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Negative moment of inertia and rotational instability of gluon plasma

Using first-principle numerical simulations of the lattice SU(3) gauge theory, we calculate the isothermal moment of inertia of the rigidly rotating gluon plasma. We find that the moment of inertia unexpectedly takes a negative value below the "supervortical temperature" Ts = 1.50(10)Tc, vanishes at T = Ts, and becomes a positive quantity at higher temperatures. The negative moment of inertia indicates a thermodynamic instability of rigid rotation. We derive the condition of thermodynamic stability of the vortical plasma and show how it relates to the scale anomaly and the magnetic gluon condensate. The rotational instability of gluon plasma shares a striking similarity with the rotational instabilities of spinning Kerr and Myers-Perry black holes.

Introduction. The moment of inertia I is a quantity that expresses the resistance of a physical body to angular acceleration around a certain axis. In thermodynamic equilibrium, all physical objects have positive moments of inertia implying that in order to achieve an angular acceleration, one needs to apply a torque [START_REF] Landau | Mechanics[END_REF].

A negative moment of inertia of a body would imply that its acceleration generates a torque itself as if the physical body has a negative mass. Impossible in thermal equilibrium, this effect can be achieved in nonequilibrium, open systems. In mechanics, the realization of a I < 0 system requires presence of an active component such as a motor [START_REF] Lončar | Negative-inertia converters: Devices manifesting negative mass and negative moment of inertia[END_REF]. In electronics, the relevant example is played by electrical negative-impedance converters identified as an active electric circuit with negative resistivity [START_REF] Chen | The circuits and filters handbook[END_REF]. A negative moment of inertia can also be realized in rotating Casimir systems associated with negative vacuum energy [START_REF] Chernodub | Permanently rotating devices: extracting rotation from quantum vacuum fluctuations?[END_REF][START_REF] Chernodub | Rotating Casimir systems: magneticfield-enhanced perpetual motion, possible realization in doped nanotubes, and laws of thermodynamics[END_REF][START_REF] Flachi | Quantum vacuum, rotation, and nonlinear fields[END_REF]. In addition, the negativity of isothermal moment of inertia can be achieved in thermodynamically unstable systems such as rotating black holes [START_REF] Bernard | Action principle and partition function for the gravitational field in black-hole topologies[END_REF][START_REF] Prestidge | Dynamic and thermodynamic stability and negative modes in schwarzschild-anti-de sitter black holes[END_REF][START_REF] Reall | Classical and thermodynamic stability of black branes[END_REF][START_REF] Monteiro | Thermodynamic instability of rotating black holes[END_REF][START_REF] Altamirano | Thermodynamics of rotating black holes and black rings: Phase transitions and thermodynamic volume[END_REF].

In our paper, we show that the rigidly rotating gluon plasma possesses, in thermal equilibrium, a negative moment of inertia (I < 0) below the temperature T s = 1.50 [START_REF] Monteiro | Thermodynamic instability of rotating black holes[END_REF] T c .
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where T c is the deconfining transition temperature in a non-rotating plasma. We call T s the "supervortical temperature" since at T = T s , the rigidly rotating plasma looses its moment of inertia, I(T s ) = 0, in a distant similarity with a superconductor which looses its resistivity at a certain critical temperature. Rotating quark-gluon plasma (QGP) with temperatures around the supervortical temperature (1) is routinely produced in relativistic heavy-ion collisions. Such plasma can have exceptionally high vorticity of the order of ω ≈ (9 ± 1) × 10 21 s -1 ∼ 0.03 fm -1 c ∼ 7 MeV [START_REF] Adamczyk | Global Λ hyperon polarization in nuclear collisions: evidence for the most vortical fluid[END_REF]. The properties of vortical QGP can be probed via spin polarization of produced hadrons which provide us with an opportunity to confront theoretical methods with experimental results [START_REF] Becattini | Polarization and Vorticity in the Quark-Gluon Plasma[END_REF][START_REF] Huang | Vorticity and Spin Polarization in Heavy Ion Collisions: Transport Models[END_REF]. Theoretical approaches to the thermodynamics of rotating QGP always assume a rigid rotation of the system, drastically simplifying analytical treatment [START_REF] Victor | Rotating quantum states[END_REF][START_REF] Victor | Rotating fermions inside a cylindrical boundary[END_REF].

The global consensus on the phase diagram of rotating quark-gluon plasma is still lacking. The thermal transition from hadronic to the QGP phase is accompanied by the restoration of the chiral symmetry and the deconfinement of color. There is a general agreement in the community that the rigid rotation, according to all model estimates, should reduce the critical temperature of the chiral transition in the fermionic sector [START_REF] Hao-Lei Chen | Analogy between rotation and density for Dirac fermions in a magnetic field[END_REF][START_REF] Jiang | Pairing Phase Transitions of Matter under Rotation[END_REF][START_REF] Chernodub | Interacting fermions in rotation: chiral symmetry restoration, moment of inertia and thermodynamics[END_REF][START_REF] Chernodub | Effects of rotation and boundaries on chiral symmetry breaking of relativistic fermions[END_REF][START_REF] Wang | Quark matter under rotation in the NJL model with vector interaction[END_REF][START_REF] Zhang | Chiral phase transition inside a rotating cylinder within the Nambu-Jona-Lasinio model[END_REF][START_REF] Sadooghi | Inverse magnetorotational catalysis and the phase diagram of a rotating hot and magnetized quark matter[END_REF].

