes, W̄ 1×2

µν is the rectangular loop, V̄µνρ is the asym-
metric chair-type average of eight chairs [32], and c0 =
1−8c1, c1 = −1/12. The action (29) in the case c1 = 0 co-
incides with the lattice gauge action used in Refs. [31, 32].

For each lattice size we keep the (imaginary) an-
gular velocity in lattice units unchanged with the
variation of β, therefore, the linear velocity vI at
the boundary of the system remains constant with
the changes in temperature. In our simulations the
linear velocity takes the following values: v2

I =
0.000, 0.015, 0.030, 0.045, 0.060, 0.075, 0.090.

To set the temperature scale, we use the results for the
string tension from Ref. [42]. For the non-rotating lat-
tices with periodic boundary conditions, we use the val-
ues of the inverse critical coupling βc taken from Ref. [42].
For the case of open boundary conditions, we determine
βc from the peak of the Polyakov loop susceptibility.

Simulations are performed using Monte Carlo algo-
rithm, each sweep consists of one heatbath update
and two steps of the overrelaxation updates. In fi-
nite (zero) temperature simulations typical statistics are
about 5000-40000 (2000-10000) sweeps after thermaliza-
tion for each set of parameters, depending on Nt of the
finite temperature lattice. The statistical errors are esti-
mated via the jackknife method.
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