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Introduction

In face centred cubic (fcc) metals, plasticity is generally thought to occur by the motion of dislocations in well defined planes and directions. These groupings of planes and directions are called slip systems, and are the conventional way of describing plastic deformation caused by dislocation slip. In fcc metals, slip generally occurs on {111} planes in <110> directions. [START_REF] Barrett | Structure of Metals, Third Edition: Crystallographic Methods, Principles and Data[END_REF][START_REF] Hirth | Theory of dislocations[END_REF] The perfect Burgers vector, b, is a 2 <110> (a being the lattice unit), which is a close packed direction, and represents the shortest repeat length in the crystal. Other uncommon slip planes are sometimes encountered in fcc crystals, [START_REF] Hirth | Theory of dislocations[END_REF] for example: {100}, {110}, {121} or {212}. They are either observed at elevated temperatures ({100}, 3 {110} 4 or {212} [START_REF] Bhatr | Observations of {212} h100i slip system in face centered cubic austenitic stainless steel[END_REF] ) or on deformed specimens ({100}, 6,7 {110} 8 or {121} [START_REF] Lee | Anomalous slip in an FCC system[END_REF] ). These non-octahedral slip may result through cross-slip in the <110> direction. [START_REF] Barrett | Structure of Metals, Third Edition: Crystallographic Methods, Principles and Data[END_REF] As defects have a critical influence on the properties and performances of materials, it is critical to establish the fundamental slip planes for crystal plasticity models. Most of the experimental observations on slip planes have been performed on bulk crystals. The energy and mobility of defects in single nano-objects may be different compared to their bulk counterparts due to surface effects. [START_REF] Kinney | Computer simulation of surface effects on defect production in tungsten[END_REF] At the nanoscale, the number of defects (e.g., dislocations) in a crystal is reduced and their behavior cannot be determined by a statistical approach. Crystal defects are not always detrimental for performances as they can instead give rise to specific functionalities, such as improving adsorption affinity or enhancing the catalytic activity. [START_REF] Behrens | The Active Site of Methanol Synthesis over Cu/ZnO/Al2O3 Industrial Catalysts[END_REF][START_REF] Ulvestad | Topological defect dynamics in operando battery nanoparticles[END_REF][START_REF] Nilsson Pingel | Influence of atomic site-specific strain on catalytic activity of supported nanoparticles[END_REF] But quantifying the lattice distortions associated with defects as well as imaging the structure of defects in three-dimensions (3D) are challenging at the nanoscale. Accurate identification of the dislocation line, slip planes as well as the knowledge of the strain at the scale of defects are essential to the understanding of fundamental defect behaviors and the underlying physics.

To investigate defects and associated slip planes in small objects, we employed a noninvasive technique called Bragg Coherent Diffraction Imaging (BCDI). [START_REF] Robinson | Coherent X-ray diffraction imaging of strain at the nanoscale[END_REF] BCDI is a lens-less imaging technique based on inverse microscopy, which employs highly accurate digital methods to replace the x-ray imaging lenses. This technique combines 3D coherent diffraction measurements of Bragg peaks and phase retrieval algorithms to obtain a spatial reconstruction of individual nanoscale objects. The technique is sensitive to atomic displacement and strain. The retrieved object in direct space is a complex field, whose modulus encodes the electron density ⇢(r) of the object, and its phase, the displacement field u(r) projected onto the diffraction vector. The displacement field information is crucial in identifying the character of single dislocations. Thanks to the high brilliance, coherence and flux of synchrotron x-ray beams, BCDI has shown its capability to image single defects in nano-crystals [START_REF] Ulvestad | Topological defect dynamics in operando battery nanoparticles[END_REF][START_REF] Ulvestad | Single Particle Nanomechanics in Operando Batterie via Lensless Strain Mapping[END_REF][START_REF] Labat | Inversion Domain Boundaries in GaN Wires Revealed by Coherent Bragg Imaging[END_REF][START_REF] Ulvestad | Avalanching strain dynamics during the hydriding phase transformation in individual palladium nanoparticles[END_REF][START_REF] Ulvestad | 3D Imaging of Twin Domain Defects in Gold Nanoparticles[END_REF][START_REF] Yau | Bragg coherent diffractive imaging of single-grain defect dynamics in polycrystalline films[END_REF] together with an unmatched sensitivity (picometer resolution) to displacement fields. [START_REF] Labat | Inversion Domain Boundaries in GaN Wires Revealed by Coherent Bragg Imaging[END_REF] BCDI can be used to understand the impact of buried single defects on properties under in situ conditions. [START_REF] Ulvestad | Topological defect dynamics in operando battery nanoparticles[END_REF][START_REF] Yau | Bragg coherent diffractive imaging of single-grain defect dynamics in polycrystalline films[END_REF] Here, we apply BCDI to image and characterise in 3D the structure of defects in single faceted platinum (Pt) crystals. A {110}-type glide plane has been observed in two Pt crystals prepared via a chemical and physical process. This paper presents evidence for this anomalous non-octahedral glide plane in fcc sub-micrometer crystals. The {110} slip plane is associated with preferential nucleation of defects at the surface of the crystals.