However, the situation with the deconfining transition is not clear: the rigid rotation should either drive plasma to the deconfinement phase [START_REF] Chen | Gluodynamics and deconfinement phase transition under rotation from holography[END_REF][START_REF] Fujimoto | Deconfining Phase Boundary of Rapidly Rotating Hot and Dense Matter and Analysis of Moment of Inertia[END_REF][START_REF] Golubtsova | Heavy quarks in rotating plasma via holography[END_REF][START_REF] Shi Chen | Perturbative Confinement in Thermal Yang-Mills Theories Induced by Imaginary Angular Velocity[END_REF][START_REF] Golubtsova | Probing the holographic model of N = 4 SYM rotating quarkgluon plasma[END_REF] or, with another scenario, should not affect the system at the rotational axis, forming, at high vorticity, an inhomogeneous confining-deconfining phase (the inverse hadronization effect) [START_REF] Chernodub | Inhomogeneous confiningdeconfining phases in rotating plasmas[END_REF]. While signatures of the inhomogeneity are seen in kinematic variables in numerical simulations of pure gluon plasma [START_REF] Chernodub | Inhomogeneity of rotating gluon plasma and Tolman-Ehrenfest law in imaginary time: lattice results for fast imaginary rotation[END_REF], the numerical first-principle simulations have also revealed that the bulk critical temperature of the deconfining phase transition grows with the increase of the angular frequency [START_REF] Braguta | Study of the Confinement/Deconfinement Phase Transition in Rotating Lattice SU(3) Gluodynamics[END_REF][START_REF] Braguta | Influence of relativistic rotation on the confinement-deconfinement transition in gluodynamics[END_REF]. Moreover, it turned out that gluons and fermions have opposite effects on the critical temperature in rotating systems. It seems that the gluon sector wins in this contest and the deconfinement as well as the chiral critical temperatures increase with the rotation [START_REF] Braguta | Thermal phase transitions in rotating QCD with dynamical quarks[END_REF].

Thus, the model-based analytical approaches and the first-principle numerical simulations of rigidly rotating gluon plasma do not match. To explore this puzzle deeper, we look, in our work, at the mechanical properties of the rotating gluon plasma.

Angular momentum and moment of inertia. A mechanical response of a thermodynamic ensemble to a rigid rotation with the angular velocity Ω can be quantified in terms of the conjugated variable, the total arXiv:2303.03147v1 [hep-lat] 6 Mar 2023 angular momentum J which includes orbital and spin parts. These quantities determine the relation between the energy E (lab) in the inertial laboratory frame and the energy in the co-rotating, non-inertial reference frame, E = E (lab) -J Ω [START_REF] Landau | Mechanics[END_REF]. The angular momentum J can be expressed via either the energy E or the free energy F = E -T S in the co-rotating frame:

J = - ∂E ∂Ω S = - ∂F ∂Ω T , (2) 
where we used dE = T dS -J dΩ and dF = -SdT -J dΩ.

The moment of inertia is a scalar quantity,

I(T, Ω) = J(T, Ω) Ω = - 1 Ω ∂F ∂Ω T . (3) 
which fixes a relation between the angular momentum J (T, Ω) = I(T, Ω)Ω and the angular velocity Ω = Ωe of rotation around a fixed axis e. Thus, the basic thermodynamic quantities (2) and the moment of inertia (3) can be determined with the help of the free energy F in the co-rotating reference frame.

For simplicity, we start our discussion with a cylindershaped gluon plasma with a radius R, rigidly rotating with the angular frequency Ω around the symmetry axis. We consider slowly rotating gluon plasma implying the velocity

v R = ΩR , (4) 
at the boundary of the system to be non-relativistic, v 2 R 1. As we work with a large system size, R ∼ (a few) fm, the condition of the slowness of rotation also requires that the angular velocity should be much smaller than the intrinsic QCD energy scale, Ω Λ QCD . Moreover, in the whole range of temperatures in our work, T

(1.0 ∼ 2.0)T c , the boundary effects can also be neglected because the spatial thermal correlation lengths in the strongly interacting gluonic plasma at T T c are of the order of Λ -1 QCD or shorter, while below T c the correlations are governed by the glueball masses M 0 ++ = 1.653 [START_REF] Golubtsova | Heavy quarks in rotating plasma via holography[END_REF] GeV [START_REF] Athenodorou | The glueball spectrum of su(3) gauge theory in 3 + 1 dimensions[END_REF] which correspond to even shorter correlation lengths. These physical conditions (system size R, temperature range T , and rotational frequency range Ω) correspond to physical conditions of vortical plasma created at RHIC in noncentral relativistic heavy-ion collisions [START_REF] Adamczyk | Global Λ hyperon polarization in nuclear collisions: evidence for the most vortical fluid[END_REF].

