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THE LITTLEWOOD PROBLEM AND NON-HARMONIC FOURIER
SERIES

PHILIPPE JAMING, KARIM KELLAY, AND CHADI SABA

Abstract. In this paper, we give a direct quantitative estimate of L1 norms of non-
harmonic trigonometric polynomials over large enough intervals. This extends the result
by Konyagin [14] and Mc Gehee, Pigno, Smith [11] to the setting of trigonometric poly-
nomials with non-integer frequencies.

The result is a quantitative extension of a result by Nazarov [15] and also covers a
result by Hudson and Leckband [10] when the length of the interval goes to infinity.

1. Introduction

In 1948, in a paper written with Hardy [9], Littlewood investigated various extremal
problems for trigonometric sums, in particular for sums having only 0 or 1 as coefficients

N∑
k=1

e2iπnkt

where the nk’s are distinct integers. In particular, Littlewood speculated that the L1-norm
of such a sum might be minimal when the frequencies (nk) form an arithmetic sequence.
Putting Littlewood’s thoughts in a more precise form, one is tempted to ask the following
(still unanswered) question:

Question A. Is it true that, when n−N < n−1 < 0 < n1 < · · · < nN are integers∫ 1/2

−1/2

∣∣∣∣∣
N∑

k=−N

e2iπnkt

∣∣∣∣∣ dt ≥
∫ 1/2

−1/2

∣∣∣∣∣
N∑

k=−N

e2iπkt

∣∣∣∣∣ dt.

Littlewood did not explicitely ask this question and made a safer guess. In view of the
standard estimate of the L1-norm of the Dirichlet kernel (see e.g. [24, Chapter 2, (12.1)]
or [12, Exercice 3.1.8]). ∫ 1/2

−1/2

∣∣∣∣∣
N∑

k=−N

e2iπkt

∣∣∣∣∣ dt ≥ 4

π2
lnN,

Littlewood conjectured that

LN := inf
n1<n2<···<nN

∫ 1/2

−1/2

∣∣∣∣∣
N∑
k=1

e2iπnkt

∣∣∣∣∣ dt ≥ C logN
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2 P. JAMING, K. KELLAY, AND C. SABA

for some constant C ≤ 4

π2
. Note that in this formulation, the negative frequencies are of

no use.
There are strong reasons to believe that the answer to Question A is positive. One of

them is that if the nk’s are scattered instead of regularly spaced in the sense that nk+1 > 2nk
then it was well-known [24, Chapter 5, (8.20)] that the growth of the L1-norm is much
faster: ∫ 1/2

−1/2

∣∣∣∣∣
N∑
k=1

e2iπnkt

∣∣∣∣∣ dt ≥ C
√
N.

The first non-trivial estimate was obtained by Cohen [4] who proved that

LN ≥ C(lnN/ ln lnN)1/8

for N ≥ 4. Subsequent improvements are due to Davenport [5], Fournier [7] and crucial
contributions by Pichorides [16, 17, 18, 19] leading to LN ≥ C lnN/(ln lnN)2. Finally,
Littlewood’s conjecture was proved independently by Konyagin [14] and Mc Gehee, Pigno,
Smith [11] in 1981. In both papers, Littlewood’s conjecture is actually obtained as a
corollary of a stronger result (and they are not consequences of one another). In this
paper, we are particularly interrested in the result in [11]:

Theorem B (Mc Gehee, Pigno & Smith [11]). For n1 < n2 < · · · < nN integers and
a1, . . . , aN complex numbers,∫ 1/2

−1/2

∣∣∣∣∣
N∑
k=1

ake
2iπnkt

∣∣∣∣∣ dt ≥ CMPS

N∑
k=1

|ak|
k

where CMPS is a universal constant (CMPS = 1/30 would do).

Note that, taking the ak’s to have modulus 1, one thus obtains a lower bound LN ≥
C lnN . The year after, Stegeman [21] and Yabuta [23] independently suggested some
modifications of the argument in [11] that lead to a better bound of LN , namely:

Theorem C (Stegeman [21], Yabuta [23]). For every N ≥ 4, LN ≥
4

π3
lnN , that is, if

n1 < n2 < · · · < nN are integers, then∫ 1/2

−1/2

∣∣∣∣∣
N∑
k=1

e2iπnkt

∣∣∣∣∣ dt ≥ 4

π3
logN.

The actual constant is slightly larger but written like this, it is easier to compare it to
Question A. For a nice textbook proof of Theorem B one may consult [6], [3] (which also
covers Nazarov’s theorem below) or [22] (which also presents an improvement of Theorem
B). For the history of the question and related ones, we refer to [2, 8].

The next question one might then ask is whether the previous results extend to non-
integer frequencies. This was first done by Hudson and Leckband [10] who used a clever
perturbation argument to prove the following:
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Theorem D (Hudson & Leckband [10]). For λ1 < λ2 < · · · < λN real numbers and
a1, . . . , aN complex numbers,

lim
T→+∞

1

T

∫ T/2

−T/2

∣∣∣∣∣
N∑
k=1

ake
2iπλkt

∣∣∣∣∣ dt ≥ CMPS

N∑
k=1

|ak|
k

where CMPS is the same constant as in Theorem B.

A further extension is due to Nazarov [15] who showed that such a result holds not only
when T → +∞ but as soon as T > 1:

Theorem E (Nazarov [15]). For T > 1, there exists a constant CT such that, for 0 < λ1 <
· · · < λN real numbers such that |λk − λ`| ≥ |k − `| and a1, . . . , aN complex numbers,∫ T/2

−T/2

∣∣∣∣∣
N∑
k=1

ake
2iπλkt

∣∣∣∣∣ dt ≥ CT
∑

1≤|k|≤N

|ak|
|k|

. (1.1)

An easy argument allows to show that this theorem implies Theorem D but with worse
constants. Further, the constants in [15] are not explicit but one may follow the computa-
tions to show that CT → 0 when T → 1, though the speed of convergence stays difficult to
compute explicitley. In particular, the question of the validity of this result when T = 1 is
open.

Our main aim here is to improve on Nazarov’s proof to obtain a more precise and explicit
estimate of this constant CT . This also allows us to directly obtain the result of Hudson
and Leckband. Moreover, we obtain the best constants known today:

Theorem 1.1. Let λ1 < λ2 < · · · < λN be N distinct real numbers and a1, . . . , aN be
complex numbers. Then

(i) we have

lim
T→+∞

1

T

∫ T/2

−T/2

∣∣∣∣∣
N∑
k=1

ake
2iπλkt

∣∣∣∣∣ dt ≥ 1

26

N∑
k=1

|ak|
k + 1

.

(ii) If further a1, . . . , aN all have modulus larger than 1, |ak| ≥ 1 then

lim
T→+∞

1

T

∫ T/2

−T/2

∣∣∣∣∣
N∑
k=1

ake
2iπλkt

∣∣∣∣∣ dt ≥ 4

π3
lnN.

(iii) Assume further that for k, ` = 1, . . . , N , |λk − λ`| ≥ |k − `|, then for T ≥ 72 we
have

1

T

∫ T/2

−T/2

∣∣∣∣∣
N∑
k=1

ake
2iπλkt

∣∣∣∣∣ dt ≥ 1

122

N∑
k=1

|ak|
k + 1

.