Non-invasive structural characterisation of defects allows understanding defect behaviors in confined crystals and will facilitate defect engineering to enhance material performances.

Results

Two types of Pt particles have been prepared via a chemical (electrochemical deposition and faceting) and a physical (dewetting) process. For both samples, a high proportion of perfect (defect free) particles are observed. In this paper, we will concentrate on defective particles. The two crystals measured here are a tetrahexahedral (THH) Pt particle grown on a glassy carbon substrate 20 by electrodeposition and faceting and a dewetted Pt particle epitaxially grown on a sapphire substrate (see Experimental Section). The three-dimensional BCDI measurements were performed by measuring the scattered intensity in the vicinity of the specular 111 Pt Bragg reflection at the ID01 beamline of the European Synchrotron (ESRF) and at the P10 beamline of PETRA III synchrotron. Experimental details are given in the Experimental Section. The reconstructed density and phase are displayed with a voxel size of 3 nm 3 (3.5 nm 3 ) for the THH Pt particle (dewetted Pt particle). The resolution of the reconstruction is estimated to 18.3 nm (THH Pt particle) and 27 nm (dewetted Pt particle) using the Phase-Retrieval Transfer Function (PRTF), [START_REF] Chapman | High-resolution ab initio three-dimensional x-ray diffraction microscopy[END_REF][START_REF] Cherukara | Anisotropic nano-scale resolution in 3D Bragg coherent diffraction imaging[END_REF] which measures how well the retrieved Fourier amplitude matches the square root of the measured diffraction intensity. Details about the phase retrieval process are described in the Experimental Section.

The phase map obtained from the inversion of the BCDI measurement at the 111 Bragg reflection encodes the displacement field, u 111 , along the [111] direction, which is normal to the substrate surface (either glassy carbon for the THH particle or sapphire for the dewetted particle).

Figure 1 shows the reconstructed phase (proportional to u 111 ) and strain (✏ 111 ) fields of the THH crystal. The isosurface of the reconstructed Pt particle is drawn at 35% of the maximum electron density for the (a) top and (b) bottom views. The particle is strongly faceted with {201} planes, which correspond to high-index facets of the THH shape. [START_REF] Tian | Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity[END_REF] Discontinuities appear in the reconstructed phase field as indicated by black arrows in Figures 1(a) and(c).

They are the signature of defects within the crystallite. They are observed as a line in the phase plot, which can be described as a sharp phase boundary ended by 2⇡ phase vortices (region where the phase varies from -⇡ to ⇡). The two phase vortices are the signature of two dislocation cores. The phase jump in the reconstruction links the two dislocations (see Figures 1(a)-(c)), suggesting that they consist of two ends of the same dislocation line.