Thermodynamics and velocity at the boundary. Several theoretical approaches to rigidly rotating gluon plasma [START_REF] Huang | Vorticity and Spin Polarization in Heavy Ion Collisions: Transport Models[END_REF][START_REF] Fujimoto | Deconfining Phase Boundary of Rapidly Rotating Hot and Dense Matter and Analysis of Moment of Inertia[END_REF] express its thermodynamic properties as a function of the angular frequency Ω, suggesting independence (or a mild dependence) of the thermodynamics on the size of the system perpendicular to the axis of rotation [START_REF] Fujimoto | Deconfining Phase Boundary of Rapidly Rotating Hot and Dense Matter and Analysis of Moment of Inertia[END_REF]. However, first-principle numerical simulations indicate that the size dependence is very pronounced [START_REF] Braguta | Study of the Confinement/Deconfinement Phase Transition in Rotating Lattice SU(3) Gluodynamics[END_REF][START_REF] Braguta | Influence of relativistic rotation on the confinement-deconfinement transition in gluodynamics[END_REF] (see also discussion in Ref. [START_REF] Chernodub | Interacting fermions in rotation: chiral symmetry restoration, moment of inertia and thermodynamics[END_REF]). Moreover, it appears that the thermodynamics of the slowly rotating system can be expressed as a function of the velocity of the system at the boundary (4). This statement, valid at least in the O(Ω 2 ) order, implies that the thermodynamic variables incorporate angular frequency only via the common product ΩR [START_REF]pressure does not depend on the combination Ω/ΛQCD[END_REF].

Neglecting a shape change for the slowly rotating plasma, the moment of inertia can be taken as an Ωindependent quantity, I = I(T, R). [START_REF] Hereafter | [END_REF] Then, the thermodynamic relation [START_REF] Chen | The circuits and filters handbook[END_REF] implies that

F (T, R, Ω) = F 0 (T, R) - 1 2 I(T, R)Ω 2 , (5) 
where F 0 ≡ F (lab) (Ω = 0) is the free energy of the nonrotating gas. The quadratic term Ω 2 has a minus sign in the co-rotating free energy (5) because this term represents a centrifugal energy responsible for particle runaway forces directed outwards of the axis of rotation. For a classical system, the moment of inertia is determined by the mass (energy) distribution ρ(T, x ⊥ , Ω), where x ⊥ is the radial coordinate normal to the axis of rotation. The effect of non-relativistic rotation on the uniform spatial mass distribution can be neglected, ρ(T, x ⊥ , Ω) = ρ 0 (T ), implying that the moment of inertia takes the following familiar form:

I(T, R, Ω) = V d 3 x x 2 ⊥ ρ(T, x ⊥ , Ω) = π 2 L z R 4 ρ 0 (T ) , (6) 
where the integral is taken over the volume V = πL z R 2 of the rotating cylinder. While the derivation of Eq. ( 6) is valid for a nonrelativistic rotation of a classical system, the system itself can be described by relativistic thermodynamics similarly to the gluon plasma where the relation (6) holds as well [START_REF] Landau | Statistical Physics[END_REF]. In this case, the quantity ρ 0 , which determines the number of degrees of freedom that couple to rigid rotation, can have another origin. For example, ρ 0 in a Casimir system is negative so that the moment of inertia can take negative values as well [START_REF] Chernodub | Permanently rotating devices: extracting rotation from quantum vacuum fluctuations?[END_REF][START_REF] Chernodub | Rotating Casimir systems: magneticfield-enhanced perpetual motion, possible realization in doped nanotubes, and laws of thermodynamics[END_REF].

Combining Eqs. ( 5) and ( 6) we get that the co-rotating free energy can be expressed via the velocity v R at the border of the cylinder x ⊥ = R, given in Eq. ( 4):

F (T, v R ) = F 0 (T, R) 1 + 1 2 K 2 v 2 R + O v 4 R , (7) 
where F 0 is the free energy in the absence of rotation.

The response of the system with respect to the rigid rotation is represented in Eq. ( 7) by the dimensionless coefficient K 2 = V ρ 0 /(2F 0 ), where V = πLR 2 is the volume of the cylinder. The dimensionless moment of inertia K 2 relates the moment of inertia I to the free energy at a vanishing angular frequency, F 0 (notice that F 0 < 0):

I(T ) ≡ lim Ω→0 I(T, Ω) = -K 2 (T )F 0 (T )R 2 . (8) 
Thus, the angular frequency Ω enters the free energy [START_REF] Bernard | Action principle and partition function for the gravitational field in black-hole topologies[END_REF] only as the velocity v R at the boundary of the system (4).