Let us make a few comments on the result. First, the limit in the statement of the result

are well-known to exist and are the Besikovitch norms of
N∑
k=1

ake
2iπλkt. Further, when the
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λk’s are all integers, then

lim
T→+∞

1

T

∫ T/2

−T/2

∣∣∣∣∣
N∑
k=1

ake
2iπλkt

∣∣∣∣∣ dt =

∫ 1/2

−1/2

∣∣∣∣∣
N∑
k=1

ake
2iπλkt

∣∣∣∣∣ dt

so that we recover Theorems B and C (with the best constants today). As the constants
in Theorem 1.1 are the best known for CMPS we also recover Theorem D while we only
recover Theorem E for large enough T which is due to the strategy of proof (see below).

Further, note that the left hand side in Theorem 1.1i) and ii) is unchanged if one replaces
the λk’s by αλk+β. In the proof we will thus assume that |λk−λ`| ≥ |k−`| (or equivalently
that λj+1−λj ≥ 1). In Theorem 1.1iii) this restriction only affects the critical T for which
our proof works.

Finally, to better understand the difference between assertions i) and iii), one may
consider L2-norms instead of L1 norms. Recall that

lim
T→+∞

1

T

∫ T/2

−T/2
e2iπλte−2iπµt dt = δλ,µ (1.2)

so that the family {e2iπλjt} is orthonormal and

lim
T→+∞

1

T

∫ T/2

−T/2

∣∣∣∣∣
N∑
k=1

ake
2iπλkt

∣∣∣∣∣
2

dt =
N∑
k=1

|ak|2.

On the other hand, the celebrated Ingham inequality ([13], see also [1]) shows that

1

T

∫ T/2

−T/2

∣∣∣∣∣
N∑
k=1

ake
2iπλkt

∣∣∣∣∣
2

dt ≥ 3π2

64

N∑
k=1

|ak|2

as soon as T ≥ 2 while for 1 < T < 2 a similar inequality remains true provided one

replaces
3π2

64
by

π2

8

T 2 − 1

T 3
. Note that Ingham [13] proved that there is a sequence (λk) for

which the inequality fails for T = 1.
Let us conclude this introduction with a word on the strategy of proof. This is closely

related to the one implemented by McGehee, Pigno and Smith as extended by Nazarov to
prove Theorem E, but we here follow constants more closely. Further, we introduce various
parameters which are optimized in the last step. We fix a (non-harmonic) trigonometric
polynomial

φ(t) =
N∑
k=1

ake
2πiλkt and S =

N∑
k=1

|ak|
k
. (1.3)

We then write |ak| = akuk with uk complex numbers of modulus 1 and introduce

U(t) =
N∑
k=1

uk
k
e2πiλkt.
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Using the orthogonality relation (1.2) we see that

S = lim
T→+∞

1

T

∫ T/2

−T/2
φ(t)U(t) dt. (1.4)

The second step will consist in correcting U into V in such a way that ‖V ‖∞ ≤ A where
A is a numerical constant (that does not depend on N or T ) and so that, for each k,

lim
T→+∞

1

T

∣∣∣∣∣
∫ T/2

−T/2

(
U(t)− V (t)

)
e−2iπλkt dt

∣∣∣∣∣ ≤ α

k

with α < 1. In particular, if we multiply by ak and sum over k, we get

lim
T→+∞

1

T

∣∣∣∣∣
∫ T/2

−T/2

(
U(t)− V (t)

)
φ(t) dt

∣∣∣∣∣ ≤ αS.

Then, writing

S = lim
T→+∞

1

T

∫ T/2

−T/2
φ(t)V (t) dt+ lim

T→+∞

1

T

∫ T/2

−T/2
φ(t)

(
U(t)− V (t)

)
dt

we would obtain

S ≤ ‖V ‖∞ lim
T→+∞

1

T

∫ T/2

−T/2
|φ(t))| dt+ αS

that is

S ≤ A

1− α
lim

T→+∞

1

T

∫ T/2

−T/2
|φ(t))| dt

as desired.
The difficulty in implementing this strategy lies in the fact that one must control φ, U, V

over the entire real line. We will instead fix a large T and use an auxiliary function adapted
to [−T/2, T/2] so as to only do the computations over this interval while controlling erros.
Here we will exploit the fact that T is large that allows us to change Nazarov’s auxiliary
function into a better behaved one. The first task is then to estimate the error made
when replacing the limit in (1.4) with the mean over [−T/2, T/2]. The second step is
then the correction of U into a bounded V . This correction is only made over the interval
[−T/2, T/2] and is roughly done the same way as was originally done by McGehee, Pigno,
Smith, but implementing the improvements made by Stegeman and Yabuta and again
controlling errors.

Let us conclude this introduction with a simple applcation. Consider a curve in the

complex plane of the form Γ = {z = P (t) =
N∑
k=1

ake
2iπλkt, t ∈ [0, T ]} where λk+1 ≥ λk + 1.
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Figure 1 shows two such curves. Note that P ′(t) = 2iπ
∑N

k=1 akλke
2iπλkt. It follows from

Theorem 1.1 that the length of Γ is lower bounded by

`(Γ) =

∫ T

0

|P ′(t)| dt ≥ T

20

N∑
k=1

|λk||ak|
k

when T ≥ 72.

Figure 1. Left: 1 + e2iπt + e20it and right 1 + e2iπt + e20it + e30it both for
t = 0 to 5.

The remaining of the paper is devoted to the proof that is divided into three steps, a
subsection beeing devoted to each.

For the convenience of the reader of this preprint, we have included the proof of Ingham’s
Inequality and the proof by Hudson and Leckband in an appendix. Those are not meant
to appear in the final version of the paper.

2. Proof of Theorem 1.1

2.1. An auxiliary function and the estimate of U . We now introduce several nota-
tions and parameters that will be fixed later:

– a parameter δ ≥ 2 and the sequence (βj)j≥0 given by β0 = 1, βj+1 = βj + δj that is

βj =
∑j−1

k=0 δ
k = δj−1

δ−1 . Up to enlarging N , we can assume that N = βn+1 − 1 for some
n ≥ 2. We then define

Dj = {k ∈ Z : βj ≤ k < βj+1}
so that |Dj| = δj. Note that for every ` ∈ {1, . . . , N} there is a unique j` ∈ {1, . . . , n} such

that ` ∈ Dj` . Further, this allows to write
∑N

k=1 in the form
∑n

j=0

∑
k∈Dj . Note also that

if k ∈ Dj,
1

k + 1
≤ 1

k + 1
δ−1
≤ (δ − 1)δ−j (2.1)

– a sequence of real numbers (λk)k=1,...,N such that for every k, ` |λk − λ`| ≥ |k − `| (or
equivalently λk+1 ≥ λk + 1 for k = 1, . . . , N − 1);

– a sequence of complex numbers (ak)k=1,...,N and we write |ak| = akuk with (uk)k=1,...,N

a sequence of complex numbers of modulus 1;

– an integer p ≥ 4 and an interval Ip =

[
−p

2 + p

2
,
p2 + p

2

]
of length |Ip| = p2 + p.
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We then define inductively ϕ1 = 1[−p2/2,p2/2] ∗ 1[−1/2,1/2] and ϕj+1 = ϕj ∗ 1[−1/2,1/2].
Note that, ϕj is even, non-negative and ‖ϕj‖∞ ≤ 1 while ‖ϕj‖1 = p2. We then define

ϕ =
p2 + p

p2
ϕp so that ϕ is supported in Ip, is bounded by 2 and has Fourier transform

F [ϕ](λ) :=

∫
R
ϕ(t)e−2iπλt dt = (p2 + p)

sin p2πλ

p2πλ

(
sin πλ

πλ

)p
.