The strain has been derived from the displacement field: ✏ zz = @u 111 @z and using the procedure described in Ref. [START_REF] Hofmann | 3D-resolved lattice strain tensor measurements of specific crystallographic defects extracted from a bulk sample[END_REF] (see Figure 1(d)). Note that the out-of-plane ✏ zz strain is different around the two segments (labelled as A and B) of the dislocation, implying that they are of different types. Figure 2 shows the reconstructed phase and modulus (i.e. electron density) of the dewetted Pt crystal. The isosurface is drawn at 35% of the maximum electron density. As well, a discontinuity appears in the reconstructed phase field (see Figure 2(a)), which is the signature of a dislocation. Note that for the dewetted Pt particle, the dislocations appear pinned at the free surface as well as at the Pt/substrate interface (see Figure 2(b)).

Different methods have been applied to determine the dislocation lines after phase retrieval, like derivative-based method [START_REF] Ulvestad | rapid identification of dislocation lines in coherent diffractive imaging via a min-max optimization formulation[END_REF] for dislocation core and/or guided algorithms [START_REF] Clark | Three-dimensional imaging of dislocation propagation during crystal growth and dissolution[END_REF][START_REF] Ulvestad | Identifying Defects with Guided Algorithms in Bragg Coherent Diffractive Imaging[END_REF] (min-max optimisation formulation). Here, the 3D dislocation line orientation is determined using the spatial amplitude variation of the retrieved density/modulus (see Figures 2(b) and 3). Simulations of defects in BCDI have shown low amplitude along the dislocation line. [START_REF] Clark | Three-dimensional imaging of dislocation propagation during crystal growth and dissolution[END_REF] Large lattice strains near the dislocation core lead to scattered intensity beyond the numerical aperture of the detector, resulting in a loss of amplitude at the dislocation core. In Figures 2(b) and 3, line contours are observed, which appear as regions or pipes of lower density. The spatial modulus variation is the signature of dislocations, which is made of two segments (labelled A and B) for the Pt THH crystal (see Figures 1 and3) and also of two segments (labelled A' and B') for the Pt dewetted crystal (see Figure 2 For the Pt dewetted particle, the two ([101] and [2 12]) segments lie in a (10 1) plane (see Figure 2(c)). Note that the spatial resolution of the BCDI is not sufficiently high to observe a possible dissociation of the dislocations.

Discussion

The {111}-type plane is the major operative slip system in fcc structures, as the {111} planes are the most densely packed planes in fcc metals, like Pt. [START_REF] Hirth | Theory of dislocations[END_REF] For the Pt THH particle, the A segment is along the [111] direction and, thus, cannot lie in a {111} plane. Also, for the Pt dewetted particle, the A' segment is along the [2 12] direction and, thus, cannot lie in a {111} plane. The configuration of these two defects is unexpected in fcc metals.

Note that here, we concentrated on a single crystal reflection, g=111. This provides only one component of the lattice displacement field. A dislocation gives rise to diffraction contrast if g•b is non zero. [START_REF] Steeds | Dislocation arrangement in copper single crystals as a function of strain[END_REF][START_REF] Williams | Transmission Electron Microscopy: A Textbook for Materials Science[END_REF] This means that x-rays are sensitive to a dislocation if the displacement field generated by the dislocation has a non-zero projection onto the particular Bragg peak. Possible Burgers vectors in face centred cubic materials (like, Pt) are a 2 h110i or h100i. In our case, as g=111, dislocation lines with a Burgers vector of type [1 10], [ 10 1] or [01 1], for instance, can not be measured as they are invisible for this condition (g•b = 0). To get the full picture of the defects as well as the full lattice displacement and strain fields, measurements of at least three (independent) non-colinear reflections are needed. [START_REF] Labat | Inversion Domain Boundaries in GaN Wires Revealed by Coherent Bragg Imaging[END_REF][START_REF] Hofmann | 3D lattice distortions and defect structures in ion-implanted nano-crystals[END_REF] Nevertheless, as in the two particles, one segment of the measured dislocations is along a direction (either [111] or [ 2 12]) that cannot lie in a {111} plane; with only one reflection, we can assert that the configuration of the defects in the two particles is unusual in fcc.