Scale anomaly and equation of state. The free energy density, f , is determined via the scale (trace) anomaly [START_REF] Boyd | Thermodynamics of SU(3) lattice gauge theory[END_REF]:

T µ µ = -T 5 d dT f T 4 . (9) 
Integrating ( 9), we get the free energy density:

f (T ) = -T 4 T 0 dT T T µ µ (T ) T 4 , (10) 
highlighting the role of the anomaly T µ µ = 0. When defining the integral in Eq. ( 10), we used the fact that the anomalous trace vanishes rapidly at low temperatures, T µ µ ∼ exp(-M/T ), due to the mass gap M = 0. The trace of the energy-momentum tensor T µ µ is computable in lattice simulations thus making it possible to calculate the free energy density [START_REF] Monteiro | Thermodynamic instability of rotating black holes[END_REF] numerically from the first principles. However, this thermodynamically transparent expression can be rewritten in the lattice form which is more suitable for numerical computations [START_REF] Boyd | Thermodynamics of SU(3) lattice gauge theory[END_REF]:

f (T ) T 4 = -N 4 t β β0 dβ ∆s(β ) , T = 1 N t a(β) , (11a) ∆s 
(β) = s(β) T =0 -s(β) T , s = S N t N z N 2 s , (11b) 
where the SU (N c ) lattice coupling β = 2N c /g 2 0 is expressed in terms of the bare continuum coupling g 0 , while the lattice action S will be specified below. In Eq. (11a), the lower integration limit β 0 is chosen in a deep confinement phase where the integrand, represented by the difference (11b) in the expectation values of the action at vanishing and finite temperature, is negligibly small.

The lattice formula (11a) has the same meaning as the continuum relation [START_REF] Monteiro | Thermodynamic instability of rotating black holes[END_REF], with the right-hand-side of Eq. (11a) expressed via the lattice form of the scale anomaly. The latter includes the running coupling which is computable via the scale dependence of the lattice spacing a = a(β).

The lattice form (11a) is also suitable for direct calculation of the free energy density f in the non-inertial co-rotating reference frame. To this end, the action S should be formulated in the curved background with the Euclidean metric corresponding to the co-rotating frame [START_REF] Yamamoto | Lattice QCD in rotating frames[END_REF]:

g E µν =     1 0 0 x 2 Ω I 0 1 0 -x 1 Ω I 0 0 1 0 x 2 Ω I -x 1 Ω I 0 1 + x 2 ⊥ Ω 2 I     , (12) 
written in the Euclidean coordinates x µ = (x 1 , . . . , x 4 ), where x 4 = -it is the imaginary time coordinate and

x 2 ⊥ = x 2 1 + x 2 2 .
The system rotates around the x 3 axis.

The angular velocity in Eq. ( 12) is put in the purely imaginary form Ω I = -iΩ to avoid the sign problem [START_REF] Yamamoto | Lattice QCD in rotating frames[END_REF]. The expressions for the Minkowski spacetime can be obtained by the analytical continuation. In particular, the velocity v R at the boundary (4) becomes imaginary v I = -iv R , with the following relation:

v 2 I = -v 2 R . (13) 
The action in the co-rotating frame in the continuum Euclidean spacetime has the following form:

S = 1 4g 2 d 4 x √ g E g µν E g αβ E F a µα F a νβ , (14) 
where g E µν = (g µν E ) -1 is the curved Euclidean metric ( 12) with the determinant g E = det (g µν ) = 1 and F a µν is the field strength of SU(3) gauge field.

Numerical first-principle results. We discretize rotating terms in the action [START_REF] Huang | Vorticity and Spin Polarization in Heavy Ion Collisions: Transport Models[END_REF] following Ref. [START_REF] Braguta | Influence of relativistic rotation on the confinement-deconfinement transition in gluodynamics[END_REF][START_REF] Yamamoto | Lattice QCD in rotating frames[END_REF] and use the tree-level improved Symanzik gauge action for the terms without rotation [START_REF] Curci | Symanzik's Improved Lagrangian for Lattice Gauge Theory[END_REF][START_REF] Luscher | Computation of the Action for On-Shell Improved Lattice Gauge Theories at Weak Coupling[END_REF]. To set the temperature scale we use the results from Ref. [START_REF] Beinlich | String tension and thermodynamics with tree level and tadpole improved actions[END_REF].

Our calculations are performed on the lattices of size 2 with N t = 5, 6, 7, 8. We used periodic boundary conditions in all directions. For the zero temperature subtraction (11b) we use data from the lattice with the same spatial sizes and N t = 40. The imaginary velocity at the boundary is identified with the velocity at the middle of the boundary side, v I = Ω I L s /2, where L s = a(N s -1) is the length of the lattice in the x and y directions. More details on numerical simulations can be found in Appendix.

N t × N z × N 2 s = N t × 40 × 41
In the inset of Fig. 1, we show the normalized difference of lattice action densities ∆s (11b) which enters the free energy density (11a). At vanishing velocity of the rotation, v I = 0, we recover the known result [START_REF] Boyd | Thermodynamics of SU(3) lattice gauge theory[END_REF][START_REF] Sz | Precision SU(3) lattice thermodynamics for a large temperature range[END_REF]. The steep rise of ∆s, which happens close to the critical coupling β β c , points to the first order nature of the phase transition in the non-rotating plasma.

As the imaginary velocity v I increases, the transition shifts towards smaller lattice couplings β signaling that the critical temperature T c = T c (v I ) decreases as the imaginary angular frequency Ω I (the velocity v I of the rotation) raises. This result is in agreement with previous numerical calculations [START_REF] Braguta | Study of the Confinement/Deconfinement Phase Transition in Rotating Lattice SU(3) Gluodynamics[END_REF][START_REF] Braguta | Influence of relativistic rotation on the confinement-deconfinement transition in gluodynamics[END_REF][START_REF] Braguta | Thermal phase transitions in rotating QCD with dynamical quarks[END_REF].

