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Robust energy a posteriori estimates for nonlinear elliptic

problems

André Harnist†§1, Koondanibha Mitra‡2, Ari Rappaport†§3, and Martin Vohraĺık†§4

May 26, 2023

Abstract

In this paper, we design a posteriori estimates for finite element approximations of nonlinear elliptic
problems satisfying strong-monotonicity and Lipschitz-continuity properties. These estimates include,
and build on, any iterative linearization method that satisfies a few clearly identified assumptions; this
encompasses the Picard, Newton, and Zarantonello linearizations. The estimates give a guaranteed
upper bound on an augmented energy difference (reliability with constant one), as well as a lower
bound (efficiency up to a generic constant). We prove that for the Zarantonello linearization, this
generic constant only depends on the space dimension, the mesh shape regularity, and possibly the
approximation polynomial degree in four or more space dimensions, making the estimates robust with
respect to the strength of the nonlinearity. For the other linearizations, there is only a computable
dependence on the local variation of the linearization operators. We also derive similar estimates for
the energy difference. Numerical experiments illustrate and validate the theoretical results, for both
smooth and singular solutions.

Key words: nonlinear elliptic problem, finite elements, iterative linearization, energy difference, a pos-
teriori error estimate, robustness, equilibrated flux reconstruction
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1 Introduction

Nonlinear elliptic problems are of paramount importance in a broad range of domains such as physics,
mechanics, economics, biology, and medicine, see, e.g. [2, 22, 32, 39, 40]. Numerical discretization
methods then serve to deliver approximate solutions, upon employing iterative linearizations to resolve
the arising discrete nonlinear systems, see, e.g., [7, 16, 18, 29, 34, 43] and the references therein.

Given a numerical approximation, there arises the important question of the error with respect to the
exact solution. This is practically handled by the so-called a posteriori estimates. For nonlinear problems,
these have been proposed, amongst others, in [3, 4, 10, 11, 17, 20, 26, 28, 29, 33, 35, 36, 38, 39, 43]. One
step further, the estimates can be used to adaptively steer the numerical approximation, and recently,
convergence and optimality results have been obtained in [5, 9, 24, 25, 27, 30, 31], see also the references
therein.

A crucial property of an a posteriori estimate is its robustness, assessing whether its quality is inde-
pendent of the parameters. In the present setting, we specifically use the term robustness if the chosen
error measure and the associated estimate are uniformly equivalent, for any strength of the nonlinearity.
This resumes to the same overestimation factor (effectivity index) for linear, mildly nonlinear, and highly
nonlinear problems. Unfortunately, robustness is often not achieved; we illustrate this in Figure 1. There,
we present the effectivity indices for three common error measures: the energy norm (L2 norm of the
difference of the weak gradients), the (square root of the) difference of the energies, and the dual norm
of the residual (cf., e.g., [23] for their mutual comparisons). We employ guaranteed equilibrated flux
estimates following [8, 12, 15], for the nonlinear problem of Example 5.2 below. We can observe that the
estimate in the energy norm setting is not robust with respect to the strength of the nonlinearity (the
effectivity index explodes as the ratio ac/am from (2.1) below grows). The dual norm of the residual leads
to robustness, as proven in [17, 20]. Though the dual norm of the residual is indeed localizable, cf. [6]
and the references therein, it may be criticized as it actually does not take into account the nonlinearity
(an incorporation has recently been addressed in [37]). The energy difference is showing a numerical
robustness, though known theoretical estimates depend on the ratio ac/am.

In this paper, we focus on nonlinear elliptic problems of the form: find u : Ω→ R such that

−∇·(a(·, |∇u|)∇u) = f in Ω, (1.1a)

u = 0 on ∂Ω, (1.1b)

where a : Ω × [0,∞) → (0,∞) is a nonlinear function satisfying assumptions of Lipschitz continuity
and strong monotonicity (cf. (2.1) below). We employ a finite element approximation of (1.1) and an
iterative linearization, yielding the approximation uk` on each mesh T` and linearization step k. The
iterative linearization method needs to satisfy a few clearly identified assumptions. We will show that
this is satisfied for usual linearizations such as Picard, Newton, or Zarantonello.

We consider the energy difference EkN,` of the nonlinear problem (cf. (3.9a)) and its a posteriori

estimator ηkN,` (cf. (3.9b)). In order to achieve our goals, we additionally consider a linearized energy

difference EkL,` (cf. (3.11a)) and the associated estimator ηkL,` (cf. (3.11b)). We more precisely augment

EkN,` by EkL,` to form Ek` and similarly for the estimators. Our main result, Theorem 3.4, can be presented
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Figure 1: [Exponential nonlinearity (5.5), smooth solution (5.3), Newton solver, 25 DOFs] Comparison
of the effectivity index (given as the ratio of the estimate over the error) of different error measures and
associated a posteriori estimates.

as follows. If the iterative index k satisfies a computable stopping criterion and neglecting data oscillation
and quadrature error terms, we have

Ek` ≤ ηk` . Ck` Ek` , (1.2)

where the hidden constant depends only on the space dimension, the mesh shape-regularity, and possibly
on the polynomial degree of the finite element approximation when the spatial dimension is greater than
or equal to 4. Here, Ck` is a computable constant only depending on local variations of the linearization
matrices. We show that Ck` = 1 in the case of the Zarantonello iteration, making the estimate robust
with respect to the strength of the nonlinearity in any setting. For the other linearizations, the estimates
are robust if the computed constant Ck` is small (a posteriori verification of robustness for each given
setting).

An additional a posteriori estimate is given in Theorem 4.1 for the energy difference EkN,` only, and can
be summarized as follows. For every iterative index k, neglecting again data oscillation and quadrature
error terms, we have

EkN,` ≤ ηkN,` . C̃k` EkN,`, (1.3)

with the same dependence as in (1.2) for the hidden constant and where C̃k` only has a local (but here

not computable) dependence on the nonlinearity and where C̃k` ≤ (ac/am)1/2 in any case.
The rest of the paper is organized as follows. In Section 2, we detail the assumptions on the nonlinear

function a. We next give the continuous weak formulation with its equivalent energy minimization. Then,
we announce the discrete weak formulation with its associated discrete energy minimization, and finally
the iterative linearization. In Section 3, we define the augmented error and estimator and state our
main result, Theorem 3.4, giving details of (1.2). In Section 4, we study the original energy difference,
which leads us to an a posteriori error estimate of Theorem 4.1, giving details of (1.3). In Section 5, we
present a series of numerical experiments in order to illustrate our theoretical findings, for both smooth
and singular solutions. In Section 6, we give a proof of Theorem 3.4, and then, in Section 7, a proof of
Theorem 4.1. Finally, we summarize, in Appendix A, some useful properties of the nonlinear function
and the assumptions required, and, in Appendix B, we show some technical results to determine the
eigenvalues of the Newton linearization.

2 Weak formulation, energy minimization, finite element dis-
cretization, and iterative linearization

Let Ω ⊂ Rd, d ≥ 1, be an open polytope with Lipschitz boundary ∂Ω. We consider problem (1.1), where
f ∈ L2(Ω) represents a volumetric force term, while a is the diffusion coefficient which depends on the
potential u : Ω→ R only through the Euclidean norm of its gradient |∇u|.

We consider the following assumption for the nonlinear function a (see, e.g., [43] for more details).

Assumption 2.1 (Nonlinear function a). We assume that the function a : Ω × [0,∞) → (0,∞) is
measurable and that there exist constants am ≤ ac ∈ (0,∞) such that, a.e. in Ω and for all x,y ∈ Rd,

|a(·, |x|)x− a(·, |y|)y| ≤ ac|x− y| (Lipschitz continuity), (2.1a)

(a(·, |x|)x− a(·, |y|)y) · (x− y) ≥ am|x− y|2 (strong monotonicity). (2.1b)
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2.1 Weak formulation and equivalent energy minimization

The weak formulation of problem (1.1) reads: find u ∈ H1
0 (Ω) such that

(a(·, |∇u|)∇u,∇v) = (f, v) ∀v ∈ H1
0 (Ω), (2.2a)

where (·, ·) is the inner product of L2(Ω). We denote by ‖·‖ its corresponding norm.
Referring to [43], the weak formulation (2.2a) is equivalent to the following minimization problem:

u = arg min
v∈H1

0 (Ω)
J (v), (2.2b)

with the energy functional J : H1
0 (Ω)→ R defined as,

J (v) :=

∫
Ω

φ(·, |∇v|)− (f, v), v ∈ H1
0 (Ω), (2.3)

where the function φ : Ω× [0,∞)→ [0,∞) is defined such that, a.e. in Ω and for all r ∈ [0,∞),

φ(·, r) :=

∫ r

0

a(·, s)sds. (2.4)

It is shown in [43] that, under Assumption 2.1, there exists a unique solution to problem (2.2). We refer
to Appendix A for more details about equivalent assumptions on the nonlinear functions a and φ.