For the Pt dewetted particle, the glide plane of the two (A' and B') segments can be determined straightforwardly as the segments lie in a (10 1) plane (see Figure 2). This implies that the glide plane of the defects corresponds to an anomalous {110}-type plane. For the THH particle, a single plane can not contain the two segments as well as its junction, it is then necessary to determine the Burgers vector and the type (screw, edge or mixed) of the two main segments of the dislocation to estimate their possible glide planes. As we know the direction of the dislocation line of the A segment ( t = [111]) and that in fcc crystals, the Burgers vector is either a 2 h110i or h100i, the only possible glide plane for the A segment, that fulfills b ⌦ t, is of {110}-type. Interestingly, for both the dewetted and THH Pt particles, an anomalous {110}-type glide plane is observed.

To determine the type (screw, edge or mixed) of the two (A and B) main segments of the dislocation in the Pt THH particle, we investigated the reconstructed phase and displacement field, u 111 , around the two segments. It gives a continuum description of how the atoms are displaced from their equilibrium positions and gives insight of the nature of the dislocation loop. Figure 4(a) shows the reconstructed phase along the [111] direction as a function of azimuthal angle, ✓, for segments A and B. For segment A, the phase, proportional to u 111 , varies quasi-linearly around the segment (shift of 2⇡ over 360 ). For segment B, periodic modulations of the phase are observed as a function of ✓. If we consider a screw dislocation along the z-direction in a cubic crystal and in an isotropic infinite media (the Zener or elastic ratio for Pt being equal to 1.6, this implies that Pt is close to an isotropic elastic media), then the displacement field is given by: 2

u z (r, ✓) = b ✓ 2⇡ , ( 1 
)
where b is the modulus of the Burgers vector and ✓ measures the angle around the dislocation core. As the phase corresponds to g 111 • u(r) (where g 111 is the scattering vector at the 111 Pt Bragg reflection), a linear variation of the displacement field leads to a linear variation of the phase. The phase around the A segment varies quasi-linearly. This demonstrates that the dislocation should have a screw component along the [111] direction. An edge component of the A segment may exist but can not be detected. As only the g=111 reflection has been measured, the edge component is invisible for this condition. The A segment is then the screw component of a mixed dislocation with a Burgers vector of type b = a 2 h110i or ah001i (the two possible Burgers vectors in fcc). For these two Burgers vectors, the phase, (✓), will vary linearly, as experimentally observed (see Figure 4 ), respectively. Interestingly, this defect configuration reproduces quite well the observed variations of the phase around the two segments (Figure 4(a)). Thus, the A segment is lying in an anomalous (10 1) glide plane, while it is highly probable that the B segment is lying in a (111)-type glide plane. Here, a single reflection allows us to unambiguously characterise the two segments (type and Burgers vector) by measuring and simulating the displacement field around them.

The unusual glide plane observed for the A segment in the THH Pt particle can be (1) a pure h110i {110} slip system, i.e. induced by emission of dislocations from sources lying in {110} planes, (2) the consequence of cross-slip from h110i {111} to h110i {110} or (3) a zig-zag configuration, i.e. that the observed line lies in {111} planes at a small scale (at the limit of our resolution) with a mean direction parallel to the trace of {110} planes. The latter case may be ruled out, as it has been observed that zig-zag dislocations exhibit crossslip events separated by distance generally larger than our spatial resolution (10 nm). [START_REF] Pichaud | Cross-slip at very low stresses in highly perfect Cu crystals[END_REF][START_REF] Pichaud | Further topographic observations of zigzag stress-induced dislocations in copper crystals[END_REF][START_REF] Pichaud | Slip in copper slightly deformed at room temperature[END_REF] The second hypothesis can also be ruled out, as it is energetically unfavorable to cross-slip from {111} planes into {110} planes. Note that it has been observed that high temperature and high stacking-fault energy like in Pt may reduce the energy necessary for the crossing from {111} to {110}. [START_REF] Pichaud | Slip in copper slightly deformed at room temperature[END_REF] In our case, the hypothesis of a pure <110> {110} glide is the most probable. The non-octahedral {110} slip planes are unusual in fcc metals, but they have been observed in particular conditions: (1) compression tests at high temperature, [START_REF] Hazif | Cross-Slip on {110} Planes in Aluminum Single Crystals Compressed along h100i Axis[END_REF] (2) deformation experiments on Al single crystals, [START_REF] Martin | The importance of noncompact slip in some close-packed metallic structures[END_REF] (3) high speed deformation experiment on Al 8 and (4) in slightly deformed (±1.2 MPa) Cu single crystals at room temperature. [START_REF] Pichaud | Slip in copper slightly deformed at room temperature[END_REF] In the latter case, the high perfection of the crystal and the activation of surface sources may explain the possibility of pure {110} slip plane. Indeed, in this case, the pure {110} slip plane was associated with preferential surface nucleation as influenced by image forces.