The normalized free energy density in the co-rotating frame, -f /T 4 , calculated via Eq. (11a), is shown in Fig. 1. This quantity is a monotonically raising function of the temperature T at all imaginary velocities v I , indicating the presence of a plateau at T → ∞ for each fixed v I .

The free energy density f , shown in Fig. 1, is a rising (diminishing) function of v 2 I at fixed temperature T < T s (T > T s ). This property can be quantified by fitting of the free energy density at a fixed temperature T by a 13) and ( 4), for the same lattice. Periodic boundary conditions are employed. parabolic function

f (T, v I ) = f 0 (T ) 1 - 1 2 K 2 (T )v 2 I , (15) 
where f 0 and K 2 serve as fit parameters (we remind that f 0 < 0). The expression in the Euclidean spacetime [START_REF] Victor | Rotating quantum states[END_REF] represents the first two terms of the free energy [START_REF] Bernard | Action principle and partition function for the gravitational field in black-hole topologies[END_REF] in the co-rotating frame in the Minkowski spacetime after the Wick transformation for the boundary velocities [START_REF] Becattini | Polarization and Vorticity in the Quark-Gluon Plasma[END_REF].

The dimensionless moment of inertia K 2 for several lattices and the corresponding continuum limit (a → 0, or, equivalently, 1/N t → 0 at a fixed temperature T ) are shown in Fig. 2. A striking feature of the free energy, Fig. 1, is that the curves corresponding to different v I intersect at the same "supervortical" temperature T s , signaling that at this temperature, the free energy (15) looses, at least for slow rotation v 2 I 1, the dependence on the rotational frequency. Therefore, the rigidly rotating gluon plasma looses its moment of inertia at T = T s . We use this property as a definition of the supervortical temperature, K 2 (T s ) = 0, and show its continuum limit in Fig. 2.

The continuum limit of the dimensionless moment of inertia can be well reproduced by a rational function

K (fit) 2 (T ) = K (∞) 2 - c T /T c -1 , (16) 
where the best-fit parameters are the high-temperature asymptotics K (∞) 2 = 2.23 [START_REF] Yamamoto | Lattice QCD in rotating frames[END_REF] and the slope coefficient c = 1.11 [START_REF] Chernodub | Effects of rotation and boundaries on chiral symmetry breaking of relativistic fermions[END_REF]. The high-temperature limit of the moment + C/N 2 t at Nt → ∞ or, equivalently, a → 0. The best fit ( 16) of the continuum curve is shown by the dashed black line. The position of the supervortical temperature Ts, extrapolated to continuum limit, is marked by the vertical line which separates the unstable (T < Ts) and stable (T > Ts) regimes of rigid plasma rotation. The error estimations (the shaded regions for Ts and K (cont.) 2

, and the bars of the data) include both statistical and systematic uncertainties.

of inertia, K (∞) 2
, is a non-universal quantity that may depend on the geometry of the rotating system and the boundary conditions.

In order to estimate systematic errors related to our determination of T s , we repeat the whole procedure with several methods of numerical integration in Eq. (11a) and several upper limits v (max) I for the fit of the free energy density by the function [START_REF] Victor | Rotating quantum states[END_REF]. The final result for the lattices with periodic boundary conditions is given in Eq. ( 1), where the estimated uncertainty incorporates both statistical and systematic contributions.

As mentioned above, the absence of the massless excitations in the deconfinement phase implies the independence of our results on the type of boundary conditions in the transverse spatial directions, provided the spatial volume is large enough. To verify this property, we calculated the K 2 coefficient for the system with open boundary conditions and found an agreement with the periodic lattices, albeit more significant uncertainties. The corresponding supervortical temperature for the open system, T s /T c = 1.53 [START_REF] Victor | Rotating quantum states[END_REF] agrees with the estimate for periodic boundary conditions [START_REF] Landau | Mechanics[END_REF].

(In)stability and sign of the moment of inertia. Formally, the negative moment of inertia, observed in the region of temperatures T < T s , might imply that the rotation causes the quark-gluon plasma to cool down (the faster rotation, the lower thermal energy). However, physically, this counter-intuitive effect, contradicting the kinematic Tolman-Ehrenfest picture [START_REF] Tolman | Temperature Equilibrium in a Static Gravitational Field[END_REF][START_REF] Tolman | On the Weight of Heat and Thermal Equilibrium in General Relativity[END_REF], indicates that the rigid rotation is impossible thermodynamically. The plasma experiences an instability which makes the rotation non-rigid. Similar instabilities occur in curved gravitational backgrounds of rotating Kerr and Myers-Perry black holes [START_REF] Bernard | Action principle and partition function for the gravitational field in black-hole topologies[END_REF][START_REF] Prestidge | Dynamic and thermodynamic stability and negative modes in schwarzschild-anti-de sitter black holes[END_REF][START_REF] Reall | Classical and thermodynamic stability of black branes[END_REF].