We will mainly need that,

‖ϕ‖∞ =
p2 + p

p2
, F [ϕ](0) = |Ip| and |F [ϕ](λ)| ≤ |Ip|

(πλ)p
. (2.2)

Finally, we will write

φ(t) =
N∑
k=1

ake
2iπλkt,

U(t) =
n∑
j=0

1

|Dj|
∑
k∈Dj

uke
−2iπλkt,

S =
n∑
j=0

1

|Dj|
∑
k∈Dj

|ak|.

Note that in view of (2.1),
N∑
k=1

|ak|
k + 1

≤ (δ − 1)S (2.3)

so that it is enough to bound S.
The following is the key estimate in this section:

Lemma 2.1. With the previous notation, there is a p(δ) ≥ 2 such that, when p ≥ p(δ)
then for 1 ≤ ` ≤ N and j` be the unique index for which ` ∈ Dj`, we have

n∑
j=0

1

|Dj|
∑

k∈Dj\{`}

|F [ϕ](λk − λ`)| ≤
1

2
δ−j` . (2.4)

Proof. Write

E :=
n∑
j=0

1

|Dj|
∑

k∈Dj\{`}

|F [ϕ](λk − λ`)|

=
n∑

j=j`−1

1

|Dj|
∑

k∈Dj\{`}

|F [ϕ](λk − λ`)|+
j`−2∑
j=0

1

|Dj|
∑
k∈Dj

|F [ϕ](λk − λ`)|

= E+ + E−.
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For the estimate of E+, as |λk − λ`| ≥ |k − `|, |F [ϕ](λk − λ`)| ≤
|Ip|
πp

1

|k − `|p
and

E+ ≤
|Ip|
πp

δ−(j`−1)
n∑

j=j`−1

∑
k∈Dj\{`}

1

|k − `|p
≤ 2|Ip|

πp
δ−(j`−1)

∞∑
m=1

1

mp
≤ 4|Ip|

πp
δ−(j`−1)

since δ > 1 and the last series is bounded by
∞∑
m=1

1

m2
=
π2

6
≤ 2. It remains to notice that

4δ|Ip|
πp

=
4δ(p2 + p)

πp
≤ 1

4
when p is large enough to get

E+ ≤
δ−j`

4
. (2.5)

For the second sum, note that it is only present when j` ≥ 2. So, if k ∈ Dj with j ≤ j`−2
then

`− k ≥ βj` − βj`−1 = δj`−1

thus

|F [ϕ](λk − λj)| ≤
|Ip|

πpδ(j`−1)p
.

It follows that

E− ≤
j`−2∑
j=0

∑
k∈Dj

|Ip|
πpδ(j`−1)p

≤ βj`−1
|Ip|

πpδ(j`−1)p

since there are at most βj`−1 terms in this sum. But βj`−1 ≤
δj`−1

δ − 1
so that

E− ≤
|Ip|δ

πp(δ − 1)δ(j`−1)(p−2)
δ−j` ≤ 1

4
δ−j` (2.6)

when p is large enough to have
|Ip|δ

πp(δ − 1)
≤ 1

4
since δ(j`−1)(p−2) ≥ 1.

It remains to put (2.5)-(2.6) into (2.5) to obtain the result. �

Remark 2.2. The proof shows that p(δ) is the smallest integer such that

4δ(p2 + p)

min(1, δ − 1)πp
≤ 1

4
.

For instance, if we choose δ = 4, we will obtain p(δ) = 8.

From this, we deduce the following:

Corollary 2.3. With the notations above, for ` = 1, . . . , N∣∣∣∣∣ 1

|Ip|

∫
Ip

U(t)e2iπλ`tϕ(t) dt− u`
δj`

∣∣∣∣∣ ≤ 1

2|Ip|
1

δj`
(2.7)
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Proof. Indeed

1

|Ip|

∫
Ip

U(t)e2iπλ`tϕ(t) dt =
n∑
j=0

1

|Dj|
∑
k∈Dj

uk
1

|Ip|

∫
Ip

e−2iπλkte2iπλ`tϕ(t) dt

=
1

|Ip|

n∑
j=0

1

|Dj|
∑
k∈Dj

ukF [ϕ](λk − λ`)

= u`δ
−j`F [ϕ](0)

|Ip|
+

1

|Ip|

n∑
j=0

1

|Dj|
∑

k∈Dj\{`}

ukF [ϕ](λk − λ`).

As F [ϕ](0) = |Ip|, we get∣∣∣∣∣ 1

|Ip|

∫
Ip

U(t)e2iπλ`tϕ(t) dt− u`
δj`

∣∣∣∣∣ ≤ 1

|Ip|

n∑
j=0

1

|Dj|
∑

k∈Dj\{`}

|F [ϕ](λk − λ`)|

and Proposition 2.1 gives the result. �

This allows us to obtain the approximation of S by an integral of φ(t)U(t).

Proposition 2.4. Under the previous notation

S ≤ 2|Ip|
2|Ip| − 1

∣∣∣∣∣ 1

|Ip|

∫
Ip

U(t)φ(t)ϕ(t) dt

∣∣∣∣∣.
Proof. According to (2.7),∣∣∣∣∣ 1

|Ip|

∫
Ip

U(t)e2iπλ`tϕ(t) dt− u`δ−j`
∣∣∣∣∣ ≤ 1

2|Ip|
δ−j` .

Multiplying the expression in the absolute value by a`, we get∣∣∣∣∣ 1

|Ip|

∫
Ip

U(t)a`e
2iπλ`tϕ(t) dt− |a`|

δj`

∣∣∣∣∣ ≤ |a`|2|Ip|
δ−j` .

The triangle inequality then gives∣∣∣∣∣ 1

|Ip|

∫
Ip

U(t)φ(t)ϕ(t) dt− S

∣∣∣∣∣ ≤ 1

2|Ip|
S.

The result follows with the reverse triangular inequality. �

2.2. Construction of V . Before we start this section, let us recall Hilbert’s inequality
(see e.g. [3, Chapter 10]).
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Lemma 2.5 (Hilbert’s inequality). Let λ1, . . . , λN be real numbers with |λk−λ`| ≥ 1 when
k 6= `, and let z1, . . . , zN be complex numbers. We have∣∣∣∣∣∣∣∣

∑
1≤k,`≤N
k 6=`

zkz`
λk − λ`

∣∣∣∣∣∣∣∣ 6 π

N∑
k=1

|zk|2.

We will now decompose U into Dj-blocs fj. More precisely, we set

f̃j(t) =
∑
k∈Dj

uke
−2iπλkt, fj =

1

|Dj|
f̃j(t)

so that

U(t) =
n∑
j=0

1

|Dj|
∑
k∈Dj

uke
−2iπλkt =

n∑
j=0

fj(t).

Our aim in this section is to modify U in such a way that we obtain a trigonometric
polynomial V that is in a sense still similar to U but satisfies an L∞ bound that is uniform
in N .

We start by estimating the norms of the fj’s:

Lemma 2.6. With the above notation, we have

(1) ‖fj‖L2(Ip) ≤
√
|Ip|+ 1δ−j/2;

(2) ‖fj‖∞ ≤ 1.

Proof. For the second bound, obviously ‖f̃j‖∞ ≤ |Dj| = δj. For the first bound, we have

‖f̃j‖2L2(Ip)
=

∫
Ip

f̃j(t)f̃j(t) dt =

∫
Ip

∑
k,`∈Dj

uku`e
2iπ(λk−λ`)t dt

= |Ip|
∑
k∈Dj

|uk|2 +
∑
k,`∈Dj
k 6=`

uku`

∫ |Ip|/2
−|Ip|/2

e2iπ(λk−λ`)t dt

= |Ip| |Dj|+
∑
k,`∈Dj
k 6=`

uku`

(
ei|Ip|π(λk−λ`) − e−i|Ip|π(λk−λ`)

2iπ(λk − λ`)

)
.

Now, set z±k = uke
±i|Ip|πλk so that |z±k | = 1. We have just shown that

‖f̃j‖2L2(Ip)
= |Ip| |Dj|+

1

2iπ

∑
k,`∈Dj
k 6=`

z+k z
+
`

λk − λ`
− 1

2iπ

∑
k,`∈Dj
k 6=`

z−k z
−
`

λk − λ`
.

Applying Hilbert’s Inequality to the last two sums, we get

‖f̃j‖2L2(Ip)
≤ |Ip| |Dj|+

1

2

∑
k∈Dj

|z+k |
2 +

1

2

∑
k∈Dj

|z−k |
2 = (|Ip|+ 1)|Dj|.
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The bound for ‖fj‖2L2(Ip)
follows. �

Note that the proof also shows that ‖fj‖L2(Ip) ≥
√
|Ip| − 1δ−j/2.

Notation 2.7. For a function F ∈ L2(Ip) and s ∈ Z, we write

cps(F ) =
1

|Ip|

∫
Ip

F (t)e
−2iπ st

|Ip| dt

for the Fourier coefficients of F . Its Fourier series is then

F (t) =
∑
s∈Z

cps(F )e
2iπ st
|Ip|

and Parseval’s relation reads
1

|Ip|

∫
Ip

|F (t)|2 dt =
∑
s∈Z

|cps(F )|2.

We then write the Fourier series of each |fj| ∈ L2(Ip) as

|fj| =
∑
s∈Z

cps(|fj|)e
2iπ st
|Ip|

to which we associate hj ∈ L2(Ip) defined via its Fourier series as

hj(t) = cp0(|fj|) + 2
∞∑
s=1

cps(|fj|)e
2iπ st
|Ip| .

Lemma 2.8. For 0 ≤ j ≤ n, the following properties hold

(1) Re(hj) = |fj| 6 1;

(2) ‖hj‖L2(Ip) ≤
√

2‖fj‖L2(Ip).

Proof. First, as |fj| is real valued, cp0(|fj|) is also real, and cps(|fj|) = cp−s(|fj|) for every
s ≥ 1. A direct computation then shows that Re(hj) = |fj| which is less than 1 by lemma

2.6 while Parseval shows that ‖hj‖2 6
√

2‖fj‖2. �

We now define a sequence (Fj)j=0,...,n inductively through

F0 = f0 and Fj+1 = Fje
−ηhj+1 + fj+1

where 0 < η ≤ 1 is a real number that we will fix later. Further set

Eη := sup
0<x≤1

x

1− e−ηx
=

1

η
sup

0<x≤η

x

1− e−x
=

1

1− e−η
.

Lemma 2.9. For 0 ≤ j ≤ n, ‖Fj‖∞ ≤ Eη.

Proof. By definition of Eη, if C ≤ Eη and 0 ≤ x ≤ 1, then Ce−ηx + x ≤ Eηe
−ηx + x ≤ Eη.

We can now prove by induction over j that |Fj| ≤ Eη from which the lemma follows.
First, when j = 0, from Lemma 2.6 we get

‖F0‖∞ = ‖f0‖∞ ≤ 1 ≤ Eη.
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Assume now that ‖Fj‖∞ ≤ Eη, then

|Fj+1(t)| = |Fj(t)e−ηhj+1(t) + fj+1(t)| ≤ |Fj(t)|e−η<
(
hj+1(t)

)
+ |fj+1(t)|

= |Fj(t)|e−η|fj+1(t)| + |fj+1(t)|.
As |fj+1(t)| ≤ 1 and |Fj(t)| ≤ Eη, we get |Fj+1(t)| ≤ Eη as claimed. �

Lemma 2.10. For 0 ≤ ` ≤ n and j = 0, . . . , k, let gj,k = e−ηHj,k with

Hj,k =

{
hj+1 + . . .+ hk when j < k

0 when j = k
.

Then Fk =
k∑
j=0

fjgj,k. Moreover

‖Hj,k‖L2(Ip) ≤
√

2(|Ip|+ 1)√
δ − 1

δ−j/2.

Proof. For the first part, we use induction on k. First, when k = 0, H0,0 = 0 thus g0,0 = 1
and, indeed, we have

F0 = f0 = f0g0,0.

Assume now that the formula has been established at rank k − 1 and let us show that

Fk =
k∑
j=0

fjgj,k. By construction, we have

Fk = Fk−1e
−ηhk + fk =

(
k−1∑
j=0

fjgj,k−1

)
e−ηhk + fk.

with the induction hypothesis. It remains to notice that gk,k = e−ηHk,k = 1 and that,
for j = 0, . . . , k − 1, Hj,k = Hj,k−1 + hk thus gj,k = gj,k−1e

−ηhk so that, indeed, we have

Fk =
k∑
j=0

fjgj,k.

Next, it is enough to estimate Hj,k when j < k in which case

‖Hj,k‖L2(Ip) ≤
k∑

r=j+1

‖hr‖L2(Ip) ≤
√

2
k∑

r=j+1

‖fr‖L2(Ip)

with Lemma 2.8. But then, from Lemma 2.6 we get

‖Hj,k‖L2(Ip) ≤
√

2(|Ip|+ 1)
k∑

r=j+1

δ−
r
2 ≤

√
2(|Ip|+ 1)

δ−
j+1
2

1− δ−1/2
=

√
2(|Ip|+ 1)√
δ − 1

δ−j/2

as claimed. �

Lemma 2.11. Let 0 ≤ k ≤ n and 0 ≤ j ≤ k, then
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(1) the negative Fourier coefficients of gj,k(t)−1 vanish so that its Fourier series writes

gj,k(t)− 1 =
∑
s>0

cps(gj,k − 1)e
iπ st
|Ip| ;

(2) ‖gj,k − 1‖L2(Ip) ≤ η

√
2(|Ip|+ 1)√
δ − 1

δ−j/2;

Proof. When j = k, gk,k(t) − 1 = 0 and there is nothing to do. When j < k, <(Hj,k) =
k∑

r=j+1

<(hr) ≥ 0 so that this is [11, Lemma, p614] which shows the first statement and that

‖gj,k − 1‖L2(Ip) := ‖e−ηHj,k − 1‖L2(Ip) ≤ η‖Hj,k‖L2(Ip).

We then conclude with Lemma 2.10. �

Recall that

U(t) =
n∑
j=0

fj

and we set

V η = Fn =
n∑
j=0

fjgj,n

where the dependence on η comes from the definition of the gj,n’s. In particular,

‖V η‖∞ ≤ Eη. (2.8)

The key estimate here is the following:

Proposition 2.12. Let 0 < ε ≤ 1, N ≥ 1 and δ ≥ e then there exists P such that, if
p ≥ P , there exists η = η(p) ∈ (0, 1) such that, for 1 ≤ ` ≤ N and j` the unique index for
which ` ∈ Dj` ∣∣∣∣∣ 1

|Ip|

∫
Ip

(
U(t)− V η(t)

)
e2iπλ`tϕ(t) dt

∣∣∣∣∣ ≤ εδ−j` . (2.9)

Moreover, when p→ +∞, η(p)→ η∞ =
(δ − 1)(

√
δ − 1)√

2δ
ε.

Proof. To simplify notation, we write gj = gj,n and V = V η. Then

R :=
1

|Ip|

∫
Ip

(
U(t)− V (t)

)
e2iπλ`tϕ(t) dt

=
1

|Ip|

∫
Ip

∑
0≤j≤j`−2

fj(gj − 1)e2iπλ`tϕ(t) dt+
1

|Ip|

∫
Ip

fj`−1(gj`−1 − 1)e2iπλ`tϕ(t) dt

+
1

|Ip|

∫
Ip

∑
j`≤j≤n

fj(gj − 1)e2iπλ`tϕ(t) dt

:= R− +R0 +R+.
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Let us first bound R− (which is only present when j` ≥ 2). For this, notice that if s ∈ Z,∫
Ip

f̃j(t)ϕ(t)e2iπλ`te
−2iπ s

|Ip|
t
dt =

∫
Ip

∑
r∈Dj

urϕ(t)e
−2iπ(λr−λ`+ s

|Ip|
)
dt

=
∑
r∈Dj

urF [ϕ]

(
λr − λ` +

s

|Ip|

)
.

It follows that∫
Ip

f̃j(gj − 1)e2iπλ`tϕ(t) dt =

∫
Ip

f̃j(t)ϕ(t)e2iπλ`t
∑
s≥0

cps(gj − 1)e
2iπ st
|Ip| dt

=
+∞∑
s=0

cps(gj − 1)

∫
Ip

f̃j(t)ϕ(t)e
2iπλ`t+

2iπst
|Ip| dt

=
+∞∑
s=0

cps(gj − 1)
∑
r∈Dj

urF [ϕ]

(
λr − λ` −

s

|Ip|

)

=
∑
r∈Dj

ur

∞∑
s=0

cps(gj − 1)F [ϕ]

(
λr − λ` −

s

|Ip|

)
.

Finally, we get

R− =
1

|Ip|
∑

0≤j≤j`−2

1

|Dj|
∑
r∈Dj

ur

∞∑
s=0

cps(gj − 1)F [ϕ]

(
λr − λ` −

s

|Ip|

)
.

As (∑
s≥0

|cps(gj − 1)|2
)1/2

=
1√
|Ip|
‖gj − 1‖L2(Ip) ≤ η

√
2(|Ip|+ 1)/|Ip|√

δ − 1

we get with Cauchy-Schwarz

|R−| ≤ η

√
2(|Ip|+ 1)/|Ip|√

δ − 1

∑
0≤j≤j`−2

1

|Dj|
∑
r∈Dj

(
∞∑
s=0

1

|Ip|2

∣∣∣∣F [ϕ]

(
λr − λ` −

s

|Ip|

)∣∣∣∣2
)1/2

.

We will first estimate the inner most sum. We will use the following simple estimate
valid for u ≥ 1:

+∞∑
s=0

1

(s+ u)2p
=

1

u2p
+

+∞∑
s=1

1

(s+ u)2p
≤ 1

u2p
+

∫ +∞

s=0

ds

(s+ u)2p
=

1

u2p
+

1

(2p− 1)u2p−1

≤ 2

u2p−1
.

Here u = |Ip|(λ` − λr).
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First, for 0 ≤ j ≤ j` − 2, if r ∈ Dj then r < βj+1 and β` ≤ ` < β`+1 we first get

|Ip|(λ` − λr) ≥ |Ip|(β` − βj+1) = |Ip|
δj` − δj+1

δ − 1
≥ |Ip|

2
δj`−1

for all 0 ≤ j ≤ j` − 2. This then implies that

Er :=
∞∑
s=0

1

|Ip|2

∣∣∣∣F [ϕ]

(
λk − λr +

s

|Ip|

)∣∣∣∣2 ≤ ∞∑
s=0

1[
π
(
λk − λr + s

|Ip|

])2p
=

(
|Ip|
π

)2p ∞∑
s=0

1(
|Ip|(λk − λr) + s

)2p
≤ 22p|Ip|

π2p
δ−(j`−1)(2p−1)

It follows that

|R−| ≤ η

√
2(|Ip|+ 1)√
δ − 1

∑
0≤j≤j`−2

δ−(j`−1)(p−1/2)

(π/2)p
= η

δ
√

2(|Ip|+ 1)

(π/2)p(
√
δ − 1)

(j` − 1)δ−(j`−1)(p−3/2)δ−j` .

Now, simple calculus shows that, when a ≥ 1

2
, x ≥ 1 (x − 1)e−a(x−1) ≤ xeae−ax which is

decreasing (in x). Thus (as x ≥ 2 in our case)

(j` − 1)δ−(j`−1)(p−3/2) ≤ 2

e(p−
3
2
)

leading to the bound

|R−| ≤ η
2δ
√

2(|Ip|+ 1)

e(p−
3
2
)(π/2)p(

√
δ − 1)

δ−j` . (2.10)

It is crucial for the sequel to note that we can write this as

|R−| ≤ ηµ−p δ
−j` with µ−p = µ−p (δ)→ 0 when p→ +∞.

On the other hand, if j = j`−1, r ∈ Dj then |Ip|(λ`−λr) ≥ |Ip| and the same computation

gives Er ≤
2|Ip|
π2p

. Repeating the computation of R− gives |R0| ≤ η
2
√
|Ip|+ 1

πp
1√
δ − 1

. We

write this in the form

|R0| ≤ ηδ−j`µ0
p(δ, n)

where µ0
p(δ, n)→ 0 when p→ +∞.
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We can now estimate R+.

|R+| ≤
∑

j`≤j≤n

1

|Ip|

∫
Ip

|fj(t)| |gj(t)− 1| |ϕ(t)| dt (2.11)

≤ ‖ϕ‖∞
∑

j`≤j≤n

1

|Ip|
‖fj‖L2(Ip)‖gj − 1‖L2(Ip)

≤ η

√
2√

δ − 1

p2 + p

p2
|Ip|+ 1

|Ip|
∑

j`≤j≤n

δ−j

≤ η

√
2δ

(
√
δ − 1)(δ − 1)

p2 + p

p2
|Ip|+ 1

|Ip|
δ−j`

= η

√
2δ

(
√
δ − 1)(δ − 1)

p2 + p+ 1

p2
δ−j`

We write this in the form

|R+| ≤ η

( √
2δ

(
√
δ − 1)(δ − 1)

+ µ+
p

)
δ−j` with lim

p→+∞
µ+
p = 0

and conclude that |R| ≤ η
( √

2δ

(
√
δ−1)(δ−1) + µp

)
δ−j` with µp = µ−p (δ) + µ0

p(δ, n) + µ+
p → 0

(depending on δ and n thus N). �

Remark 2.13. An inspection of the proof shows that the dependence of P on N only comes
from R0. This is harmless when we let p→ +∞ which then implies |Ip| → +∞ i.e. when
we prove Theorem 1.1 i) & ii) but is not possible when proving iii). To avoid that issue,
one can then bound R− and R0 + R+ instead of R− + R0 and R+. The same proof works
but the price to pay are slightly worse constants:

|R−| ≤ η
2δ
√

2(|Ip|+ 1)

e(p−
3
2
)(π/2)p(

√
δ − 1)

δ−j` .

and

|R0 +R+| ≤ η

√
2δ2

(
√
δ − 1)(δ − 1)

p2 + p

p2
|Ip|+ 1

|Ip|
δ−j`

since we can include R0 into the sum (2.11) defining R+ by starting it at j` − 1 instead of
j`. The consequence is that the δ on the numerator of the bound of R+ becomes δ2.

But then

|R| ≤ η

(
2δ
√

2(|Ip|+ 1)

e(p−
3
2
)(π/2)p(

√
δ − 1)

+

√
2δ2

(
√
δ − 1)(δ − 1)

p2 + p+ 1

p2

)
δ−j` .
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Taking any

η ≤ ε

2δ
√

2(|Ip|+1)

e(p−
3
2 )(π/2)p(

√
δ−1)

+
√
2δ2

(
√
δ−1)(δ−1)

p2+p+1
p2

=
ε(
√
δ − 1)(δ − 1)

2δ
√

2(|Ip|+1)(δ−1)

e(p−
3
2 )(π/2)p

+
√

2δ2 p
2+p+1
p2

will then still give (2.9), provided this η satisifies 0 < η < 1.
However, this quantity is too complicated to hope to be able to handle it in an optimisa-

tion process. Instead, we will determine the condition on p for the parameter that almost
optimise the case p→ +∞, namely ε = 1

2
and δ = 4. In this case, the smallest possible p

in the first part is p = 8. One can then do a computer check to see that, when ε = 1/2
and p ≥ 8, (2.9) is valid for η = 0.058.

Corollary 2.14. Under the conditions of Proposition 2.12∣∣∣∣∣ 1

|Ip|

∫
Ip

(
U(t)− V η(t)

)
φ(t)ϕ(t) dt

∣∣∣∣∣ ≤ εS. (2.12)

Further, if η = 0.058 and δ = 4, then for p ≥ 8, (2.12) holds for ε = 1/2.

Proof. As φ(t) =
∑N

k=1 ake
2iπλkt, it suffices to use the triangular inequality and (2.9). �

2.3. End of the proof. The end of the proof consists in applying first Proposition 2.4

S ≤ 2|Ip|
2|Ip| − 1

∣∣∣∣∣ 1

|Ip|

∫
Ip

U(t)φ(t)ϕ(t) dt

∣∣∣∣∣.
Then, we fix an 0 < ε < 2|Ip|−1

2|Ip| and take η < η(p) as in Proposition 2.12 and apply (2.12)
to get

S ≤ 2|Ip|
2|Ip| − 1

∣∣∣∣∣ 1

|Ip|

∫
Ip

(
U(t)− V η(t)

)
φ(t)ϕ(t) dt

∣∣∣∣∣+
2|Ip|

2|Ip| − 1

∣∣∣∣∣ 1

|Ip|

∫
Ip

V η(t)φ(t)ϕ(t) dt

∣∣∣∣∣
≤ 2|Ip|

2|Ip| − 1
εS +

2|Ip|
2|Ip| − 1

‖V η‖∞‖ϕ‖∞
1

2|Ip|

∫
Ip

|Φ(t)| dt

≤ 2|Ip|
2|Ip| − 1

εS +
p2 + p

p2
2|Ip|

2|Ip| − 1
Eη

1

|Ip|

∫
Ip

|Φ(t)| dt.

We thus obtain from (2.13) that(
1− 2|Ip|

2|Ip| − 1
ε

)
S ≤ p2 + p

p2
2|Ip|

2|Ip| − 1
Eη

1

|Ip|

∫
Ip

|Φ(t)| dt. (2.13)
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Taking δ = 4, ε = 1/2, p ≥ 8 so that T = |Ip| ≥ 72 and η = 0.058, (2.13) reads

S ≤ 2× (72)2

71× 64

1

1− e−0.058
1

T

∫ T/2

−T/2
|Φ(t)| dt.

From (2.1), we finally get

N∑
k=1

|ak|
k + 1

≤ 3× (144)2

64× 142

1

1− e−0.058
1

T

∫ T/2

−T/2
|Φ(t)| dt ≤ 122

T

∫ T/2

−T/2
|Φ(t)| dt

establishing Theorem 1.1iii).

We will now establish Theorem 1.1i). To do so, let p→ +∞ in (2.13) to get

(1− ε)S ≤ 1

1− e−η
lim

T→+∞

1

T

∫ T/2

−T/2
|Φ(t)| dt. (2.14)

This relation is valid for every δ > 1, every 0 < ε < 1 and every

η < η∞ =
(δ − 1)(

√
δ − 1)√

2δ
ε.

By continuity, we can thus replace η by η∞ in (2.14). Further, we may use again (2.1) to
get

N∑
k=1

|ak|
k + 1

≤ δ − 1

(1− ε)
(
1− e−η∞

) lim
T→+∞

1

T

∫ T/2

−T/2

∣∣∣∣∣
N∑
j=1

aje
2iπλjt

∣∣∣∣∣ dt. (2.15)

It remains to choose the parameters δ and ε so as to minimize the factor of the Besikovitch
norm. A computer search shows that

δ − 1

(1− ε)
(
1− e−η∞

) =
δ − 1

(1− ε)
(
1− e−

(δ−1)(
√
δ−1)√

2δ
ε)

takes its minimal value ∼ 25.1624 for some ε, δ with 0.4768 ≤ ε ≤ 0.4772 and 3.70 ≤ δ ≤
3.75. This gives the claimed inequality

N∑
k=1

|ak|
k + 1

≤ 25.2 lim
T→+∞

1

T

∫ T/2

−T/2

∣∣∣∣∣
N∑
k=1

ake
2iπλkt

∣∣∣∣∣ dt.
A somewhat better estimate is possible when |ak| ≥ 1. Indeed, in this case we proved in

(2.14) that

n+ 1 ≤ 1

(1− ε)
(
1− e−

(δ−1)(
√
δ−1)√

2δ
ε) lim

T→+∞

1

T

∫ T/2

−T/2

∣∣∣∣∣
N∑
j=1

aje
2iπλjt

∣∣∣∣∣ dt.
But n was defined as N = βn+1 =

δn+1 − 1

δ − 1
that is

n+ 1 =
ln
(
1 + (δ − 1)N

)
ln δ
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since δ ≥ 2. We thus have

ln[1 + (δ − 1)N ] ≤ ln δ

(1− ε)
(

1− e−
(δ−1)(

√
δ−1)√

2δ
ε

) lim
T→+∞

1

T

∫ T/2

−T/2

∣∣∣∣∣
N∑
j=1

aje
2iπλjt

∣∣∣∣∣ dt.
and we are looking for ε, δ that minimize

ln δ

(1− ε)
(
1− e−

(δ−1)(
√
δ−1)√

2δ
ε)

and for the value of this minimum. The best value we obtain is 7.714 for ε = 0.28 and
δ = 89.254 which is essentially the same value as in [21] (note that 1/7.714 = 0.1296 is the
value given there).

We then obtain the following: if |an| ≥ 1, then

lim
T→+∞

1

T

∫ T/2

−T/2

∣∣∣∣∣
N∑
k=1

ane
2iπλkt

∣∣∣∣∣ dt ≥ 0.1296 ln(1 + 88N).

2.4. Further comments. Let us make a few comments.
First, the inequality for a fixed T implies the inequality for the Besikovitch norm. This

follows from a simple trick already used for Ingham’s inequality. Indeed, once we establish
that

C0

∫ T0/2

−T0/2

∣∣∣∣∣
N∑
k=1

ake
2iπλkt

∣∣∣∣∣ dt ≥
N∑
k=1

|ak|
k + 1

for some T0 > 0 then, changing varible t = t0 + s we also have

C0

∫ t0+T0/2

t0−T0/2

∣∣∣∣∣
N∑
k=1

ake
2iπλkt

∣∣∣∣∣ dt = C0

∫ T0/2

−T0/2

∣∣∣∣∣
N∑
k=1

ake
2iπλkt0e2iπλks

∣∣∣∣∣ ds ≥
N∑
k=1

|ak|
k + 1

.

Next, for any integer M , covering [−MT0,MT0] by 2M intervals of length T0, we get

C0

∫ MT0

−MT0

∣∣∣∣∣
N∑
k=1

ake
2iπλkt

∣∣∣∣∣ dt ≥ 2M
N∑
k=1

|ak|
k + 1

.

Dividing by 2M and letting M → +∞ we get

C0T0 lim
T→+∞

1

T

∫ T/2

−T/2

∣∣∣∣∣
N∑
k=1

ake
2iπλkt

∣∣∣∣∣ dt ≥
N∑
k=1

|ak|
k + 1

.

In particular, Nazarov’s result also implies the result of Hudson and Leckband (but with
worse constants).
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Appendix A. The proof by Hudson and Leckband

This appendix is for the preprint version only and contains no original work.
Let a1, . . . , aN be complex numbers, λ1 < λ2 < · · · < λN be real numbers and

Φ(t) =
N∑
k=1

ake
2iπλkt.

Let ε > 0. By a lemma of Dirichlet ([24, p 235], [12]), there is an increasing sequence of
integers (Mn)n≥1 and, for each n ≥ 1 a finite family of integers (Nk,n)k=1,...,N such that∣∣∣∣λk − Nk,n

Mn

∣∣∣∣ < ε

Mn

for k = 1, . . . , N

which implies that∣∣∣∣e2iπλkt − e2iπNk,nMn
t

∣∣∣∣ ≤ 2π

∣∣∣∣λj − Nk,n

Mn

∣∣∣∣|t| ≤ 2π
ε

Mn

|t| for k = 1, . . . , N.

Define the Mn-periodic function

Ψn(t) =
N∑
k=1

ake
2iπNk,nt/Mn

and note that, for t ∈ [−Mn/2,Mn/2],

|Φ(t)−Ψn(t)| ≤
N∑
k=1

|ak|
∣∣∣∣e2iπλkt − e2iπNk,nMn

t

∣∣∣∣ ≤ 2πε
N∑
k=1

|ak|.

As Ψn is Mn-periodic, we may apply B to obtain

N∑
k=1

|ak|
k
≤ CMPS

1

Mn

∫ Mn/2

−Mn/2

|Ψn(t)| dt

≤ CMPS
1

Mn

∫ Mn/2

−Mn/2

|Φ(t)| dt+ 2πε
N∑
k=1

|ak|.
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Letting n→ +∞ and then ε→ 0 we obtain Theorem D:

lim
T→+∞

1

T

∫ T/2

−T/2

∣∣∣∣∣
N∑
k=1

ake
2iπλkt

∣∣∣∣∣ dt ≥ CMPS

N∑
k=1

|ak|
k
.

Note that CMPS is the same constant as in Theorem B.

Appendix B. Igham’s Theorem

This appendix is for the preprint version only and contains no original work.

Theorem B.1 (Ingham). Let a1, . . . , aN be complex numbers and λ1 < · · · , λN be real
numbers with |λk − λ`| ≥ 1 if k 6= `. For every T > 1,

1

T

∫ T/2

−T/2

∣∣∣∣∣
N∑
k=1

ake
2iπλkt

∣∣∣∣∣
2

dt ≥ C(T )
N∑
k=1

|ak|2 (B.1)

with

C(T ) =


π2

8

T 2 − 1

T 3
for 1 < T ≤ 2

3π2

64
for T ≥ 2

.

Proof. We will do so in three steps. We first establish this inequality for 1 < T ≤ 2.
Let H be defined by H(t) = 1[−1/2,1/2] cosπt and notice that

Ĥ(ξ) =
2

π

cosπξ

1− 4ξ2
.

Note that H being non-negative, Ĥ is maximal at 0 (which may be checked directly).
Next consider H ∗H and notice that, as H is non-negative, even, continous with support

[−1/2, 1/2], then H∗H is non-negative, even, continous with support [−1, 1] and its Fourier
transform is

Ĥ ∗H(ξ) = Ĥ2.

Next H ∈ H1(R) with H ′ = −π1[−1/2,1/2] sin πt and

Ĥ ′(ξ) = 4iξ
cos πξ

1− 4ξ2

thus

Ĥ ′ ∗H ′(ξ) = −(2πξ)2Ĥ2

We now consider GT = π2T 2H ∗H + H ′ ∗H ′ so that GT is continuous, real valued, even
and supported in [−1, 1].

ĜT = π2
(
T 2 − 4ξ2

)
Ĥ2

is even (so GT is the Fourier transform of ĜT ) and in L1. Further Ĝ is non-negative on
[−T/2, T/2] and negative on R \ [−T/2, T/2].
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This implies that∫ T/2

−T/2
ĜT (t)

∣∣∣∣∣
N∑
k=1

aje
2iπλkt

∣∣∣∣∣
2

dt ≥
∫
R
ĜT (t)

∣∣∣∣∣
N∑
k=1

aje
2iπλkt

∣∣∣∣∣
2

dt

=
N∑

k,`=1

aka`

∫
R
ĜT (t)e2iπ(λk−λ`)t dt

=
N∑

k,`=1

aka`GT (λk − λ`) =
N∑
k=1

|ak|2GT (0).

In the last line, we use that |λk − λ`| ≥ 1 when k 6= ` thus GT (λk − λ`) = 0.
Now, for ξ ∈ [−T/2, T/2],

ĜT (ξ) = π2(T 2 − 4ξ2)Ĥ2(ξ) ≤ π2(T 2 − 4ξ2)Ĥ2(0) ≤ 4T 2

while

GT (0) = π2

∫ 1/2

−1/2
T 2 cos2 πt− sin2 πt dt =

π2

2
(T 2 − 1)

which leads to ∫ T/2

−T/2

∣∣∣∣∣
N∑
k=1

aje
2iπλkt

∣∣∣∣∣
2

dt ≥ π2

8

T 2 − 1

T 2

N∑
k=1

|ak|2. (B.2)

For 2 ≤ T ≤ 6, we simply write∫ T/2

−T/2

∣∣∣∣∣
N∑
k=1

aje
2iπλkt

∣∣∣∣∣
2

dt ≥
∫ 1

−1

∣∣∣∣∣
N∑
k=1

aje
2iπλkt

∣∣∣∣∣
2

dt ≥ 3π2

32

N∑
k=1

|ak|2

where the second inequality is (B.2) with T = 2, establishing (B.1) with C =
3π2

32T
≥ π2

64
.

Now let T ≥ 6 and MT = [T/2] so that MT ≥
T

2
− 1 ≥ T

3
. For j = 0, . . . ,MT − 1, let

tj = −T/2 + j + 1 so that the intervals [tj − 1, tj + 1[ are disjoint and
N−1⋃
j=0

[tj − 1, tj + 1[⊂

[−T/2, T/2] thus∫ T/2

−T/2

∣∣∣∣∣
N∑
k=1

bke
2iπλkt

∣∣∣∣∣
2

dt ≥
MT−1∑
j=0

∫ tj+1

tj−1

∣∣∣∣∣
N∑
k=1

bke
2iπλkt

∣∣∣∣∣
2

dt

=

MT−1∑
j=0

∫ 1

−1

∣∣∣∣∣
N∑
k=1

bke
2iπλktje2iπλkt

∣∣∣∣∣
2

dt.
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Now, apply (B.2) with ak = bke
2iπλktj and T = 2 to get

1

T

∫ T/2

−T/2

∣∣∣∣∣
N∑
j=1

bke
2iπλkt

∣∣∣∣∣
2

dt ≥ 3π2

32

MT

T

N∑
k=1

|ak|2 ≥
π2

32

N∑
k=1

|ak|2,

establishing (B.1) with C =
π2

32
. �

Note that, as
MT

T
→ 1

2
we obtain a slightly better bound for the Besikovitch norm

lim
T→+∞

1

T

∫ T/2

−T/2

∣∣∣∣∣
N∑
j=1

bke
2iπλkt

∣∣∣∣∣
2

dt ≥ 3π2

64

N∑
k=1

|ak|2.

Ingham also prove an L1-inequality that is weaker than Nazarov’s result:

Proposition B.2 (Ingham). Let γ > 0 and T >
1

γ
. Let (λn)n∈Z be a sequence such that

λn+1 − λn ≥ γ. Then for every N and every sequence (an)n=−N,...,N ,

1

T

∫ T/2

−T/2

∣∣∣∣∣
N∑

n=−N

ane
2iπλnt

∣∣∣∣∣ dt ≥ 2

π

T 2 − 1

T 2
max
−N,...,N

|an|.

Further, if (an) ∈ `2(Z), then

1

T

∫ T/2

−T/2

∣∣∣∣∣∑
n∈Z

ane
2iπλnt

∣∣∣∣∣ dt ≥ 2

π

T 2 − 1

T 2
‖(an)n∈Z‖∞.

Proof. The second inequality follows immediately from the first one.
Multiplying the sum in the integral by e−2iπλ0t, we may replace the sequence (λn)n by

(λn − λ0)n and thus assume that λ0 = 0.
We again consider H(t) = 1[−1/2,1/2] cos πt and set

HT (t) =
1

T
H

(
t

T

)
=

1

T
1[−T/2,T/2] cos

π

T
t

so that

ĤT (ξ) =
2

π

cosπTξ

1− 4T 2ξ2
.

Let ` be such that |a`| = max−N≤n≤N |an|.
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Our first observation is that 0 ≤ HT ≤
1

T
and is supported in [−T/2, T/2] so that

1

T

∫ T/2

−T/2

∣∣∣∣∣
N∑

n=−N

ane
2iπλnt

∣∣∣∣∣ dt ≥
∫ T/2

−T/2

∣∣∣∣∣
N∑

n=−N

ane
2iπ(λn−λ`)tHT (t)

∣∣∣∣∣ dt
≥

∣∣∣∣∣
N∑

n=−N

an

∫ T/2

−T/2
HT (t)e2iπ(λn−λ`)t dt

∣∣∣∣∣
=

∣∣∣∣∣
N∑

n=−N

anĤT (λn − λ`)

∣∣∣∣∣
≥ |a`||ĤT (0)| −

∑
n∈{−N,...,N}\{`}

|an||ĤT (λn − λ`)|

≥ 2

π
|a`|

1− π

2

∑
n∈{−N,...,N}\{`}

π

2
|ĤT (λn − λ`)|

 . (B.3)

But, λn+1 − λn ≥ 1 and T > 1 so that 4T 2|λn − λ`|2 − 1 ≥ T 2(4|n− `|2 − 1)∑
n∈{−N,...,N}\{`}

π

2
|ĤT (λn − λ`)| ≤

∑
n∈{−N,...,N}\{`}

1

4T 2|λn − λ`|2 − 1

≤ 2

T 2

+∞∑
m=1

1

4m2 − 1
=

1

T 2

+∞∑
m=1

(
1

2m− 1
− 1

2m+ 1

)
=

1

T 2
.

Inseting this into (B.3) we obtain the proposition. �

References

[1] C. Baiocchi, Claudio; V. Komornik & P. Loreti Ingham type theorems and applications to
control theory. Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8) 2 (1999), 33–63.

[2] A. S. Belov & S. V. Konyagin On the conjecture of Littlewood and minima of even trigonometric
polynomials. Harmonic analysis from the Pichorides viewpoint (Anogia, 1995), 1–11, Publ. Math.
Orsay, 96-01, Univ. Paris XI, Orsay, 1996.

[3] D. Choimet & H. Queffélec Twelve landmarks of twentieth-century analysis. Cambridge Univer-
sity Press, New York, 2015

[4] P. J. Cohen On a conjecture of Littlewood and idempotent measures. Amer. J. Math. 82 (1960),
191-–212.

[5] H. Davenport On a theorem of P. J. Cohen. Mathematika 7 (1960), 93–97.
[6] R. A. DeVore & G. G. Lorentz Constructive Approximation. Grundlehren der mathematischen

Wissenschaften, 303. Springer-Verlag, Berlin, 1993.
[7] J. J. F. Fournier On a theorem of Paley and the Littlewood conjecture. Ark. Mat. 17 (1979), 199–216.
[8] J. J. F. Fournier Some remarks on the recent proofs of the Littlewood conjecture. Second Edmonton

conference on approximation theory (Edmonton, Alta., 1982), 157–170, CMS Conf. Proc., 3, Amer.
Math. Soc., Providence, RI, 1983.

[9] G. H. Hardy & J. E. Littlewood A new proof of a theorem on rearrangements. J. London Math.
Soc. 23 (1948), 163—168.



THE LITTLEWOOD PROBLEM 25

[10] S. Hudson & M. Leckband Hardy’s inequality and fractal measures. J. Funct. Anal. 108 (1992),
133–160.

[11] O. C. McGehee, L. Pigno & B. Smith Hardy’s inequality and the L1 norm of exponential sums.
Ann. of Math. (2) 113 (1981), 613–618.

[12] L. Grafakos Classical Fourier analysis. Third edition. Graduate Texts in Mathematics, 249.
Springer, New York, 2014

[13] A. E. Ingham Some trigonometrical inequalities with applications to the theory of series. Math. Z.
41 (1936), 367–379.

[14] S. V. Konyagin On the Littlewood problem. (Russian) Izv. Akad. Nauk SSSR Ser. Mat. 45 (1981),
no. 2, 243—265, 463.

[15] F. L. Nazarov On a proof of the Littlewood conjecture by McGehee, Pigno and Smith. St. Petersburg
Math. J. 7 (1996), no. 2, 265-275

[16] S. K. Pichorides A lower bound for the L1 norm of exponential sums. Mathematika 21 (1974),
155—159.

[17] S. K. Pichorides On a conjecture of Littlewood concerning exponential sums. I. Bull. Soc. Math.
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