Image forces become significant when a dislocation is close to a surface. A pure {110} slip plane can thus be encountered in nanostructures in contrast to bulk fcc materials as free surfaces can favor surface nucleation in {110} planes as observed in Ref. [START_REF] Pichaud | Slip in copper slightly deformed at room temperature[END_REF] For the Pt dewetted particle, the two segments lie in a (10 1) plane. As the particle has been formed after dewetting at high temperature (1000 C), it is possible that the dislocations form at high temperature during the cooling process (thermal stress) as slip in {110} planes is known to be thermally activated. [START_REF] Caillard | Some aspects of cross-slip mechanisms in metals and alloys[END_REF] Several groups have observed a non-octahedral slip in Pt in the past and during deformation (see for examples, Refs. [START_REF] Mclean | Non-octahedral slip in platinum polycrystals[END_REF][START_REF] Kalsar | Texture evolution in platinum: the role of nonoctahedral slip[END_REF] ). It coincides with the {100}<011> slip system. Here, a {110} slip system is observed. The thermal stress is mainly a shear parallel to the substrate, and this may act differently on the particle as compared to a normal compression/deformation. The surface nucleation barriers probably play a decisive role here. The Pt dewetted particle has been annealed at 450 C and under different gas conditions. As shown in Figure 5, we observed no movement of the two segments upon heating of the particle to 450 C and under different gases. This stability can be explained by the fact that the dislocations have been formed at a higher temperature (dewetting at 1000 C). Note that unseen defects, verifying the invisibility condition at the 111 Bragg reflection, may also explain the stability of the two segments in the particle. As discussed above, for the Pt THH particle (growth at room temperature), it is thus highly possible that the A segment (along [111]) lies in a pure {110} slip plane. Then, the junction and B segment (along [101]) may result from cross-slipping from {110} into {111} and heterogeneous crossslipping from a {111} plane into another {111} plane, respectively, as it is energetically favorable to cross-slip into {111} planes. The junction being located at the center of the particle, this region has a different atomic environment/stress state that could facilitate the cross-slip.

Conclusions

In summary, we measure the 3D displacement field in single Pt particles using BCDI. The technique enables a characterisation of the 3D morphology of defects. Our results shed light on anomalous glide {110}-type planes in platinum crystals. Two Pt particles prepared either via a chemical or a physical process and having very different morphologies show dislocations in {110} glide planes. The {110} slip plane is associated with preferential nucleation of defects at the surface of the nanostructures. More studies will be needed to generalise this phenomenon for other fcc nanostructures. BCDI will allow 3D structural visualisation of dislocations under external conditions like heterogeneous catalytic gas phase, temperature or mechanical force changes and will facilitate strain and defect engineering.

Methods/Experimental

Sample preparation.

The tetrahexahedral (THH) Pt particles were electrochemically synthesized on glassy carbon (GC) electrodes by a square-wave-potential method with a saturated calomel reference electrode (SCE) and a Pt foil counter electrode in 2 mM H 2 PtCl 6 and 0.1 M H 2 SO 4 electrolyte following the procedure in Ref. [START_REF] Tian | Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity[END_REF] The GC electrode is first subjected to a potential of +1.20 V for 2 s to clean the surface and then -0.35 V for 60 ms to create Pt nuclei. The Pt nuclei grows to THH particles by applying a square-wave-potential between +0.04 V and +1.09 V at 100 Hz for 10 min. In the case of the dewetted Pt particles, a 30-nm thick Pt film was deposited on sapphire with an electron beam evaporator. The Pt nanocrystals have their c-axis oriented along the [111] direction normal to the (0001) Al 2 O 3 substrate. A standard photolithography method was employed to prepare a patterned layer of photoresist on sapphire prior to the electron beam evaporation of Pt. The lithographic processing route ensured that a number of dewetted Pt particles are well-separated from their neighbors and that only one crystallite is irradiated by the incoming x-ray beam. The diameter of the particles ranges between 200 nm and 600 nm.

Experimental set-up.

The x-ray experiments were carried out at the upgraded ID01 beamline of the ESRF synchrotron and at the P10 beamline of PETRA synchrotron. At the ID01 beamline, the beam size was focused down using a Fresnel zone-plate (FZP). The resulted beam size was about 310 nm (horizontally) x 170 nm (vertically). A coherent portion of the monochromatic xray beam was selected with high precision slits by matching their horizontal and vertical gaps with the transverse coherence lengths of the beamline 60 µm (horizontally) and 235 µm (vertically) before the FZP). The intensity distribution around the 111 Pt reflection was measured in a coplanar diffraction geometry with the sample surface mounted horizontally.

The scattered x-rays were detected using a two-dimensional (2D) Maxipix pixel detector [START_REF] Ponchut | a fast readout photon-counting X-ray area detector for synchrotron applications[END_REF] (516 x 516 pixels of 55 µm). The sample was mounted on a fast xyz piezoelectric stage with a lateral stroke of 100 µm and a resolution of 2 nm, sitting on a hexapod that was mounted on a (3+2 circles) goniometer. At the P10 beamline of PETRA III synchrotron at DESY, the BCDI experiment was performed at a beam energy of 8 keV (wavelength of 1.55 Å). The beam size was focused down to 0.9 µm (vertically) ⇥ 1.1 µm (horizontally) using Be compound refractive lenses. The sample was mounted in a dedicated water-cooled gasflow chamber with the substrate surface oriented in the horizontal plane on a high-precision (1 µm) XYZ-stage that was mounted on a 6-circle Huber diffractometer. The diffracted beam was recorded with a 2D EIGER 4M photon-counting detector (2070x2167 pixels with pixel size of 75 µm x 75 µm) positioned on the detector arm at a distance of 1.839 m. We measure the 111 Pt Bragg reflection in three-dimensions by rotating the particle around the Bragg angle (20 ) through 3 , in steps of 0.012 . The detector was positioned at an out-of-plane of 39.26 .

Phase retrieval.

Phase retrieval was carried out on the raw diffracted intensity data using PyNX package, [START_REF] Mandula | Ptycho : a computing library for X-ray coherent diffraction imaging of nanostructures[END_REF] imposing at each iteration that the calculated Fourier intensity of the guessed object agrees with the measured data. Defective pixels for experimental data and gaps in the detector were masked and were not used for imposing the reciprocal space constraint mentioned above. The initial support, which is the constraint in real space, was estimated from the autocorrelation of the diffraction intensity. A series of 1400 Relaxed Averaged Alternating Reflections (RAAR [START_REF] Luke | Relaxed averaged alternating reflections for diffraction imaging[END_REF] ) plus 200 Error-Reduction (ER 39 ) steps including shrink wrap algorithm [START_REF] Marchesini | X-ray image reconstruction from a diffraction pattern alone[END_REF] were used. The phasing process included a partial coherence algorithm to account for the partially incoherent incoming wave front. [START_REF] Clark | High-resolution three-dimensional partially coherent diffraction imaging[END_REF] The reconstruction was then corrected for refraction and absorption, the small size of the particles ensuring that dynamical diffraction effects could be neglected. [START_REF] Hu | Dynamic diffraction artefacts in Bragg coherent diffractive imaging[END_REF] After removing the phase ramp and phase offset, [START_REF] Carnis | BCDI Python package -version 0.0.5[END_REF] the data was 
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 6 (b)). It was possible to index the direction of the two segments courtesy of the scattering vector g (here, 111 Bragg reflection) and the different types of facet of the crystal: {201}-type facets for the Pt particle and low-index {001}, {110} and {111} facets for the dewetted Pt particle. For the Pt THH particle, the segment A is along [111] and segment B is along either [110], [011] or [101]; we arbitrarily fix its direction to [101]. For the Pt dewetted crystal, the segment A' is along [101] and the segment B' is along a h2 12i-type direction (here, arbitrarily fixed to [2 12]). Note that the [111]-segment of the dislocation loop of the Pt THH particle is not perfectly straight. As observed in Figure 3(a), it is slightly curved close to the crystal surface. The plane containing the [101]-segment and the curved junction towards the [111]-segment is a ( 131) plane, meaning that the dislocation loop rotates in a ( 131) plane.

3 a ⇥ b 100 ✓

 3100 (a)) since g 111 • u(r) equals to ✓ (g 111 ⇥u 110 ⇥ cos( ) = 2⇡ p 3 a ⇥ b 110 ✓ 2⇡ ⇥ cos( ) = ✓, with b 110 = a p 2 and , being the angle between the [111] and [110] directions; or g 111 ⇥u 100 ⇥ cos( ) = 2⇡ p 2⇡ ⇥ cos( ) = ✓, with b 100 = a and , being the angle between the [111] and [100] directions). The B segment shows a 2⇡-modulation. It cannot be an edge dislocation as a ⇡-modulation of the phase around the dislocation core should be observed. As the two A and B segments are close together inside the crystal, we simulated the superposition of the out-of-plane displacement (u 111 ) and phase ( 111 ) of the two segments supposing a common Burgers vector ( a 2 [101]), which is along the dislocation line of the B segment ( t = [101], see Figure 4(b)). As the two lines emerge at the sample surface, they are connected and must have the same Burgers vector. In this case, A and B segments are a mixed dislocation ( t = [111] and b = a 2 [101]) and a screw dislocation ( t = [101] and b = a 2 [101]
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Figure 1 :

 1 Figure 1: Phase and out-of-plane strain of the reconstructed THH Pt crystal. (a) Top and (b) bottom views of the isosurface of the reconstructed phase (in radians) of the Pt particle drawn at 35% of the maximum density. The amplitude is used to draw the isosurface, while the phase is projected onto the isosurface as the colormap. The black and red arrows indicate a phase defect and directions, respectively. The 3D grid has a spacing of 50 nm in Figs. (a) and (b). (c)-(d) Two-dimensional cut of the phase and out-of-plane strain, ✏ zz , at a particle height of 240 nm, respectively.

Figure 2 :

 2 Figure 2: Phase and modulus of the reconstructed dewetted Pt crystal. Reconstructed (a) phase and (b) modulus. Slice of the reconstructed modulus (c) and phase (d).The isosurface is drawn at 35% of the maximum electron density.

Figure 3 :

 3 Figure 3: Dislocation loop and possible slip planes of the Pt THH particle. (a) Wireframe plots of the reconstructed electron density of the Pt particle drawn at 35% of the maximum density. The direction of the two segments of the dislocation loop is evidenced. (b) Visualisation of the plane containing the [101]-segment and the curved junction towards the [111]-segment. The 3D grid has a spacing of either 20 nm (along Z in Fig. a) or 50 nm.

Figure 4 :Figure 5 :

 45 Figure 4: Phase evolution around segments. (a) Reconstructed and simulated (red dashed lines) phase as a function of azimuthal coordinate ✓ for segments A and B of the THH Pt particle. The error bars correspond to the observed variation of the phase over a distance of 25 nm from the center of each defect. (b) Superposition of the 111 phase of the two segments supposing a common Burgers vector ( a 2 [101]), which is along the dislocation line of the B segment ( t = [101]).
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finally interpolated onto an orthogonal grid for easier visualization.