For a system in stable equilibrium at a given temperature T and angular velocity Ω, any deviation from the equilibrium should obey the following condition [START_REF] Landau | Statistical Physics[END_REF]:

δE -T δS -ΩδJ > 0 , (17) 
which implies that all eigenvalues of the inverse Weinhold metric, defined in the thermodynamic space [START_REF] Weinhold | Metric geometry of equilibrium thermodynamics[END_REF],

g (W ),µν = - ∂ 2 f (T, Ω) ∂X µ ∂X ν , X µ = (T, Ω i ) , (18) 
must be positively defined (see a discussion in [START_REF] Monteiro | Thermodynamic instability of rotating black holes[END_REF]).

The positivity of the matrix ( 18) is achieved provided the specific heat at constant angular momenta C J and the eigenvalues (spectrum) of the tensor of isothermal differential moment of inertia I ij ≡ I ji are positive quantities:

C J > 0 , C J = T ∂S ∂T J , (19) spec 
(I ij ) > 0 , I ij = ∂J i ∂Ω j T . (20) 
The inequality ( 19) is a standard requirement for the thermodynamic stability [START_REF] Landau | Statistical Physics[END_REF]. Given the cylindrical geometry of our system, the condition (20) reduces to the requirement I > 0 for the principal moment of inertia (3) at infinitesimally slow rotations, Ω → 0. In terms of the coefficient K 2 , Eqs. ( 7) and ( 8), the thermodynamic stability requires:

K 2 (T ) > 0 (thermodynamic stability), (21) 
which is violated below the supervortical temperature, T < T s . This instability has a thermodynamic origin. It has no obvious relation to the hydrodynamic instabilities that might be generated by the viscous flow of hot gluons.

Moment of inertia and scale anomaly. The moment of inertia I is directly related to the trace anomaly as one can see from Eqs. ( 8), [START_REF] Monteiro | Thermodynamic instability of rotating black holes[END_REF], and (15):

I(T ) = -T 4 T 0 dT T T µ µ (2) (T ) T 4 , (22) 
where T µ µ (2k) are the moments of the anomalous trace

T µ µ (2k) (T ) = 1 (2k)! ∂ 2k ∂v 2k I T µ µ (T, v I ) v I =0 , (23) 
for k ∈ Z. The equation ( 23) can readily be written for the real angular velocity using the correspondence [START_REF] Becattini | Polarization and Vorticity in the Quark-Gluon Plasma[END_REF].

Role of the magnetic gluon condensate. Using Eq. ( 3) or Eq. ( 20), we can derive, via a path-integral representation of Yang-Mills theory in a curved spacetime [START_REF] Huang | Vorticity and Spin Polarization in Heavy Ion Collisions: Transport Models[END_REF], the moment of inertia of gluons, I ≡ I 33 :

I = I fluct + I cond = V d 3 x V d 3 x M 12 0 (x)M 12 0 (x ) T + V d 3 x ( ij F a i3 x j ) 2 + (F a 12 ) 2 (x 2 1 + x 2 2 ) T . (24) 
We used Eq. ( 5) and the relation Ω 2 = -Ω 2 I . In Eq. ( 24),

M ij (x) = x i T j0 (r) -x j T i0 (x) , i, j = 1, 2, 3 , (25) 
is the local angular momentum, which is related to the Ω → 0 limit of the stress-energy tensor of gluons:

T µν = F a,µα F a,ν α - 1 4 η µν F a,αβ F a αβ . (26) 
We also used the notation

O T = O T -O T =0
to denote the thermal part of the expectation value of an operator O. The normalization of the moment of inertia ( 24) is chosen such that the cold vacuum has no inertia.

The first term in the moment of inertia ( 24) describes fluctuations of the angular momentum and has a standard linear-response form

I fluct = (J 3 ) 2 T , J i = 1 2 V d 3 x ijk M jk (x) , (27) 
were we used the fact that J 3 = 0 at Ω = 0 at any temperature. One might expect that I fluct > 0 because thermal fluctuations always increase the susceptibility in addition to quantum fluctuations. The second term in (24) involves a nonperturbative magnetic gluon condensate in the static, Ω → 0, limit. Using the SO(3) rotational symmetry and the translational invariance of the plasma in spatial dimensions, we get the relation

F a i3 F a j3 T = δ ij (F a 12 ) 2
T , which can be expressed via the magnetic gluon condensate at a finite temperature (F a ij ) 2 T ≡ 6 (F a 12 ) 2 T . We get:

I cond = 1 3 V d 3 x x 2 ⊥ (F 2 ij ) 2 = π 6 L z R 4 (F a ij ) 2 T . (28) 
Surprisingly, this relation has the same form as the classical formula for the moment of inertia [START_REF] Flachi | Quantum vacuum, rotation, and nonlinear fields[END_REF], where the mass density ρ corresponds to the thermal part of the magnetic gluon condensate ρ(T ) = (F a ij ) 2 T /6. The full gluon condensate G 2 (a sum of its electric and magnetic parts) is a phenomenologically important quantity which takes a positive value at T = 0 [START_REF] Shifman | QCD and Resonance Physics. Theoretical Foundations[END_REF][START_REF] Shifman | QCD and Resonance Physics: Applications[END_REF]. It decreases monotonically with the increase of the temperature, implying that the thermal part of the condensate, G 2 T , always takes a negative value [START_REF] Miller | The Gluon condensate in QCD at finite temperature[END_REF][START_REF] Gubler | Recent Progress in QCD Condensate Evaluations and Sum Rules[END_REF]. This property, which is interpreted as melting of the gluon condensate, is in agreement with the relation of the thermal condensate to the scale anomaly: G 2 T = -T µ µ T < 0 (see a discussion in Ref. [START_REF] Boyd | Thermodynamics of SU(3) lattice gauge theory[END_REF]).