2.2 Finite element discretization

Let ` ≥ 0 be a mesh level index. We consider simplicial triangulations T` of the domain Ω satisfying the
following shape-regularity property: there exists a constant κT > 0 such that for all ` ≥ 0 and all K ∈ T`,
hK/ρK ≤ κT , where hK is the diameter of K and ρK is the diameter of the largest ball inscribed in K.

For a polynomial degree p ≥ 1, denoting Pp(T`) the space of piecewise polynomials on the mesh T`
of total degree at most p, we define the discrete finite element space V p` := Pp(T`) ∩H1

0 (Ω). The finite
element approximation of (2.2a) would be u` ∈ V p` such that

(a(·, |∇u`|)∇u`,∇v`) = (f, v`) ∀v` ∈ V p` . (2.5a)

As in (2.2b), u` ∈ V p` satisfies the minimization problem

u` = arg min
v`∈V p`

J (v`). (2.5b)

Below, we never work with u`.

2.3 Iterative linearization

We immediately consider an iterative linearization of (2.5a), which is anyhow necessary for a practical
solution of (2.5a). Let u0

` ∈ V p` be a given initial guess. For an iterative linearization index k ≥ 1,

consider Ak−1
` : Ω→ Rd×d and bk−1

` : Ω→ Rd, arising from a suitable linearization; details and examples
are given below. We define the linearized finite element approximation: uk` ∈ V

p
` to be such that

(Ak−1
` ∇uk` ,∇v`) = (f, v`) + (bk−1

` ,∇v`) ∀v` ∈ V p` . (2.6a)

As in (2.5b), this is equivalent to the discrete minimization problem

uk` = arg min
v`∈V p`

J k−1
` (v`) (2.6b)

with the linearized energy functional J k−1
` : H1

0 (Ω)→ R defined for all v ∈ H1
0 (Ω) by

J k−1
` (v) :=

1

2

∥∥∥(Ak−1
` )

1
2∇v

∥∥∥2

− (f, v)− (bk−1
` ,∇v). (2.7)
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2.3.1 Assumptions on iterative linearization schemes

Let k ≥ 1. We will suppose that Ak−1
` : Ω → Rd×d and bk−1

` : Ω → Rd from (2.6) satisfy the following
assumption (for the sake of conciseness, we assume that they are well defined everywhere in Ω). We will
use the following notation of the derivatives in the second argument of the functions a, φ, and others (cf.
(3.6)–(3.7)): for all r ∈ [0,∞), a′(·, r) := ∂

∂ra(x, r) and φ′(·, r) := ∂
∂rφ(x, r).

Assumption 2.2 (Iterative linearization). For all points x ∈ Ω, we assume that Ak−1
` (x) ∈ Rd×d is a

bounded symmetric positive definite matrix. Specifically, denoting by Ak−1
m,` (x) and Ak−1

c,` (x) respectively

its smallest and largest eigenvalues, we suppose, for all ξ ∈ Rd,

|Ak−1
` (x)ξ| ≤ Ak−1

c,` (x)|ξ| (boundedness), (2.8a)

(Ak−1
` (x)ξ) · ξ ≥ Ak−1

m,` (x)|ξ|2 (positive definiteness). (2.8b)

Moreover, we suppose uniformity, i.e., that there exist Am ≤ Ac ∈ (0,∞) independent of k, `, and x such
that

Am ≤ Ak−1
m,` (x) ≤ Ak−1

c,` (x) ≤ Ac. (2.8c)

Finally, we explicitly define bk−1
` (x) ∈ Rd for all x ∈ Ω by

bk−1
` (x) := Ak−1

` (x)∇uk−1
` (x)− a(x, |∇uk−1

` (x)|)∇uk−1
` (x). (2.9)

In the following, we use the boldface font to denote the spaces of multi-dimensional functions, e.g.,
L2(Ω).

Remark 2.3 (Assumption 2.2). Equality (2.9) implies that (2.6a) can be equivalently written as a problem
for the increment uk` − u

k−1
` on the left-hand side and the residual of uk−1

` on the right-hand side:

(Ak−1
` ∇(uk` − uk−1

` ),∇v`) = (f, v`)− (a(·, |∇uk−1
` |)∇uk−1

` ,∇v`) ∀v` ∈ V p` , (2.10)

which is the form used in, e.g., [37]. Therefore, equality (2.9) ensures that the discrete problem (2.6a) is
consistent with the discrete problem (2.5a), i.e., Ak−1

` ∇uk` −b
k−1
` → a(·, |∇u`|)∇u` in L2(Ω) when uk` →

u` in H1
0 (Ω). Indeed, (2.8a) implies that Ak−1

` ∇(uk` − u
k−1
` )→ 0 in L2(Ω), and a(·, |∇uk−1

` |)∇uk−1
` →

a(·, |∇u`|)∇u` in L2(Ω) thanks to (2.1a). Finally, we recall that the positive definiteness of Ak−1
` implies

that (Ak−1
` )−1 and (Ak−1

` )
1
2 exist, which is used below.

2.3.2 Examples of iterative linearization schemes

We now present some examples of linearization methods satisfying Assumption 2.2.

Example 2.4 (Picard). The Picard (fixed point) iteration, see, e.g. [16], is defined as

Ak−1
` = a(·, |∇uk−1

` |)Id with bk−1
` = 0 in Ω. (2.11)

It satisfies Assumption 2.2 with Ak−1
m,` = Ak−1

c,` = a(·, |∇uk−1
` |), which leads to Am = am and Ac = ac

thanks to (A.3).

Example 2.5 (Zarantonello). The Zarantonello iteration, introduced in [42], is defined as

Ak−1
` = γId with bk−1

` =
(
γ − a(·, |∇uk−1

` |)
)
∇uk−1

` in Ω, (2.12)

where γ ∈ (0,∞) is a constant parameter. To ensure contraction, one needs to assume that γ ≥ a2c
am

. The
Zarantonello iteration converges linearly, but the convergence is slow as γ takes large values. It satisfies
Assumption 2.2 with Ak−1

m,` = Ak−1
c,` = γ, which leads to Am = Ac = γ.

Example 2.6 ((Damped) Newton). The (damped) Newton iteration, see, e.g. [16], is defined as

Ak−1
` = a(·, |∇uk−1

` |)Id + θ
a′(·, |∇uk−1

` |)
|∇uk−1

` |
∇uk−1

` ⊗∇uk−1
`

with bk−1
` = θa′(·, |∇uk−1

` |)|∇uk−1
` |∇uk−1

` in Ω,

(2.13)
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where θ ∈ [0, 1] is the damping parameter. Observe that θ = 1 gives the Newton iteration, whereas θ = 0
corresponds to the Picard iteration. If θ = 1, the Newton method converges quadratically. However, it
might not always converge. The (damped) Newton iteration satisfies Assumption 2.2 with, if the space
dimension d = 1,

Ak−1
m,` = Ak−1

c,` = a(·, |∇uk−1
` |) + θa′(·, |∇uk−1

` |)|∇uk−1
` |

(A.8)
= (1− θ)a(·, |∇uk−1

` |) + θφ′′(·, |∇uk−1
` |),

(2.14)

and, if d > 1,

Ak−1
m,` = (1− θ)a(·, |∇uk−1

` |) + θmin(a(·, |∇uk−1
` |), φ′′(·, |∇uk−1

` |)), (2.15a)

Ak−1
c,` = (1− θ)a(·, |∇uk−1

` |) + θmax(a(·, |∇uk−1
` |), φ′′(·, |∇uk−1

` |)). (2.15b)

Indeed, denoting the spectrum of a matrix A ∈ Rd×d by Spec(A), we infer (2.15) by writing,

Spec(Ak−1
` )

(B.1)
= {a(·, |∇uk−1

` |), a(·, |∇uk−1
` |) + θa′(·, |∇uk−1

` |)|∇uk−1
` |}

(A.8)
= {(1− θ)a(·, |∇uk−1

` |) + θa(·, |∇uk−1
` |),

(1− θ)a(·, |∇uk−1
` |) + θφ′′(·, |∇uk−1

` |)}.

Finally, we can set Am = am and Ac = ac thanks to (A.3) and (A.5).

3 A posteriori estimate of an augmented energy difference

In this section, we define the augmented energy difference and a posteriori estimator of the finite element
discretization uk` given by (2.6) on mesh T`, ` ≥ 0, and linearization step k ≥ 1.

3.1 Flux equilibration

Let V` be the set of all mesh vertices and, for each vertex a ∈ V`, define the patch T a` as the collection of
the simplicies of T` sharing the vertex a, as well as the patch subdomain ωa` corresponding to T a` . For all
a ∈ V`, we define the space V a` := RTNp(T a` )∩H0(div, ωa` ). Here RTNp(T a` ) denotes the broken space
consisting of p-th order Raviart–Thomas–Nédélec space on each simplex, RTNp(K) := [P(K)]d+xP(K).
Moreover, H0(div, ωa` ) is the subspace of H(div, ωa` ) of functions with vanishing normal trace on ∂ωa` if
a ∈ V` is an interior vertex and of functions with vanishing normal trace on ∂ωa` \{ψa` > 0} if a ∈ V` is a
boundary vertex.

Here, for all a ∈ V`, the hat function ψa` is the continuous, piecewise affine function equal to 1 in a
and 0 in V`\{a}. We recall the partition of unity∑

a∈V`

ψa` (x) = 1 ∀x ∈ Ω. (3.1)

We denote by Π`,p the L2-orthogonal projection from L2(Ω) to Pp(T`) and by ΠRTN
`,p−1 the L2-orthogonal

projection from L2(Ω) to RTNp−1(T`); note that both are elementwise. Finally, we consider the equili-
brated flux locally reconstructed from uk` as

σk` :=
∑
a∈V`

σa,k` , (3.2a)

where, for all vertices a ∈ V`, following [8, 11, 15, 20, 21],

σa,k` := arg min
w`∈V a

`

∇·w`=Π`,pγ
a,k
`

‖(Ak−1
` )−

1
2 (ψa` ΠRTN

`,p−1ξ
k
` +w`)‖ωa

`
,

with ξk` := Ak−1
` ∇uk` − bk−1

` and γa,k` := ψa` f −∇ψa` · ξk` .

(3.2b)

Combining (3.2) and (3.1), we infer, as in, e.g., [19],

∇·σk` =
∑
a∈V`

∇·σa,k` =
∑
a∈V`

Π`,p(ψ
a
` f)−

∑
a∈V`

Π`,p(∇ψa` · ξk` )

= Π`,p

∑
a∈V`

(ψa` f) = Π`,pf.
(3.3)
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In particular, σk` ∈ RTNp(T`)∩H(div,Ω) and we have with the Green theorem, since uk` ∈ V
p
` ⊂ Pp(T`),

− (σk` ,∇uk` ) = (f, uk` ). (3.4)

3.2 Convex conjugate function and dual energies

Recalling the primal energy J of (2.3), the corresponding dual energy J ∗ : H(div,Ω) → R, cf. [2, 32,
39, 43], is defined by

J ∗(w) := −
∫

Ω

φ∗(·, |w|), w ∈H(div,Ω), (3.5)

where φ∗ : Ω × [0,∞) → [0,∞) is the convex conjugate of φ (also known as the Legendre dual or the
Fenchel conjugate), which is defined such that, a.e. in Ω and for all s ∈ [0,∞),

φ∗(·, s) := sup
r∈[0,∞)

(sr − φ(·, r)), (3.6a)

or equivalently, for all s ∈ [0,∞),

φ∗(·, s) =

∫ s

0

φ′
−1

(·, r) dr = sφ′
−1

(·, s)− φ(·, φ′−1
(·, s)). (3.6b)

We refer to [32] for more details and recall that the construction of φ∗ yields

φ∗′ = φ′
−1

and φ∗′′ =
1

φ′′ ◦ φ′−1 . (3.7)

Consequently, under Assumption 2.1, φ∗ is convex thanks to Remark A.3 below.
Finally, we define the linearized dual energy functional J ∗,k−1

` : H(div,Ω)→ R such that

J ∗,k−1
` (w) := −1

2

∥∥∥(Ak−1
` )−

1
2 (w − bk−1

` )
∥∥∥2

, w ∈H(div,Ω). (3.8)

3.3 Energy difference and estimator of the nonlinear problem

We define the (square root of twice the) energy difference corresponding to the nonlinear problem (2.2)
by

EkN,` :=
(
2(J (uk` )− J (u))

) 1
2 . (3.9a)

Note that EkN,` is well-defined from (2.2b) and the fact that uk` ∈ H1
0 (Ω). Actually, EkN,` ≥ 0 and 0 if and

only if uk` = u from the uniqueness of u in (2.2b). We then define the estimator ηkN,` corresponding to
the nonlinear problem (2.2) as in, e.g., [3, 39, 43], by

ηkN,` :=
(
2(J (uk` )− J ∗(σk` ))

) 1
2 . (3.9b)

Note that ηkN,` is again well-defined, which follows from (5.7)–(5.8) below.

3.4 Energy difference and estimator of the linearized problem

In order to derive robust estimates, we further consider the linearized problem (2.6). We introduce the
abstract linearization on the continuous level: uk〈`〉 ∈ H

1
0 (Ω) such that

(Ak−1
` ∇uk〈`〉,∇v) = (f, v) + (bk−1

` ,∇v) ∀v ∈ H1
0 (Ω), (3.10a)

which is a linear problem. Note that (3.10a) is equivalent to

uk〈`〉 := arg min
v∈H1

0 (Ω)
J k−1
` (v), (3.10b)

7



based on the linearized energy (2.7). Analogously to the nonlinear energy difference EkN,` (3.9a), we then

define the energy difference EkL,` of the linearized problem (3.10)

EkL,` :=
(

2
(
J k−1
` (uk` )− J k−1

` (uk〈`〉)
)) 1

2 (6.5a)
= ‖(Ak−1

` )
1
2∇(uk` − uk〈`〉)‖. (3.11a)

Here, EkL,` ≥ 0 again and 0 if and only if uk` = uk〈`〉 is obvious. Finally, we define the estimator ηkL,` of the

linearized problem (3.10) by

ηkL,` :=
(

2
(
J k−1
` (uk` )− J ∗,k−1

` (σk` )
)) 1

2

(6.6a)
= ‖(Ak−1

` )−
1
2 (Ak−1

` ∇uk` − bk−1
` + σk` )‖

(2.9)
= ‖(Ak−1

` )−
1
2 (Ak−1

` ∇(uk` − uk−1
` ) + a(·, |∇uk−1

` |)∇uk−1
` + σk` )‖.

(3.11b)

3.5 Augmented energy difference and estimator

We denote, a.e. in Ω,

ak` := a(·, |∇uk` |) and au := a(·, |∇u|). (3.12)

We define the shifted estimator η̂kL,` of the linearized problem (3.10) by

η̂kL,` := ‖(Ak−1
` )−

1
2 (ak`∇uk` + σk` )‖ (3.13)

and the computable weight λk` defined from the estimators (3.9b) and (3.13) by

λk` :=
ηkN,`
η̂kL,`

. (3.14)

Remark 3.1 (Weight λk` ). The role of the weight λk` is to ensure a balance between EkN,` and λk`EkL,`, and

ηkN,` and λk` η
k
L,`. We employ η̂kL,` (and not ηkL,` from (3.11b) which would give λk` η

k
L,` = ηkN,`) since as

such λk` is uniformly bounded for every k ≥ 1. Indeed, we have with (4.3a) and (7.4) below,

λk`
(7.4)

≤
‖(aσ,km,`)

− 1
2 (ak`∇uk` + σk` )‖

‖(Ak−1
` )−

1
2 (ak`∇uk` + σk` )‖

(2.8a)

≤ ess sup
Ω

(
Ak−1

c,`

aσ,km,`

) 1
2 (2.8c),(4.3a)

≤
√
Ac

am
. (3.15)

Now, we define the augmented energy difference Ek` by

Ek` :=
1

2

(
EkN,` + λk`EkL,`

)
(3.16a)

and the corresponding augmented estimator ηk` by

ηk` :=
1

2

(
ηkN,` + λk` η

k
L,`

)
. (3.16b)

Remark 3.2 (Roles of Ek` and ηk` ). The objective of introducing Ek` and ηk` is to augment the energy
difference EkN,` and estimator ηkN,` of the nonlinear problem (2.2) (where EkN,` ≤ ηkN,` but not necessarily
robustly) in order to obtain an a posteriori estimate that will be robust with respect to the nonlinear
function a. The added linearized components EkL,` and ηkL,` are multiplied by the weight λk` which makes

them comparable in size to EkN,` and ηkN,`, respectively.

Lemma 3.3 (Error consistency). Let the error Ek` be given by (3.16a). We have Ek` → 0 if and only if
uk` → u in H1

0 (Ω).

Proof. Assuming Ek` → 0 implies EkN,` → 0 since EkN,`, EkL,`, λk` ≥ 0. Furthermore, inequality (7.2a) below
together with (4.4) yields

am‖∇(uk` − u)‖2 ≤ (EkN,`)2 ≤ ac‖∇(uk` − u)‖2, (3.17)
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hence uk` → u in H1
0 (Ω). Reciprocally, assume that uk` → u in H1

0 (Ω). We have again from (3.17) that
EkN,` → 0. Furthermore, we have for all k ≥ 1,

Am‖∇(uk〈`〉 − u
k−1
` )‖2

(2.8)

≤ (Ak−1
` ∇(uk〈`〉 − u

k−1
` ),∇(uk〈`〉 − u

k−1
` ))

(2.9)
= (Ak−1

` ∇uk〈`〉 − b
k−1
` ,∇(uk〈`〉 − u

k−1
` ))− (ak−1

` ∇uk−1
` ,∇(uk〈`〉 − u

k−1
` ))

(3.10a)
= (f, uk〈`〉 − u

k−1
` )− (ak−1

` ∇uk−1
` ,∇(uk〈`〉 − u

k−1
` ))

(2.2a)
= (au∇u− ak−1

` ∇uk−1
` ,∇(uk〈`〉 − u

k−1
` ))

(2.1a)

≤ ac‖∇(u− uk−1
` )‖‖∇(uk〈`〉 − u

k−1
` )‖.

(3.18)

Hence, dividing (3.18) by ‖∇(uk〈`〉 − u
k−1
` )‖ shows that uk〈`〉 converges to the same limit of uk` in H1

0 (Ω),

i.e. u. Thus, the relation (6.5a) below together with (2.8) show that EkL,` → 0. Hence, since λk` is bounded

(cf. (3.15)), we infer Ek` → 0.

3.6 Data oscillation and quadrature estimators

Following, e.g, [19], let

(ηkosc,`)
2 :=

∑
K∈T`

[
hK

π infK(Ak−1
m,` )

1
2

‖(I −Π`,p)f‖K

]2

, (3.19a)

(η̃kosc,`)
2 :=

∑
K∈T`

[
hK

πa
1
2
m

‖(I −Π`,p)f‖K

]2

, (3.19b)

(ηkosc,q,`)
2 :=

∑
a∈V`

(ηa,kosc,q,`)
2 and (ηkq,`)

2 :=
∑
a∈V`

(ηa,kq,` )2, (3.19c)

where, for all vertices a ∈ V`, using the notations ξk` and γa,k` of (3.2b),

(ηa,kosc,q,`)
2 :=

1

infωa
`
Ak−1

m,`

∑
K∈T a

`

[
hK
π
‖(I −Π`,p)γ

a,k
` ‖K

]2

, (3.19d)

ηa,kq,` := ‖(Ak−1
` )−

1
2 (ψa` (I −ΠRTN

`,p−1)ξk` )‖ωa
`
. (3.19e)

These correspond to the oscillation in the data f and quadrature errors possibly arising from the nonlinear
function a.

3.7 A posteriori estimate of the augmented energy difference

We now present our main result giving an a posteriori estimate based on the augmented energy difference
and estimator defined in (3.16).

Theorem 3.4 (A posteriori estimate of the augmented energy difference). Suppose Assumption 2.1 and
let u be the weak solution of (2.2). Let uk` be its finite element approximation given by (2.6) on mesh T`,
` ≥ 0, and linearization step k ≥ 1, for any iterative linearization satisfying Assumption 2.2. Let uk〈`〉
be given by (3.10), the augmented error Ek` by (3.16a), and the augmented estimator ηk` by (3.16b). We
have

Ek` ≤ ηk` + η̃kosc,` +
λk`
2
ηkosc,`. (3.20)

Moreover, assume that the discrete linearization iterate (uk` )k≥1 converge to u` of (2.5) in H1
0 (Ω). If the

linearization index k satisfies the stopping criterion

η̂kL,` ≤ 2ηkL,` (3.21)
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for the estimators of (3.11b) and (3.13), then

ηk` . Ck` Ek` + λk` (Ck` η
k
q,` + ηkosc,q,`), (3.22)

where the hidden constant only depends on the space dimension d, the mesh shape-regularity κT , and
possibly, when d ≥ 4, the polynomial degree p, with

Ck` := max
a∈V`

(
supωa

`
Ak−1

c,`

infωa
`
Ak−1

m,`

) 1
2


= 1 for the Zarantonello linearization,

≤
(
Ac

Am

) 1
2

in general.
(3.23)

Proof. See Section 6.

Remark 3.5 (Robustness for the Zarantonello linearization). In the Zarantonello linearization case,
since Ck` = 1, we obtain an estimation of the augmented energy difference Ek` by the estimator ηk` (under
small oscillations and quadrature errors) whose quality is independent of the nonlinear function a.

Remark 3.6 (Robustness in the general case). The constant Ck` can be easily calculated in practice,
without knowing the continuous solution u of (2.2). It in particular only relies on patchwise variations
of the linearization matrix Ak−1

` (recall (2.8)). For the Picard and damped Newton iteration cases of

Examples 2.4 and 2.6, in particular, the local ratio of the functions Ak−1
c,` and Ak−1

m,` is smaller than that

of the global constants Ac and Am given in (2.8c), typically bringing Ck` close to 1 as in the Zarantonello
case. This is indeed observed in the numerical experiments of Section 5. Importantly, Ck` allows us to
quantify the quality of the estimates in any situation: whenever it is small, we can affirm robustness a
posteriori.

Remark 3.7 (Criterion (3.21)). The computable criterion (3.21) allows us to determine when k is large
enough to obtain (3.22). Indeed, we have

η̂kL,`
ηkL,`

(3.13),(3.11b)
=

‖(Ak−1
` )−

1
2 (ak`∇uk` + σk` )‖

‖(Ak−1
` )−

1
2 (Ak−1

` ∇(uk` − u
k−1
` ) + ak−1

` ∇uk−1
` + σk` )‖

. (3.24)

With the same reasoning as in Remark 2.3, η̂kL,` and ηkL,` become equivalent for large k when uk` → u` in

H1
0 (Ω). Hence, if ηkL,` (and η̂kL,`) does not vanish, then (3.21) holds for k large enough. Otherwise, ηkN,`

vanishes too (cf. (7.4) below), so that ηk` vanishes. In this particular case, if η̃kosc,` > 0, then ηkosc,q,` does

not vanish, and (3.21) holds for k large enough. Otherwise, if η̃kosc,` = 0, then (3.20) implies Ek` → 0

which is equivalent to uk` → u thanks to Lemma 3.3, and (3.22) is then not necessary.

4 A posteriori estimate of the energy difference

This section gives an a posteriori estimate for the energy difference EkN,` by the estimator ηkN,`, cf. (3.9).

4.1 Equilibrated flux and data oscillation-quadrature estimators

We redefine here the local equilibrated flux given in (3.2b) by setting, for all a ∈ V`,

σa,k` := arg min
w`∈V a

`

∇·w`=Π`,pγ
a,k
`

‖ψa` ΠRTN
`,p−1(ak`∇uk` ) +w`‖ωa

`
,

with γa,k` := ψa` f −∇ψa` · (ak`∇uk` ).

(4.1)

Observe that (3.3)–(3.4) still holds with this definition of σa,k` . We define the data oscillation–quadrature
estimator

(η̃kosc,q,`)
2 :=

∑
a∈V`

1

ess infωa
`
aσ,km,`

(ηa,kosc,q,`)
2, (4.2a)

with for all a ∈ V`,

(η̃a,kosc,q,`)
2 :=

∑
K∈T a

`

[
hK
π
‖(I −Π`,p)γ

a,k
` ‖K

]2

+
∥∥ψa` (I −ΠRTN

`,p−1)(ak`∇uk` )
∥∥2

ωa
`

.

(4.2b)
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4.2 A posteriori estimate of the energy difference

We now present our second main result, giving an a posteriori estimate based on the energy difference
and estimator defined in (3.9). We denote, a.e. in Ω,

aσ,km,` := min

(
ak` , ess inf

r∈(φ′−1(·,|σk` |),|∇uk` |)
φ′′(·, r)

)
(A.3),(A.5)
∈ [am, ac] , (4.3a)

aσ,kc,` := max

(
ak` , ess sup

r∈(φ′−1(·,|σk` |),|∇uk` |)
φ′′(·, r)

)
(A.3),(A.5)
∈ [am, ac] (4.3b)

and

a∇u,km,` := min

(
ak` , ess inf

r∈(|∇u|,|∇uk` |)
φ′′(·, r)

)
(A.3),(A.5)
∈ [am, ac] , (4.4a)

a∇u,kc,` := max

(
ak` , ess sup

r∈(|∇u|,|∇uk` |)
φ′′(·, r)

)
(A.3),(A.5)
∈ [am, ac] . (4.4b)

Theorem 4.1 (A posteriori estimate of the energy difference). Suppose Assumption 2.1 and let u ∈
H1

0 (Ω) be the weak solution of (2.2). Let uk` be its finite element approximation given by (2.6) on mesh
T`, ` ≥ 0, and linearization scheme step k ≥ 1, for any iterative linearization satisfying Assumption 2.2.
Then,

EkN,` ≤ ηkN,` + 2η̃kosc,`, (4.5a)

ηkN,` . C̃k` EkN,` + η̃kosc,q,`, (4.5b)

where the hidden constant only depends on the space dimension d, the mesh shape-regularity κT , and
possibly, when d ≥ 4, the polynomial degree p, with

C̃k` := max
a∈V`

(
ess supωa

`
a∇u,kc,`

ess infωa
`
aσ,km,`

) 1
2

(4.3a),(4.4b)

≤
(
ac

am

) 1
2

. (4.6)

Proof. See Section 7.

Remark 4.2 (Robustness). We can make a similar statement as in Remark 3.6, since the local ratio of

the functions a∇u,kc,` and aσ,km,` on each patch ωa` is sharper than the global constant ratio ac/am. They can

again compensate each other (according to the problem and the mesh), bringing C̃k` close to 1. However,

in contrast to Ck` , the constant C̃k` cannot be fully computed since ∇u appears, and is not purely given
by the linearization method, cf. Remark 3.6.

5 Numerical results

In this section, we present numerical experiments that serve to illustrate Theorems 3.4 and 4.1. Thus,
we will primarily be interested in the effectivity indices

Ik` :=
ηk`
Ek`
, IkN,` :=

ηkN,`
EkN,`

, IkL,` :=
ηkL,`
EkL,`

. (5.1)

In particular, our numerical experiments study the robustness of our estimates with respect to the ratio
ac/am from (2.1) where we consider ac/am = 10i, i ∈ {0, . . . , 7}. We present results for the three
linearization methods of Examples 2.4, 2.5, and 2.6 after the convergence criterion

‖∇(uk−1
` − uk` )‖ < 10−6 (5.2)

is satisfied. This in particular leads to the satisfaction of (3.21).

In addition to V p` as defined in Section 2.2, we also consider a richer discrete space V p̃˜̀ obtained by

refining the mesh T` and using higher order polynomials, ` < ˜̀ and p < p̃. This space serves as an
approximation to H1

0 (Ω), so that we can approximately compute uk〈`〉 defined in (3.10b) at each iteration

k of the linearization method. This only serves here for the evaluation of the error EkL,`; it is not needed
to evaluate our estimators.

For all examples, we use the method of manufactured solutions, i.e. we choose a solution u and con-
struct f through (1.1). The boundary conditions are then enforced by the true solution. All experiments
were conducted using the Gridap.jl finite element software package [1, 41].
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5.1 Smooth solution

We consider a unit square domain Ω = (0, 1)2. We set for all (x, y) ∈ Ω,

u(x, y) := 10x(x− 1)y(y − 1). (5.3)

For the space V p` , we use a polynomial degree p = 1 and a uniform triangular mesh consisting of 8192
elements for a total of 3969 DOFs. We consider three different nonlinear functions a : [0,∞) → (0,∞)
(independent of the spatial coordinate x ∈ Ω) satisfying Assumption 2.1. We first consider the following
example, in which the function a is monotone (decreasing).

Example 5.1 (Mean curvature nonlinearity). The mean curvature nonlinearity (cf. [14]) is defined such
that for all r ∈ [0,∞),

a(r) := am +
ac − am√

1 + r2
, (5.4)

where am, ac ∈ (0,∞) with am ≤ ac. Observe that Assumption 2.1 holds for the mean curvature nonlin-
earity. Indeed, we use Proposition A.2 observing that, for all r ∈ [0,∞),

φ′′(r) = am +
ac − am

(1 + r2)
3
2

∈ [am, ac].

The results for the effectivity indices (5.1) are presented in Figure 2, taking am = 1. We first remark
that they vary only very mildly with respect to the ratio am/ac and that all values are below 1.2. The
robustness is anticipated for Zarantonello based on Remark 3.5. The fact that the ratios are so good for

the Newton and Picard linearizations is the consequence of the fact that the constant Ck` of (3.23) is
quite close to 1.

We now consider the following nonmonotone nonlinear function a similar to the example given in [31,
Section 5.3.2].

Example 5.2 (Exponential nonlinearity). The exponential nonlinearity is defined such that for all r ∈
[0,∞),

a(r) := am + (ac − am)
1− e− 3

2 r
2

1 + 2e−
3
2

, (5.5)

where again am, ac ∈ (0,∞) with am ≤ ac. Observe that Assumption 2.1 holds for the exponential
nonlinearity. Indeed, we again use Proposition A.2 observing that, for all r ∈ [0,∞),

φ′′(r) = am + (ac − am)
1 + (3r2 − 1)e−

3
2 r

2

1 + 2e−
3
2

∈ [am, ac].

The results, again with am = 1, are presented in Figure 3. The Picard linearization is not included
because the solver does not converge for large values of the ratio ac/am. We observe that the results
for the Zarantonello iteration are similar to those of Figure 2. However, the effectivity indices of the
Newton iteration seem to start to deteriorate for large values of the ratio ac/am. We can see that the

reason is that the constant Ck` is becoming very large. This constant is thus here a good indicator that
the robustness may not be obtained when it is large. For this example, we also present, in Figure 4, the

component errors λk`EkL,` and EkN,`, as well as the factor λk` . We observe that the quantities λk`EkL,` and

EkN,` stay very close, independently of the ratio ac/am, which was our design in (3.14). Remark, though,

that λk` ' 1 for Newton, whereas λk` ' (ac/am)
1
2 for Zarantonello.

5.2 Singular solution

We consider the L-shaped domain Ω = (−1, 1)2 \ ([0, 1) ×(−1, 0]) and the singular solution u in polar
coordinates (ρ, θ) ∈ [0,∞)× [0, 2π]

u(ρ, θ) = ρα sin(αθ) (5.6)

with α := 2
3 , so that u ∈ H1+ 2

3−ε(Ω) for all ε > 0. We consider the exponential nonlinearity of Example 5.2
again with am = 1; this choice of solution ensures that the right-hand side f belongs to L2(Ω) despite
the singularity in the norm of the gradient for the L-shaped solution (5.6).
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Figure 2: [Mean curvature nonlinearity (5.4), smooth solution (5.3), unit square domain, 3969 DOFs]

Effectivity indices for the components and total quantities and the computable constant Ck` from (3.23)
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Figure 3: [Exponential nonlinearity (5.5), smooth solution (5.3), unit square domain, 3969 DOFs] Effec-

tivity indices for the components and total quantities and the computable constant Ck` from (3.23)
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Figure 4: [Exponential nonlinearity (5.5), smooth solution (5.3), unit square domain, 3969 DOFs] Com-

ponents λk`EkL,` and EkN,` from (3.16a) together with the weight λk` from (3.14).
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(a) 2945 DOFs (b) 2417 DOFs

Figure 5: Uniformly (left) and adaptively (right) refined meshes for the L-shaped domain with the singular
solution (5.6). The adaptive mesh corresponds to the 28th iteration of Algorithm 5.3.
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Figure 6: [Exponential nonlinearity (5.5), singular solution (5.6), L-shaped domain] Effectivity indices

for the components and total quantities and the computable constant Ck` from (3.23), for the uniform
mesh (left) and the adaptive mesh (right) shown in Figure 5.

We consider two different meshes to analyze the results, see Figure 5. One mesh is obtained by taking
an initial uniform triangulation of Ω, while the other one is adaptive following Algorithm 5.3.

The results are present in Figure 6. The Newton iteration presents, for both meshes, effectivity indices
close to 1, which stabilize for large enough values of the ratio am/ac. Moreover, the effectivity indices
corresponding to the adaptive meshes are closer to 1 than those corresponding to the uniform meshes.

Since Ck` takes small values below 2, we can claim robustness a posteriori, see Remark 3.6.

5.3 Convergence on adaptively refined meshes

Due to the singularity in the solution of the previous section, it is of interest to consider a local adaptive
mesh refinement strategy. We need to compute the contribution of the estimator ηkN,` to each element
which is nonnegative, as discussed in, e.g., [4, Proposition 4.9]. In order to do that, we rewrite the
estimator ηkN,` of (3.9b) as

ηkN,`
(7.4)
=

(
2

∫
Ω

(
φ∗(·, |σk` |) + φ(·, |∇uk` |) + σk` ·∇uk`

)) 1
2

=

(∑
K∈T`

(ηkN,K)2

) 1
2

, (5.7a)

(ηkN,K)2 :=

∫
K

2
(
φ∗(·, |σk` |) + φ(·, |∇uk` |) + σk` ·∇uk`

)
, K ∈ T`. (5.7b)

Here, recalling the generalized Young inequality, cf. [32],

φ(·, |x|) + φ∗(·, |y|) + x · y ≥ 0 ∀x,y ∈ Rd, (5.8)

it follows that for all K ∈ T`, ηkN,K ≥ 0. We then use the standard newest vertex bisection algorithm, see
[9] and the references therein, as follows.
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Figure 7: [Exponential nonlinearity (5.5), singular solution (5.6), L-shaped domain, uniform vs adaptive

mesh refinement] Convergence rates of EkN,` and ηkN,` for uniform and adaptive mesh refinement for ac/am

equal to 103 (left) and 106 (right).

Algorithm 5.3 (Adaptive refinement). Let εSTOP and θ ∈ (0, 1) be parameters, and let T0 be a conform-
ing initial triangulation of Ω. Let u0

0 ∈ V 1
0 be an initial linearization guess. For ` ≥ 0:

1. Solve: Starting from u0
` , solve the linearized problems (2.6) until the convergence criterion (5.2) is

satisfied.

2. Estimate: Compute the elementwise estimators (ηkN,K)K∈T` of (5.7b).

If ηkN,` < εSTOP, then stop.

3. Mark: Choose a set M` ⊂ T` with minimal cardinality such that∑
K∈M`

(ηkN,K)2 ≥ θ2
∑
K∈T`

(ηkN,K)2. (5.9)

4. Refine: Perform the newest vertex bisection. Set ` := `+ 1, u0
` := uk`−1, and go to 1.

The results of the refinement study are displayed in Figure 7, for the exponential nonlinearity (5.5)
and the singular solution (5.6). We consider two values of the parameter ac/am, namely 103 and 106. We
note that for both values of the ratio, the asymptotic rates for the estimator and error agree with the
theoretical optimal rate of (DOFs)1/2 for the adaptive algorithm; we observe no distinguishable difference
in this graphic representation between ac/am = 103 and 106.

We also made an analogous study on the augmented error Ek` and estimator ηk` , with the same strategy

of refinement, using the local version ηkK := ηkN,K + λk` η
k
L,K , for all K ∈ T`, of the estimator ηk` . The

results are displayed in Figure 8. We observe a similar behavior of the asymptotic rates as in Figure 7.
In conclusion, the adaptive mesh refinement is more efficient than the uniform mesh refinement since

it requires a smaller number of DOFs for the same precision. The behavior seems to be independent of
the strength of the nonlinearity ac/am.

6 Proof of Theorem 3.4

For all vertices a ∈ V`, we introduce the space H1
∗ (ω

a
` ) such that

H1
∗ (ω

a
` ) :=

{
{ϕ ∈ H1(ωa` ) : (ϕ, 1)ωa

`
= 0} if a ∈ V int

` ,

{ϕ ∈ H1(ωa` ) : ϕ|∂ωa
`
∩{ψa

`
>0} = 0} if a /∈ V int

` ,
(6.1)

where V int
` is the set of the vertices of T` lying inside Ω. We will need:

Lemma 6.1 (Patchwise flux equilibration stability). Let a ∈ V` and let τa` ∈ RTNp(T a` ) and ga` ∈
Pp(T a` ) be such that (ga` , 1)ωa

`
= 0 if a ∈ V int

` . Then,

min
va
` ∈V

a
`

∇·va
` =ga`

‖va` + τa` ‖ωa
`
. sup

ϕ∈H1
∗(ω

a
` )

‖∇ϕ‖ωa
`

=1

[
(ga` , ϕ)ωa

`
− (τa` ,∇ϕ)ωa

`

]
,

(6.2)
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Figure 8: [Exponential nonlinearity (5.5), singular solution (5.6), L-shaped domain, uniform vs adaptive

mesh refinement] Convergence rates of Ek` and ηk` for uniform and adaptive mesh refinement for ac/am

equal to 103 (left) and 106 (right).

where the hidden constant only depends on the space dimension d, the mesh shape-regularity κT , and
possibly, when d ≥ 4, the polynomial degree p.

Proof. See [21, Corollary 3.3] or [19, Lemma 3.2].

We will use next the fact that, for all v ∈ L2(Ω) and W ∈ [L2(Ω)]d×d,∑
a∈V`

‖v‖2ωa
`

=
∑
K∈T`

∑
a∈VK

‖v‖2K = (d+ 1)
∑
K∈T`

‖v‖2K = (d+ 1)‖v‖2, (6.3)

since every simplex K ∈ T` has (d+ 1) vertices, collected in the set VK , and

‖v +Wσk` ‖2 =
∑
K∈T`

‖v +Wσk` ‖2K
(3.1),(3.2a)

=
∑
K∈T`

∥∥∥ ∑
a∈VK

(ψa` v +Wσa,k` )
∥∥∥2

K

≤ (d+ 1)
∑
K∈T`

∑
a∈VK

‖ψa` v +Wσa,k` ‖
2
K = (d+ 1)

∑
a∈V`

‖ψa` v +Wσa,k` ‖
2
ωa
`
.

(6.4)

Recalling the definition (2.7) of J k−1
` , we can rewrite EkL,` given by (3.11a) as

(EkL,`)2 (2.7)
=
∥∥∥(Ak−1

` )
1
2∇uk`

∥∥∥2

−
∥∥∥(Ak−1

` )
1
2∇uk〈`〉

∥∥∥2

− 2(bk−1
` ,∇(uk` − uk〈`〉))− 2(f, uk` − uk〈`〉)

(3.10a)
=

∥∥∥(Ak−1
` )

1
2∇uk`

∥∥∥2

−
∥∥∥(Ak−1

` )
1
2∇uk〈`〉

∥∥∥2

− 2(Ak−1
` ∇uk〈`〉,∇(uk` − uk〈`〉))

= ‖(Ak−1
` )

1
2∇(uk` − uk〈`〉)‖

2 (6.3)
=

1

d+ 1

∑
a∈V`

(Ea,kL,` )2,

(6.5a)

where, for all a ∈ V`,
Ea,kL,` := ‖(Ak−1

` )
1
2∇(uk` − uk〈`〉)‖ωa

`
. (6.5b)

Similarly, using the definition (3.8) of J ∗,k−1
` , we can upper-bound ηkL,` of (3.11b),

(ηkL,`)
2 (3.8)

=
∥∥∥(Ak−1

` )
1
2∇uk`

∥∥∥2

+
∥∥∥(Ak−1

` )−
1
2 (σk` − bk−1

` )
∥∥∥2

− 2(bk−1
` ,∇uk` )− 2(f, uk` )

= ‖(Ak−1
` )−

1
2 (Ak−1

` ∇uk` − bk−1
` + σk` )‖2 − 2(σk` ,∇uk` )− 2(f, uk` )

(3.4)
= ‖(Ak−1

` )−
1
2 (Ak−1

` ∇uk` − bk−1
` + σk` )‖2

(6.4)

≤ (d+ 1)
∑
a∈V`

(ηa,kL,` )2,

(6.6a)

where, for all a ∈ V`,

ηa,kL,` := ‖(Ak−1
` )−

1
2 (ψa` (Ak−1

` ∇uk` − bk−1
` ) + σa,k` )‖ωa

`
. (6.6b)

In the following, for any x, y ∈ [0,∞), we use the notation x . y when x ≤ Cy with C ≥ 0 only
depending on the space dimension d, the mesh shape-regularity κT , and possibly, when d ≥ 4, the
polynomial degree p.
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Proof of Theorem 3.4. Let k ≥ 1. Proceeding as in [19, 20], we have EkL,` ≤ ηkL,` + ηkosc,`. Furthermore, as
in [2, 39, 43] but including data oscillations, we have

(EkN,`)2 ≤ (ηkN,`)
2 + 2(f −∇·σk` , u− uk` )

(3.3)

≤ (ηkN,`)
2 + 2

(∑
K∈T`

[
hK
π
‖f −Π`,pf‖K

]2
) 1

2

‖∇(u− uk` )‖

(3.17),(3.19a)

≤ (ηkN,`)
2 + 2η̃kosc,`EkN,`,

(6.7)

which gives by the quadratic formula,

EkN,` ≤
1

2

(
2η̃kosc,` + (4(η̃kosc,`)

2 + 4(ηkN,`)
2)

1
2

)
≤ ηkN,` + 2η̃kosc,`. (6.8)

Hence, we obtain (3.20) by writing

Ek`
(3.16a)

=
1

2
(EkN,` + λk`EkL,`)

(6.8)

≤ 1

2
(ηkN,` + 2η̃kosc,` + λk` (ηkL,` + ηkosc,`))

(3.16b)
= ηk` + η̃kosc,` +

λk`
2
ηkosc,`.

(6.9)

It remains to prove (3.22). Recalling (3.2b), we define for all vertices a ∈ V`,

σ̃a,k` := arg min
w`∈V a

`

∇·w`=Π`,pγ
a,k
`

‖ψa` ΠRTN
`,p−1ξ

k
` +w`‖ωa

`
. (6.10)

We next use Lemma 6.1 (applied with τa` = ψa` ΠRTN
`,p−1ξ

k
` ∈ RTNp(T a` ) and ga` = Π`,pγ

a,k
` ∈ Pp(T a` )

with (ga` , 1)ωa
`

= 0 if a ∈ V int
` ) to infer

ηa,kL,`

(3.19e)

≤ ‖(Ak−1
` )−

1
2 (ψa` ΠRTN

`,p−1ξ
k
` + σa,k` )‖ωa

`
+ ηa,kq,`

(3.2b),(2.8b)

≤ 1

(infωa
`
Ak−1

m,` )
1
2

‖ψa` ΠRTN
`,p−1ξ

k
` + σ̃a,k` ‖ωa

`
+ ηa,kq,`

(6.2),(3.23)

.
1

(infωa
`
Ak−1

m,` )
1
2

sup
ϕ∈H1

∗(ω
a
` )

‖∇ϕ‖ωa
`

=1

[
(f, ψa` ϕ)ωa

`
− (ξk` ,∇(ψa` ϕ))ωa

`

]
+ (1 + Ck` )ηa,kq,` + ηa,kosc,q,`

(3.10a),(6.5b)

. Ck` (Ea,kL,` + ηa,kq,` ) + ηa,kosc,q,`.

(6.11)

Here, we have used in the third line the fact that ψa` ϕ ∈ H1
0 (ωa` ) together with ∇(ψa` ϕ) = ψa`∇ϕ+ϕ∇ψa`

for ϕ ∈ H1
∗ (ω

a
` ), and concluded with ‖∇(ψa` ϕ)‖ωa

`
. ‖∇ϕ‖ωa

`
as in [8, 19]. Therefore, we obtain (3.22)

by writing

ηk`
(3.14),(3.16b)

=
1

2

(
η̂kL,`
ηkL,`

+ 1

)
λk` η

k
L,`

(3.21)

≤ 3

2
λk` η

k
L,`

(6.6)

. λk`

( ∑
a∈V`

(ηa,kL,` )2

) 1
2

(6.11)

. λk`

[
Ck`

( ∑
a∈V`

(Ea,kL,` )2

) 1
2

+ Ck`

( ∑
a∈V`

(ηa,kq,` )2

) 1
2

+

( ∑
a∈V`

(ηa,kosc,q,`)
2

) 1
2

]
(6.5),(3.19)

. λk`

[
1

2
Ck` EkL,` + Ck` η

k
q,` + ηkosc,q,`

]
(3.16a)

≤ Ck` Ek` + λk` (Ck` η
k
q,` + ηkosc,q,`),

(6.12)

where we used the triangle inequality on `2(R|V`|). Finally, we get Ck` = 1 for the Zarantonello iteration
since Ak−1

m,` = Ak−1
c,` = γ in Ω in this case.
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7 Proof of Theorem 4.1

In addition to (4.3)–(4.4), let

au,km,` := min

(
au, ess inf

r∈(|∇u|,|∇uk` |)
φ′′(·, r)

)
(A.3),(A.5)
∈ [am, ac] , (7.1a)

au,kc,` := max

(
au, ess sup

r∈(|∇u|,|∇uk` |)
φ′′(·, r)

)
(A.3),(A.5)
∈ [am, ac] . (7.1b)

We first state the following result.

Lemma 7.1 (Local bounds for the energy difference and estimator). We have

‖(au,km,`)
1
2 (∇uk` −∇u)‖2 ≤ (EkN,`)2 ≤ ‖(au,kc,` )

1
2 (∇uk` −∇u)‖2, (7.2a)

‖(aσ,kc,` )−
1
2 (ak`∇uk` + σk` )‖2 ≤ (ηkN,`)

2 ≤ ‖(aσ,km,`)
− 1

2 (ak`∇uk` + σk` )‖2, (7.2b)

‖(a∇u,kc,` )−
1
2 (ak`∇uk` − au∇u)‖2 ≤ (EkN,`)2 ≤ 2‖(a∇u,km,` )−

1
2 (ak`∇uk` − au∇u)‖2. (7.2c)

Proof. Observing that by integration by parts (IBP), ∂
∂r ((|σk` |−r)φ∗

′(·, r)) = (|σk` |−r)φ∗
′′(·, r)−φ∗′(·, r),

we obtain, a.e. in Ω,

φ∗(·, |σk` |)− φ∗(·, ak` |∇uk` |) =

∫ |σk` |
ak` |∇uk` |

φ∗′(·, r) dr

(IBP)
=

∫ |σk` |
ak` |∇uk` |

(|σk` | − r)φ∗
′′(·, r) dr −

[
(|σk` | − r)φ∗

′(·, r)
]|σk` |
ak` |∇uk` |

(3.7)
=

∫ |σk` |
ak` |∇uk` |

|σk` | − r
φ′′(·, φ′−1(·, r))

dr + (|σk` | − ak` |∇uk` |)|∇uk` |,

(7.3)

where we used the fact that φ′
−1

(·, ak` |∇uk` |) = φ′
−1

(·, φ′(·, |∇uk` |)) = |∇uk` | thanks to (A.2). Therefore,
recalling the definitions (2.3) of J and (3.5) of J ∗, we obtain the right-hand side of (7.2b) by writing

(ηkN,`)
2 (3.9b)

= 2

∫
Ω

(
φ∗(·, |σk` |) + φ(·, |∇uk` |)

)
− (f, uk` )

(3.4)
= 2

∫
Ω

(
φ∗(·, |σk` |) + φ(·, |∇uk` |) + σk` ·∇uk`

)
(3.6b)

= 2

∫
Ω

(
φ∗(·, |σk` |)− φ∗(·, ak` |∇uk` |) + ak` |∇uk` |2 + σk` ·∇uk`

)
(7.3)
= 2

∫
Ω

[∫ |σk` |
ak` |∇uk` |

|σk` | − r
φ′′(·, φ′−1(·, r))

dr +
1

ak`
(|σk` ||ak`∇uk` |+ σk` · (ak`∇uk` ))

]
(4.3a)

≤
∫

Ω

2

aσ,km,`

([
1

2
(|σk` | − r)2

]|σk` |
ak` |∇uk` |

+ |σk` ||ak`∇uk` |+ σk` · (ak`∇uk` )

)

=

∫
Ω

1

aσ,km,`

[
(|σk` | − ak` |∇uk` |)2 + 2(|σk` ||ak`∇uk` |+ σk` · (ak`∇uk` ))

]
(A.4a)

=

∫
Ω

1

aσ,km,`

|ak`∇uk` + σk` |2,

(7.4)

where, in using (3.6b), we have set s = ak` |∇uk` |, and where we used (4.3a) noticing that |σk` ||ak`∇uk` |+
σk` · (ak`∇uk` ) ≥ 0 thanks to the Cauchy–Schwarz inequality, together with the fact that |σk` | − r is of the
same sign as |σk` | − ak` |∇uk` | for all r ∈ (ak` |∇uk` |, |σk` |). The left-hand side of (7.2b) is obtained with the
same reasoning.

Now, observing that ∂
∂r ((|∇uk` | − r)φ′(·, r)) = (|∇uk` | − r)φ′′(·, r) − φ′(·, r) by integration by parts
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(IBP), we get

(EkN,`)2 (3.9a),(2.3)
= 2

∫
Ω

(φ(·, |∇uk` |)− φ(·, |∇u|))− 2(f, uk` − u)

(2.2a)
= 2

∫
Ω

∫ |∇uk` |

|∇u|
φ′(·, r) dr − 2(au∇u,∇(uk` − u))

(IBP)
= 2

∫
Ω

(∫ |∇uk` |

|∇u|
(|∇uk` | − r)φ′′(·, r) dr −

[
(|∇uk` | − r)φ′(·, r)

]|∇uk` |

|∇u|

)
− 2(au∇u,∇(uk` − u))

(A.2)
= 2

∫
Ω

(∫ |∇uk` |

|∇u|
(|∇uk` | − r)φ′′(·, r) dr + au(|∇uk` ||∇u| −∇uk` ·∇u)

)
.

(7.5)

From there, with the same reasoning as for (7.2b), we obtain the right-hand side of (7.2a), by writing

(EkN,`)2
(7.5),(7.1)

≤
∫

Ω

au,kc,`

(
(|∇uk` | − |∇u|)2 + 2(|∇uk` ||∇u| −∇uk` ·∇u)

)
(A.4a)

=

∫
Ω

au,kc,` |∇uk` −∇u|2.
(7.6)

The left-hand side of (7.2a) is obtained with the same reasoning. Moreover, since φ′ is nondecreasing and
|∇uk` | − r is of the same sign as |∇uk` | − |∇u| for all r ∈ (|∇u|, |∇uk` |), using the mean value inequality,
we have a.e. in Ω,∫ |∇uk` |

|∇u|
(|∇uk` | − r)φ′′(·, r) dr ≥

∫ |∇uk` |

|∇u|

φ′(·, |∇uk` |)− φ′(·, r)
ess sup

s∈(r,|∇uk` |)
φ′′(·, s)

φ′′(·, r) dr

(4.4b)

≥ 1

a∇u,kc,`

∫ |∇uk` |

|∇u|
(φ′(·, |∇uk` |)− φ′(·, r))φ′′(·, r) dr

=
1

a∇u,kc,`

[
φ′(·, |∇uk` |)φ′(·, r)−

1

2
φ′(·, r)2

]|∇uk` |

|∇u|

(A.2)
=

1

a∇u,kc,`

(
1

2

(
|ak`∇uk` |2 + |au∇u|2

)
− ak`au|∇uk` ||∇u|

)
.

(7.7)

Thus, observing that |∇uk` ||∇u| −∇uk` ·∇u ≥ 0 thanks to the Cauchy–Schwarz inequality, we obtain
the left-hand side of (7.2c) by writing

(EkN,`)2
(7.5),(7.7),(4.4b)

≥
∫

Ω

2

a∇u,kc,`

(
1

2

(
|ak`∇uk` |2 + |au∇u|2

)
− (ak`∇uk` ) · (au∇u)

)
=

∫
Ω

1

a∇u,kc,`

|ak`∇uk` − au∇u|2.
(7.8)

Finally, since |∇uk` | − r is of the same sign as |∇uk` | − |∇u| for all r ∈ (|∇u|, |∇uk` |), we have∫ |∇uk` |

|∇u|
(|∇uk` | − r)φ′′(·, r) dr ≤ (|∇uk` | − |∇u|)

∫ |∇uk` |

|∇u|
φ′′(·, r) dr

(4.4a)

≤ 1

a∇u,km,`

(∫ |∇uk` |

|∇u|
φ′′(·, r) dr

)2
(A.2)
=

1

a∇u,km,`

(
|ak`∇uk` | − |au∇u|

)2
.

(7.9)

Hence, observing again that |∇uk` ||∇u| −∇uk` ·∇u ≥ 0 thanks to the Cauchy–Schwarz inequality, we
obtain the right-hand side of (7.2c) by writing

(EkN,`)2
(7.5),(7.9),(4.4a)

≤
∫

Ω

2

a∇u,km,`

((
|ak`∇uk` | − |au∇u|

)2
+ 2(|ak`∇uk` ||au∇u|

− (ak`∇uk` ) · (au∇u))

)
(A.4a)

=

∫
Ω

2

a∇u,km,`

|ak`∇uk` − au∇u|2.
(7.10)
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Proof of Theorem 4.1. Inequality (4.5a) is already contained in the proof of Theorem 3.4. It remains
to prove (4.5b). For all vertices a ∈ V`, using Lemma 6.1 (applied with τa` = ψa` ΠRTN

`,p−1 (ak`∇uk` ) ∈
RTNp(T a` ) and ga` = Π`,pγ

a,k
` ∈ Pp(T a` ) with (ga` , 1)ωa

`
= 0 if a ∈ V int

` ) together with the fact that

ψa` ϕ ∈ H1
0 (ωa` ) and ∇(ψa` ϕ) = ψa`∇ϕ+ ϕ∇ψa` , we get

‖ψa` ak`∇uk` + σa,k` ‖ωa
`
≤ ‖ψa` ΠRTN

`,p−1(ak`∇uk` ) + σa,k` ‖ωa
`

+ ‖ψa` (ak`∇uk` −ΠRTN
`,p−1(ak`∇uk` ))‖ωa

`

(6.2),(4.2b)

. sup
ϕ∈H1

∗(ω
a
` )

‖∇ϕ‖ωa
`

=1

[
(f, ψa` ϕ)ωa

`
− (ak`∇uk` ,∇(ψa` ϕ))ωa

`

]
+ η̃a,kosc,q,`

(2.2a)
= sup

ϕ∈H1
∗(ω

a
` )

‖∇ϕ‖ωa
`

=1

(au∇u− ak`∇uk` ,∇(ψa` ϕ))ωa
`

+ η̃a,kosc,q,`

. ‖ak`∇uk` − au∇u‖ωa
`

+ η̃a,kosc,q,`,

(7.11)

where we have used ‖∇(ψa` ϕ)‖ωa
`
. ‖∇ϕ‖ωa

`
as in [8, 19]. In conclusion, we obtain

ηkN,`

(7.2b),(6.4)

.

(∑
a∈V`

1

ess infωa
`
aσ,km,`

‖ψa` ak`∇uk` + σa,k` ‖
2
ωa
`

) 1
2

(7.11)

.

(∑
a∈V`

1

ess infωa
`
aσ,km,`

(
‖ak`∇uk` − au∇u‖ωa

`
+ η̃a,kosc,q,`

)2
) 1

2

(4.6),(4.2a)

≤ C̃k`

(∑
a∈V`

1

ess supωa
`
a∇u,kc,`

‖ak`∇uk` − au∇u‖2ωa
`

) 1
2

+ η̃kosc,q,`

(6.3),(7.2c)

. C̃k` EkN,` + η̃kosc,q,`,

(7.12)

where we have used the triangle inequality on `2(R|V`|).

A Equivalent assumptions on the nonlinear function

In this section, we show some useful properties of the nonlinear function a. In particular, we show that
inequalities (2.1) admit equivalent versions with the function φ defined in (2.4), preserving the same
constants ac and am.

Proposition A.1 (Equivalent assumption on φ′). Inequalities (2.1) are equivalent to the following ones:
a.e. in Ω, for all r, s ∈ [0,∞),

|φ′(·, r)− φ′(·, s)| ≤ ac|r − s|, (A.1a)

(φ′(·, r)− φ′(·, s))(r − s) ≥ am(r − s)2. (A.1b)

Proof. Differentiating (2.4) gives, a.e. in Ω and for all r ∈ [0,∞),

φ′(·, r) = a(·, r)r. (A.2)

Thus, assuming and using (2.1) (with x = (r, 0, . . . , 0)t and y = (s, 0, . . . , 0)t) together with (A.2) yields
(A.1).

Reciprocally, assuming (A.1), we have in particular (with s = 0) together with (A.2) that, a.e. in Ω
and for all r ∈ [0,∞),

am ≤ a(·, r) ≤ ac. (A.3)
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We conclude by using the fact that for all x,y ∈ Rd, and all α, β ∈ [0,∞), we have

|x− y|2 = (|x| − |y|)2 + 2(|x||y| − x · y), (A.4a)

(αx− βy) · (x− y) = (α|x| − β|y|)(|x| − |y|) + (α+ β)(|x||y| − x · y), (A.4b)

to obtain, a.e. in Ω and for all x,y ∈ Rd,

|a(·, |x|)x− a(·, |y|)y|2

(A.4a)
= (a(·, |x|)|x| − a(·, |y|)|y|)2 + 2a(·, |x|)a(·, |y|)(|x||y| − x · y)

(A.2)
= (φ′(·, |x|)− φ′(·, |y|))2 + 2a(·, |x|)a(·, |y|)(|x||y| − x · y)

(A.1),(A.3)

≤ a2
c [(|x| − |y|)2 + 2(|x||y| − x · y)] = a2

c |x− y|2

and
(a(·,|x|)x− a(·, |y|)y) · (x− y)

(A.4b)
= (a(·, |x|)|x| − a(·, |y|)|y|)(|x| − |y|) + (a(·, |x|) + a(·, |y|))(|x||y| − x · y)

(A.2)
= (φ′(·, |x|)− φ′(·, |y|))(|x| − |y|) + (a(·, |x|) + a(·, |y|))(|x||y| − x · y)

(A.1),(A.3)

≥ am[(|x| − |y|)2 + 2(|x||y| − x · y)] = am|x− y|2,
hence (2.1).

Proposition A.2 (Equivalent assumption on φ′′). Inequalities (A.1) are equivalent to the facts that φ′

is weakly differentiable and, a.e. in Ω and for a.e. r ∈ [0,∞),

am ≤ φ′′(·, r) ≤ ac. (A.5)

Proof. Assuming (A.1), since φ′ is Lipschitz continuous thanks to (A.1a), φ′ is weakly differentiable.
Furthermore, defining the difference quotient, a.e. in Ω and for all r, s ∈ [0,∞), r 6= s, by

τ(·, r, s) :=
φ′(·, r)− φ′(·, s)

r − s
,

inequalities (A.1) are equivalent to the fact that, a.e. in Ω and for all r, s ∈ [0,∞), r 6= s,

am ≤ τ(·, r, s) ≤ ac. (A.6)

Hence, letting s tend to r in (A.6) gives (A.5).
On the other hand, assuming and integrating (A.5) gives, a.e. in Ω and for a.e. r, s ∈ [0,∞) with

r > s,

am(r − s) ≤ φ′(·, r)− φ′(·, s) ≤ ac(r − s), (A.7)

and dividing (A.7) by r − s gives (A.6), which becomes also true for r < s by symmetry.

Remark A.3 (Convexity). Under Assumption 2.1, inequality (A.1b) implies that φ′ is nondecreasing,
i.e., φ is convex. Moreover, from (A.2), we have, a.e. in Ω and for a.e. r ∈ [0,∞),

φ′′(·, r) = a(·, r) + a′(·, r)r. (A.8)

B Spectral properties of the tensor product

Lemma B.1 (Spectral properties of the tensor product). The following holds:

Spec(αId + βA) = {α}+ β Spec(A) ∀α, β ∈ R, ∀A ∈ Rd×d, (B.1a)

Spec(ξ ⊗ ξ) = {0, |ξ|2} ∀ξ ∈ Rd, d > 1. (B.1b)

Proof. We refer to [13] for details about the tools used in the following. Denoting PA the characteristic
polynomial of A, we obtain (B.1a) by writing for all λ ∈ R,

PαId+βA(α+ βλ) = det((α+ βλ)Id − (αId + βA)) = βd det(λId −A) = βdPA(λ).

Moving to (B.1b), since (ξ ⊗ ξ)τ = (ξ · τ )ξ for all τ ∈ Rd, dim(Ker(ξ ⊗ ξ)) = dim(Ker(〈ξ, ·〉)) ≥ d− 1,
i.e. 0 ∈ Spec(ξ⊗ ξ) with a multiplicity of at least d− 1. Thus, the sum of the eigenvalues of ξ⊗ ξ, being
tr(ξ ⊗ ξ) = |ξ|2, is in Spec(ξ ⊗ ξ). Hence, 0 and |ξ|2 are the only elements of Spec(ξ ⊗ ξ), and we infer
(B.1b).
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