However, the magnetic contribution to the scale anomaly (11b) reverses its sign at T 2T c [START_REF] Boyd | Thermodynamics of SU(3) lattice gauge theory[END_REF] indicating that the magnetic part of the thermal gluon condensate becomes positive and implying that I > 0 above 2T c . This effect is associated with the evaporation of the magnetic component of the gluon plasma [START_REF] Chernodub | Magnetic component of Yang-Mills plasma[END_REF][START_REF] Liao | Magnetic Component of Quark-Gluon Plasma is also a Liquid![END_REF] and the associated string dynamics [START_REF] Chernodub | Magnetic component of Yang-Mills plasma[END_REF][START_REF] Ya | Chiral spin symmetry and hot/dense QCD[END_REF]. Thus, the negativevalued condensate in I cond should nullify the positive contribution of the correlator term I fluct in a region below 2T c in agreement with our estimate of the supervortical temperature (1), T s < 2T c .

In short, the thermal magnetic condensate takes a negative value right above T c suggesting that the negative contribution of the condensate I cond overwhelms the positive standard contribution I fluct thus leading to a negative total moment of inertia [START_REF] Chen | Gluodynamics and deconfinement phase transition under rotation from holography[END_REF], I = I fluct + I cond < 0, above T c . At T > T s , the perturbative hot gluons prevail the non-perturbative scale counterpart, and the moment of inertia becomes positive.

The suggested mechanism is also in a qualitative agreement with previous numerical observations indicating that rigid rotation increases the critical transition temperature T c [START_REF] Braguta | Study of the Confinement/Deconfinement Phase Transition in Rotating Lattice SU(3) Gluodynamics[END_REF][START_REF] Braguta | Influence of relativistic rotation on the confinement-deconfinement transition in gluodynamics[END_REF]. Indeed, if the rigid rotation makes the plasma colder, then stronger thermal fluctuations (and, consequently, higher temperature) are needed to destroy the confinement phase in the rotating plasma as compared to the non-rotating plasma. This simple observation explains the effect of raising critical temperature T c with increasing angular frequency Ω. Moreover, the crucial role of the magnetic condensate in our mechanism suggests that this effect should be absent for nongluonic degrees of freedom. The latter hypothesis is perfectly consistent with the recent first-principle observation made, separately, for quarks and gluons in Ref. [START_REF] Braguta | Thermal phase transitions in rotating QCD with dynamical quarks[END_REF] Our paper focuses on the investigation of pure gluon plasma, which exhibits the fundamental nonperturbative properties of its realistic quark-gluon counterpart. To clarify the contribution of quarks to the moment of inertia, we notice that Eq. ( 24) remains also valid in QCD. Namely, the total angular momentum M 12 now includes not only the gluon part [START_REF] Fujimoto | Deconfining Phase Boundary of Rapidly Rotating Hot and Dense Matter and Analysis of Moment of Inertia[END_REF], but also the orbital, ψγ 4 (xD y -yD x )ψ, and spin, i/2 ψγ 4 σ 12 ψ, angular momenta of quarks. While the quark fields make a positive thermal contribution to the fluctuation term I fluct , the gluomagnetic contribution I cond stays negative in QCD [START_REF] Ishii | Hadronic screening masses and the magnetic gluon condensate at high temperature[END_REF]. Following our discussions of gluon plasma, we conclude that I ≡ I fluct + I cond < 0 also for the quarkgluon plasma in a certain range of temperatures. Thus, we believe that the rigid rotation of quark-gluon plasma is also unstable in a certain temperature range around the transition temperature.

Conclusions. All field-theoretical analytical and first-principle numerical approaches dedicated to the investigation of the thermodynamics of rotating quarkgluon plasma consider a rigidly rotating plasma, meaning the angular velocity Ω at all points in the system, regardless of the distance to the rotational axis, takes the same value [55]. In other words, the plasma rotates like a solid body. While this assumption sounds unnatural from, at least, a hydrodynamic point of view (after all, the plasma is not a solid), the rigid rotation is very convenient in treating the system analytically. Moreover, the rigid approximation could sound reasonable for a sufficiently small, slowly rotating system as a first-order approximation to a more complicated, spatially inhomogeneous rotation.

In our work, we show that below the supervortical temperature (1), the rigid rotation of the gluon plasma is thermodynamically unstable even at slow rotation velocities. This effect exhibits a striking similarity with spinning black holes [START_REF] Bernard | Action principle and partition function for the gravitational field in black-hole topologies[END_REF][START_REF] Prestidge | Dynamic and thermodynamic stability and negative modes in schwarzschild-anti-de sitter black holes[END_REF][START_REF] Reall | Classical and thermodynamic stability of black branes[END_REF][START_REF] Monteiro | Thermodynamic instability of rotating black holes[END_REF][START_REF] Altamirano | Thermodynamics of rotating black holes and black rings: Phase transitions and thermodynamic volume[END_REF]. While the back-hole rotational instability is promoted by the curved gravitational background, the instability in the gluon plasma originates from the scale anomaly via the thermal part of the magnetic gluon condensate. Therefore, we conclude that the model of rigid rotation cannot be used, for thermodynamic reasons, for a realistic study of the rotation of the gluon plasma.

Our results also suggest that the puzzling discrepancy between numerical [START_REF] Braguta | Study of the Confinement/Deconfinement Phase Transition in Rotating Lattice SU(3) Gluodynamics[END_REF][START_REF] Braguta | Influence of relativistic rotation on the confinement-deconfinement transition in gluodynamics[END_REF][START_REF] Braguta | Thermal phase transitions in rotating QCD with dynamical quarks[END_REF] and analytical (including holography [START_REF] Chen | Gluodynamics and deconfinement phase transition under rotation from holography[END_REF], Tolman-Ehrenfest kinematic estimations [START_REF] Chernodub | Inhomogeneity of rotating gluon plasma and Tolman-Ehrenfest law in imaginary time: lattice results for fast imaginary rotation[END_REF], hadron-gas approach [START_REF] Fujimoto | Deconfining Phase Boundary of Rapidly Rotating Hot and Dense Matter and Analysis of Moment of Inertia[END_REF], and perturbative arguments [START_REF] Shi Chen | Perturbative Confinement in Thermal Yang-Mills Theories Induced by Imaginary Angular Velocity[END_REF] based on imaginary rotation [START_REF] Chernodub | Inhomogeneous confiningdeconfining phases in rotating plasmas[END_REF]) models' predictions about the critical temperature in the center of rotating QCD (gluon) plasma might originate from the scale anomaly which should be taken into account appropriately. In particular, our work shows that the magnetic gluon condensate -which has a nonperturbative component at any temperature -plays a crucial role in rotating quark-gluon plasma. where Ūµν denotes the clover-type average of four plaquettes, W 1×2 µν is the rectangular loop, Vµνρ is the asymmetric chair-type average of eight chairs [START_REF] Braguta | Influence of relativistic rotation on the confinement-deconfinement transition in gluodynamics[END_REF], and c 0 = 1-8c 1 , c 1 = -1/12. The action [START_REF] Chernodub | Inhomogeneous confiningdeconfining phases in rotating plasmas[END_REF] in the case c 1 = 0 coincides with the lattice gauge action used in Refs. [START_REF] Braguta | Study of the Confinement/Deconfinement Phase Transition in Rotating Lattice SU(3) Gluodynamics[END_REF][START_REF] Braguta | Influence of relativistic rotation on the confinement-deconfinement transition in gluodynamics[END_REF].

For each lattice size we keep the (imaginary) angular velocity in lattice units unchanged with the variation of β, therefore, the linear velocity v I at the boundary of the system remains constant with the changes in temperature. In our simulations the linear velocity takes the following values: v 2 I = 0.000, 0.015, 0.030, 0.045, 0.060, 0.075, 0.090.

To set the temperature scale, we use the results for the string tension from Ref. [START_REF] Beinlich | String tension and thermodynamics with tree level and tadpole improved actions[END_REF]. For the non-rotating lattices with periodic boundary conditions, we use the values of the inverse critical coupling β c taken from Ref. [START_REF] Beinlich | String tension and thermodynamics with tree level and tadpole improved actions[END_REF]. For the case of open boundary conditions, we determine β c from the peak of the Polyakov loop susceptibility.

Simulations are performed using Monte Carlo algorithm, each sweep consists of one heatbath update and two steps of the overrelaxation updates. In finite (zero) temperature simulations typical statistics are about 5000-40000 (2000-10000) sweeps after thermalization for each set of parameters, depending on N t of the finite temperature lattice. The statistical errors are estimated via the jackknife method.
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 1 FIG.1. The free energy density f in the co-rotating frame as a function of the temperature T for the Nt = 6 lattice. The vertical line shows the supervortical temperature Ts for this lattice. The inset shows the expectation value of the lattice action density ∆s corresponding to the scale anomaly (11b) as a function of the lattice gauge coupling β. Both plots are given for several imaginary velocities squared v 2 I at the boundary R = Ls/2 ≡ 20a of the system, Eqs. (13) and (4), for the same lattice. Periodic boundary conditions are employed.
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 584022 FIG. 2. The dimensionless moment of inertia K2 of the gluon plasma as a function of the temperature T for several temporal lattice extensions Nt. The red shaded region, with the central values marked by the red solid line, denotes the tinuum extrapolation, K2 = K (cont.) 2

  Re Tr yΩ I ( Vxyτ + Vxzτ ) -xΩ I ( Vyxτ + Vyzτ ) + xyΩ 2 I Vxzy , (29)
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Appendix: Simulation details

We use the following lattice gluon action: