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Fields of Definition of
Components of Hurwitz Spaces

Béranger Seguin∗

Abstract. For a fixed finite group G, we study the fields of definition of geometrically irre-
ducible components of Hurwitz moduli schemes of marked branched G-covers of the projective
line. The main focus is on determining whether components obtained by “gluing” two other
components, both defined over a number field K, are also defined over K. The article presents
a list of situations in which a positive answer is obtained. As an application, when G is a
semi-direct product of symmetric groups or the Mathieu group M23, components defined over
Q of small dimension (6 and 4, respectively) are shown to exist.
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1. Introduction

Let G be a finite group and K be a field of characteristic zero. Hurwitz schemes are moduli spaces
of branched G-covers of P1. Their K-points are particularly significant for number theory since they
are tightly related to the inverse Galois problem for G over K(t); see [RW06, Fri77, FV91].

When K is algebraically closed, Riemann’s existence theorem implies that the theory reduces to
topology. Specifically, C-points of Hurwitz schemes correspond to isomorphism classes of topological
G-covers of punctured Riemann spheres. A classical topological construction lets one “glue” two
marked covers – one with r1 branch points and one with r2 branch points – into a single marked
cover with r1 + r2 branch points. This gluing operation plays a central role in [EVW16].

When K is a discrete complete valued field, Harbater defined an analogous patching operation to
construct covers defined over K with a specified monodromy group by patching together covers with
smaller monodromy groups; see [Har03, HV96, Liu95]. This construction leads to a positive answer
to the inverse Galois problem over K(T ).

For number theorists, the most interesting case is that of number fields. However, no gluing
or patching operation is known in this case, although it would be a game-changing tool for inverse
Galois theory. In this article, we focus not on G-covers themselves but on geometrically irreducible
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components of Hurwitz moduli schemes. Identifying components defined over Q is a crucial first step
in finding rational points on these schemes. For this reason, the question of the fields of definition
of these components is a well-studied topic; see [Cau12, DE06, EVW12, FV91].

Assume K is a number field. The gluing operation over K induces a monoid structure on the set
Comp(G) of geometrically irreducible components of Hurwitz moduli schemes of marked branched
G-covers of P1. In [Seg22], we studied this product operation and the corresponding monoid ring,
introduced in [EVW16] under the name ring of components. To understand the arithmetic properties
of the topological gluing operation, a prominent question is the following:

Question 1.1. Let x, y ∈ Comp(G) be components defined over K. Is the component xy, obtained
by gluing x and y, defined over K?

Question 1.1 and related problems are the main focus of this article. Our main result is that the
answer is positive in situations (i), (ii) and (iii) below:

Theorem 1.2. Let x, y ∈ Comp(G) be components defined over K. Denote by H1 and H2 the
monodromy groups of the covers contained in x and y respectively, and let H = ⟨H1, H2⟩. Then:

(i) If H1H2 = H, then the glued component xy is defined over K.

(ii) If every conjugacy class of H that is a local monodromy class of the covers in the component
xy occurs at at least M branch points (for some constant M which depends only on the group
G), then xy is defined over K.

(iii) There are elements γ, γ′ ∈ H satisfying
〈
Hγ

1 , H
γ′

2

〉
= H such that the component xγyγ′, ob-

tained by letting γ, γ′ act on x, y and by gluing the resulting components, is defined over K.

In Section 2, we establish the notation and introduce the key objects. The three parts of Theo-
rem 1.2 are then proved in three corresponding sections:

• Theorem 1.2 (i) (which is Theorem 3.3 (iii)) is proved using techniques introduced by [Cau12]
and lemmas about the braid group action on tuples. In Section 3, we present this result,
including a generalized version, and propose applications. Cases of interest include the situation
where H1 or H2 is normal in H, notably if one is included in the other. A consequence of our
ideas is presented in Subsection 3.4: we show that the Galois action on components is entirely
determined by the Galois action on components with few branch points; precise statements are
given in Propositions 3.8 and 3.9. An application of Theorem 1.2 (i) is given in Example 3.6:
if G is a semi-direct product of symmetric groups, there is a component defined over Q of
connected G-covers with six branch points. This improves on a similar example of Cau where
twelve branch points were used.

• Theorem 1.2 (ii) (which is Theorem 4.7 (iii)) is proved using the lifting invariant, defined in
[EVW12, Woo21] after ideas of Fried [Fri95], and a version of the Conway-Parker theorem
found in these articles. In Section 4, we review this invariant and use it to determine the fields
of definition of glued components.

• Theorem 1.2 (iii) (which is Theorem 5.4) is based on patching results over complete valued
fields. We follow the algebraic patching approach from [HV96]. By patching covers over
infinitely many complete valued fields, we obtain a result concerning the fields of definition of
components in the non-complete case. Section 5 is concerned with the proof of this theorem.
Application are given in Examples 5.5 and 5.6: when G is the Mathieu group M23 or the
transitive group PSL2(16)⋊Z/2Z, there is a component defined over Q of connected G-covers
with only four branch points.
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We do not know if the answer to Question 1.1 is always positive. Finding counterexamples
is difficult because there are few tools available to prove that components are not defined over
Q. For instance, the lifting invariant cannot be used to find a counterexample, as established by
Theorem 4.10. Indeed, the lifting invariant of a product of components defined over K is invariant
under the Galois action: from the point of view of this invariant, products of components defined
over K are indistinguishable from components defined over K.

2. Preliminaries

In this section, we define key objects and review classical results concerning G-covers, their moduli
spaces, their components and the Galois action. In Subsection 2.1, notational and terminological
choices are presented. In Subsection 2.2, we introduce the main objects of this article, notably
G-covers and Hurwitz spaces, both topological and algebraic. Then, a description of the Galois
action of ΓK on G-covers and their components is given in Subsection 2.3 and used to define fields
of definitions of G-covers and of components of Hurwitz spaces. Finally, in Subsection 2.4, we give
various versions of the branch cycle lemma, a fundamental result concerning the Galois action on
covers and components.

2.1. Notation

We use the following notation and terminology throughout the article. In what follows, G is a finite
group and K is a number field. Number fields are always equipped with an embedding into Q.
We denote by ΓK the absolute Galois group Gal(Q | K). The cyclotomic character is the group
morphism χ : ΓK → Ẑ× determined by the Galois action on roots of unity: if ζ ∈ Q is an n-th root
of unity and σ ∈ ΓK , then σ(ζ) = ζχ(σ) mod n.

2.1.1. Conventions. The cardinality of a set X is denoted by |X|. We write gh = hgh−1 for
conjugation in a group. We denote by ord(g) the order of an element g in a finite group H. If g ∈ H
and α ∈ Ẑ is a profinite integer, gα is the well-defined element gα mod ord(g) ∈ H. Similarly, if c ⊆ H
is a conjugacy class, the order of its elements is denoted by ord(c), and cα is the conjugacy class of
the α-th powers of elements of c, where α is either an integer or a profinite integer.

Definition 2.1. A subset c of G is K-rational if for every g ∈ c and σ ∈ ΓK we have gχ(σ) ∈ c.

If K = Q, we have Im(χ) = Ẑ×. Therefore, Q-rational subsets are subsets closed under n-th
powers for all n coprime with |G|. In contrast, if K contains all |G|-th roots of unity, then the image
of χ is trivial modulo |G| and every subset of G is K-rational. Examples of sets which are always
K-rational include G, G \ {1}, as well as any subset of G consisting of involutions.

2.1.2. Tuples. Tuples are denoted with underlined roman letters. Let g = (g1, . . . , gn) be a tuple
of elements of G. Then:

• Its degree or size deg(g) is the number n of elements in the tuple.

• Its group
〈
g
〉

is the subgroup of G generated by g1, . . . , gn. If g1, . . . , gs are tuples, we denote

by
〈
g1, . . . , gs

〉
the subgroup of G generated by the subgroups

〈
g1

〉
, . . . ,

〈
g
s

〉
.

• The product of g is πg = g1g2 · · · gn ∈ G. We say that g is a product-one tuple if πg = 1.

• Let H be a subgroup of G containing
〈
g
〉
. A conjugacy class γ of H appears in g if there is

some i for which gi ∈ γ. The set of the conjugacy classes of H which appear in g is denoted
by DH(g). We denote by cH(g) the conjugation-invariant subset of H obtained as the union
of all classes in DH(g). If H is not specified in the notation, it is assumed that H =

〈
g
〉
.
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• Let H be a subgroup of G which contains
〈
g
〉

and c be a conjugation-invariant subset of H
which contains cH(g). If γ is a conjugacy class of H contained in c, we denote by µH,c(g)(γ)
the count of its appearances in g, i.e.:

µH,c(g)(γ) =
∣∣∣∣{i ∈ {1, . . . , n}

∣∣∣∣ gi ∈ γ

}∣∣∣∣ .
This defines an integer-valued map µH,c(g) on the set D of all conjugacy classes of H contained
in c. We call this map the (H, c)-multidiscriminant of g. If c is not specified in the notation
µH(g), it is assumed that c = cH(g).

2.1.3. Schemes. Let L be a field. Here, L-schemes are separated schemes equipped with a mor-
phism into Spec(L). Let L′ | L be a field extension and X be an L-scheme of finite type. We
denote by XL′ the L′-scheme X ×

Spec(L)
Spec(L′) obtained by extending the scalars. The set X(L′) of

L′-points of X is the set of morphisms of L-schemes from Spec(L′) to X, or equivalently morphisms
of L′-schemes from Spec(L′) to XL′ . An L′-point x ∈ X(L′) is L-rational if there exists an L-point
x′ ∈ X(L) such that the following diagram of L-schemes commutes:

Spec(L′) Spec(L) Xx′

x

The point x′ is called an L-model of the point x. Similarly, an L′-subscheme Y of XL′ is defined over
L if there exists an L-subscheme Y ′ of X such that the L′-subscheme Y ′

L′ of XL′ is equal to Y . We
say that Y ′ is an L-model of Y .

Assume now L′ | L is Galois. An automorphism σ ∈ Gal(L′ | L) induces an L-automorphism of
Spec(L′) which we denote by Spec(σ). The group Gal(L′ | L) acts on an L′-point x ∈ X(L′) by the
formula σ.x = x ◦ Spec(σ) and on an L′-subscheme Y ⊆ XL′ by pullback along idX ×

Spec(L)
Spec(σ):

Spec(L′)

Spec(L′) Xx

Spec(σ) σ.x

σ.Y XL′

Y XL′

idX ×
Spec(L)

Spec(σ)⌟
.

Proposition 2.2 (Galois descent). The following equivalences hold:

• An L′-point of X is L-rational if and only if it is invariant under the action of Gal(L′ | L).

• An L′-subscheme Y of XL′ is defined over L if and only if it is globally preserved by the action
of Gal(L′ | L), i.e. for every σ ∈ Gal(L′ | L) there is an L′-automorphism σ′ of Y such that
the following diagram commutes:

Y XL′

Y XL′

σ′

⊆

⊆

idX ×
Spec(L)

Spec(σ) .

• If L′ is algebraically closed and Y is a reduced L′-subscheme of XL′, then Y is defined over K
if and only if the subset Y (L′) of X(L′) is globally preserved by the action of Gal(L′ | L).
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2.2. Main objects

:
In this section, we define the main objects which are used in the text. Configuration spaces

(Paragraph 2.2.1), G-covers (Paragraphs 2.2.2 and 2.2.6) and Hurwitz spaces (Paragraphs 2.2.3
and 2.2.7) are introduced, both in the topological and in the algebraic settings, and the links between
the two contexts are explicited. The combinatorial description of G-covers and their components is
also stressed (Paragraphs 2.2.3 to 2.2.5).

2.2.1. Configurations and braid groups. A configuration t = {t1, . . . , tn} is an unordered list of
n distinct complex numbers. Configurations form a topological space Confn(C), whose topology is
inherited from the standard topology on Cn after removing tuples with equal elements and quotienting
out by the action of Sn. The fundamental group of Confn(C) is the Artin braid group Bn. It admits
a simple presentation: generators are given by the elementary braids σ1, . . . , σn−1 satisfying the
following generating set of relations:

• σiσj = σjσi for all i, j ∈ {1, . . . , n− 1} satisfying |i− j| > 1;

• σiσi+1σi = σi+1σiσi+1 for all i ∈ {1, . . . , n− 2}.

A configuration t ∈ Confn(C) is defined over K if the elements t1, . . . , tn are all algebraic and are
permuted by the Galois action of Gal(Q | K). We denote by Confn(K) the set of configurations of
Confn(C) defined over K.

The space of configurations has a scheme counterpart. Indeed, fixing a configuration t =
{t1, . . . , tn} amounts to fixing the monic polynomial (X − t1) · · · (X − tn), of degree n with no
double roots; we can parametrize these polynomials by their coefficients instead of their roots: the
scheme Confn is the open subvariety of An obtained by removing the closed Zariski subset ∆ defined
by the polynomial equation “the discriminant of Xn + a1X

n−1 + . . . + an−1X + an cancels”. The
K-points of Confn are in natural bijection with the configurations of n points defined over K, and
its C-points are precisely the elements of Confn(C), which makes the notation unambiguous.

2.2.2. Topological G-covers and tuples. In this article, we consider branched G-covers of the
projective line. Let t ∈ Confn(C) be a configuration. Topological G-covers branched at t are covering
maps p : X → P1(C) \ t equipped with a morphism G → Aut(p) that induces a free transitive action
on each fiber. Note that G-covers are necessarily Galois covers of degree |G|. We do not assume
that these covers are connected, and we allow trivial ramification at the “branch points”, even if the
G-cover can be extended into a G-cover with less branch points.

A marked G-cover is a G-cover equipped with a marked point in the unramified fiber above the
point at infinity ∞. The monodromy based at ∞ associates to every marked G-cover p branched at
t a morphism:

π1(P1(C) \ {t1, . . . , tn},∞) → G

which uniquely characterizes the isomorphism class of the marked G-cover p.
Choose a topological bouquet γ1, . . . , γn, as defined in [DE06, Paragraph 1.1]. This is a set of

generators of π1(P1 \ {t1, . . . , tn},∞), where γi is the homotopy class of a loop which rotates once
counterclockwise around ti. The relations between these generators are generated by the single
relation γ1 · · · γn = 1. The choice of a bouquet induces a bijection between isomorphism classes of
marked G-covers branched at t and n-tuples g = (g1, . . . , gn) of elements of G which are product-
one, i.e. such that πg = g1 · · · gn = 1. We say that (g1, . . . , gn) is the branch cycle description
of the marked G-cover. Via this description, we have a dictionary between geometric and group-
theoretic/combinatorial objects:
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• The monodromy group of the marked G-cover, i.e. the automorphism group of the connected
component of its marked point, is

〈
g
〉

= ⟨g1, . . . , gn⟩. In particular, the G-cover is connected
exactly when g1, . . . , gn generate G.

• unmarked G-covers correspond to orbits of product-one tuples under the conjugation action of
G:

(g1, . . . , gn)γ = (gγ1 , . . . , gγn) for γ ∈ G.

This conjugation action corresponds to the free transitive action of G on the fiber above the
basepoint ∞. It amounts to a change of marked point.

Remark 2.3. We include non-connected G-covers, i.e. covers whose monodromy groups are proper
subgroups of G, because we are interested in patching-like results. Typically, we want to construct
components with monodromy group G by gluing components with smaller monodromy groups. If we
do not take this phenomenon into account, the answer to Question 1.1 is “yes”: the concatenation
of two components defined over K of connected G-covers is always defined over K. This follows
from Theorem 1.2 (i). In [Cau12], a different but equivalent choice is made: instead of considering
components of marked non-connected G-covers, Cau considers components of unmarked connected
H-covers where H is a subgroup of G. The links between these two approaches are discussed further
in Paragraph 2.3.4.

2.2.3. Topological Hurwitz spaces and their components. Unless specified otherwise, Hur-
witz spaces in this article are moduli spaces of marked G-covers, connected or not. We denote by
Hur∗(G,n) the topological Hurwitz space of marked G-covers with n branch points. It is a cover-
ing space of Confn(C) whose fiber above some configuration t ∈ Confn(C) consists of isomorphism
classes of marked G-covers of P1(C) \ t.

Classically, there is an action of the braid group Bn on n-tuples of elements of G, induced by the
following formula:

σi.(g1, . . . , gn) = (g1, . . . , gi−1, g
gi
i+1, gi, . . . , gn).

We say that two n-tuples of elements of G are braid equivalent when they are in the same Bn-orbit
for this action. The connected components of Hur∗(G,n) are in bijection with braid group orbits
of product-one n-tuples g = (g1, . . . , gn) of elements of G. Whereas the branch cycle description g
of a cover depends on the choice of a bouquet, the braid group orbit of g does not: this is due to
the fact that Bn acts transitively on topological bouquets up to conjugation [DE06]. Thus, there
is a canonical bijection between Bn-orbits of product-one n-tuples of elements of G and connected
components of Hur∗(G,n).

2.2.4. The monoid of components. Via the description of connected components of Hur∗(G,n)
as Bn-orbits of product-one n-tuples of elements of G, the concatenation of tuples induces a well-
defined product operation on components of Hurwitz spaces:

(g1, . . . , gn)(g′
1, . . . , g

′
n′) = (g1, . . . , gn, g

′
1, . . . , g

′
n′).

The graded monoid of components Comp(G) is:⊔
n≥0

({
g ∈ Gn

∣∣∣πg = 1
}/

Bn

)
,

graded by the size n of a tuple, and equipped with the product operation induced by concatenation.
Elements of degree n of Comp(G) are in bijection with connected components of Hur∗(G,n).1 The

1For us, the degree of a component is its degree as an element of the graded monoid Comp(G), i.e. the number of
branch points of the covers it contains, which is the size of its representing tuples. This is also equal to the dimension
of the component since Hur∗(G, n) is a finite cover of the n-dimensional space Confn(C).
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identity element of Comp(G) is the braid orbit of the empty tuple, i.e. the connected component
of the trivial G-cover. The monoid Comp(G) is commutative and finitely generated, cf. [Seg22,
Subsection 3.2]. We often abusively refer to an element of Comp(G) by one of its representing tuples
g ∈ Gn.

2.2.5. The braid group action. We recall results about the braid group action on tuples:

Proposition 2.4.

(i) The product, group, multidiscriminant of a tuple depend only on its braid group orbit.

(ii) The braid group orbit of a concatenation of tuples depends only on their braid group orbits.

(iii) If g and g′ are product-one tuples, then the concatenated tuples gg′ and g′g are braid equivalent.

(iv) If g1, g2, g3 are product-one tuples, then g1g2g3 is braid equivalent to g1g
γ
2g3 for any γ which is

either in
〈
g1, g3

〉
or in

〈
g2

〉
.

Proofs can be found with this notation in [Seg22], or with different notation in [Cau12]. Together,
points (i), (ii) and (iii) ensure that the monoid of components Comp(G) is a well-defined commutative
monoid, and we can talk about the group and multidiscriminant of a component x ∈ Comp(G). We
generalize the use of the symbols ⟨x⟩ , µH,c(x), cH(x) from Subsection 2.1 to elements x ∈ Comp(G).

For point (iv), see [Seg22, Corollary 3.5]. This result is central in the proofs of later results,
notably Theorem 3.3. The case where g1 and g3 are both equal to the 0-tuple is used frequently: if
x ∈ Comp(G) and γ ∈ ⟨x⟩, then x = xγ .

2.2.6. Algebraic k-G-covers and Riemann’s existence theorem. Let k be a field of character-
istic relatively prime to |G|. An algebraic cover of P1

k is a finite flat generically étale morphism from
a smooth projective curve Y over k to P1

k. Moreover, we exclude from this definition algebraic covers
ramified at the point at infinity. The k-points of P1 over which an algebraic cover of P1

k is ramified
(i.e. the corresponding extension of local rings is ramified) form a finite configuration t ∈ Confn(k),
for some n.

A k-G-cover is an algebraic cover p : Y → P1
k equipped with a group morphism from G to

the group AutP1
k
(Y ) of k-automorphisms of the cover, such that the induced action of G on every

unramified geometric fiber is free and transitive.
If p : Y → P1

k is a k-G-cover with Y irreducible, then the induced extension of function fields
k(Y ) | k(T ) is Galois of group G. If Y is geometrically irreducible, this extension is regular, i.e.
k(Y ) ∩ k = k. Classically, this defines an equivalence of categories between Galois field extensions of
k(T ) of group G and k-G-covers.

Riemann’s existence theorem implies that the category of C-G-covers (or Q-G-covers) branched
at some configuration t ∈ Confn(C) (resp. t ∈ Confn(Q)) is equivalent to that of topological G-covers
with the same branch points. We identify topological G-covers and k-G-covers over an algebraically
closed field k of characteristic zero quite freely.

Assume now k is contained in Q. Since topological G-covers are well-understood, we look for
G-covers defined over k instead of k-G-covers: a Q-G-cover p : Y → P1

Q is defined over k if it is
isomorphic to the extension of scalars of a k-G-cover pk : Y ′ → P1

k. In that case, we say that pk is a
k-model of the G-cover p.
Remark 2.5. When k is not algebraically closed, we avoid the ambiguous expression “marked k-
G-cover”: it is not clear whether the cover is equipped with a geometric marked point above ∞
(these are the k-G-covers classified by the étale fundamental group of P1

k \ t based at ∞), or with a
marked k-point above ∞ (these are the marked G-covers invariant under the action of Gal(Q | k)).
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We mostly use the latter notion, and we refer to these covers as k-G-covers equipped with a marked
k-point, meaning that the marked point is in the fiber above the point at infinity.

When k is algebraically closed, we do use the terminology marked k-G-cover since a marked
geometric point above ∞ is also a k-point.

We say that a marked Q-G-cover (p, ⋆) is defined over k when it is invariant under the action of
Gal(Q | k), i.e. when it is isomorphic, as a marked Q-G-cover, to the extension of scalars of k-G-cover
equipped with a marked k-point. This will be defined again differently in Paragraph 2.3.2.

2.2.7. Hurwitz schemes. We denote by H∗(G,n) the Hurwitz scheme of marked G-covers of P1

with n branch points, unramified at ∞. Via the branch point morphism, the Q-scheme H∗(G,n) is
an étale cover of Confn. The K-points of H∗(G,n) correspond to algebraic K-G-covers branched at
some configuration t ∈ Confn(K), equipped with a marked K-point. The existence of this moduli
space follows from the same arguments as [RW06, Theorem 4.11]. This is always a fine moduli
space, unlike Hurwitz schemes of unmarked covers. The set of C-points of H∗(G,n), equipped with
the analytic topology, is homeomorphic to Hur∗(G,n). The geometrically irreducible components
of H∗(G,n) are in bijection with the connected components of Hur∗(G,n), and consequently with
Bn-orbits of product-one n-tuples of elements of G.

The more usual Hurwitz moduli scheme of branched unmarked G-covers of P1 is denoted by
H(G,n). We use it exclusively in the discussion of Paragraph 2.3.4 which relates the fields of
definition of components of H∗(G,n) to the more classical question of the fields of definition of
components of geometrically connected unmarked covers. One thing to know is that contrary to
H∗(G,n), the Hurwitz scheme H(G,n) is a coarse moduli scheme in general: its K-points do not
correspond precisely to K-G-covers with n branch points. These issues are detailed in [DD97].

2.3. The Galois action

In this subsection, we describe the Galois action of ΓK = Gal(Q | K) on the Q-points of the scheme
H∗(G,n) and on its geometrically irreducible components.

We fix a configuration t ∈ Confn(K), defined over K. We denote by π1,Q the étale fundamental
group πét

1 (P1
Q \ t,∞) and by π1,K the étale fundamental group πét

1 (P1
K \ t,∞).

The group π1,Q is isomorphic to the profinite completion of π1(P1(C) \ t,∞). Since G is finite,
there is a bijection between morphisms π1,Q → G and morphisms π1(P1(C) \ t,∞) → G. Hence,
isomorphism classes of marked G-covers branched at t may and will be seen as morphisms π1,Q → G.

2.3.1. The Galois action on covers. Let Q(T ) be an algebraic closure of Q(T ) containing Q. Let
Ωt be the maximal subfield of Q(T ) unramified outside of t. We have the chain of field extensions:

Ωt

Q(T )

K(T )

π1,Q

ΓK

π1,K

which induces the following short exact sequence:

1 π1,Q π1,K ΓK 1 . (2.1)

The field Ωt embeds in Q(T ) which itself embeds in the field of Puiseux series over Q, denoted
by Q(((1/T )1/∞)). The Galois group ΓK = Gal(Q | K) acts on Q(((1/T )1/∞)) by acting on the
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coefficients. Let σ ∈ ΓK . Since the configuration t is defined over K, the image under σ of an
extension unramified outside of t is still unramified outside of t. This implies that the field Ωt is
stable under the action of ΓK . So there is an action of ΓK on Ωt, trivial on K(T ). This defines a
morphism:

s : ΓK → Gal
(
Ωt | K(T )

)
≃ π1,K

associated with the choice of the basepoint (here, the point at infinity). The morphism s is a section
of the short exact sequence of Equation (2.1):

1 π1,Q π1,K ΓK 1.
s

Using the morphism s, we define an action of ΓK on π1,Q. For all σ ∈ ΓK and γ ∈ π1,Q, we let:

σ.γ
def= γs(σ)

which belongs to π1,Q by normality. The action of an automorphism σ ∈ ΓK on a marked G-cover
seen as a morphism φ : π1,Q → G is defined by the following equality for all γ ∈ π1,Q:

(σ.φ)(γ) = φ(σ.γ) = φ
(
γs(σ)

)
.

This action does not change the monodromy group of a marked cover branched at t. It satisfies
σ.(φg) = (σ.φ)g for all g ∈ G, and so it induces a well-defined action of ΓK on isomorphism classes
of unmarked G-covers branched at t.

2.3.2. Fields of definition of covers. Consider an isomorphism class of marked branched G-
covers, seen as a morphism φ : π1,Q → G.

Definition 2.6. The marked G-cover associated to φ is defined over K if σ.φ = φ for all σ ∈ ΓK .

The equivalence with the definition given in Paragraph 2.2.6 (marked G-covers defined over K
are obtained by extension of scalars of K-G-covers equipped with a marked K-point) follows from
the properties of the étale fundamental group and from the following proposition2:

Proposition 2.7. The marked cover associated to φ : π1,Q → G is defined over K if and only if the
morphism φ has an extension to π1,K which is trivial on Im(s), i.e. there exists a group morphism
φ̃ : π1,K → G such that the following diagram commutes:

π1,Q

π1,K G

ΓK 1

s

φ̃

φ

The triviality of φ̃ on Im(s) corresponds to the K-rationality of the marked point above ∞.

Proof. Give names to the morphisms in the exact sequence Equation (2.1):

π1,Q
ι
↪→ π1,K

w
↠ ΓK

and remember that s : ΓK → π1,K is a section of w, i.e. w ◦ s = idπ1,K .
2In some sense, this is also an instance of Proposition 2.2.
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(⇐) Assume there is a morphism φ̃ : π1,K → G such that φ = φ̃ ◦ ι and φ̃ ◦ s = 1. For x ∈ π1,Q and
σ ∈ ΓK , compute:

σ.φ(x) = φ
(
xs(σ)

)
= φ̃

(
xs(σ)

)
= φ̃(x)φ̃(s(σ)) = φ̃(x) = φ(x).

(⇒) Assume φ is defined over K. Let x ∈ π1,K . We have:

w
(
xs(w(x))−1

)
= w(x)w(s(w(x))−1 = w(x)w(x)−1 = 1,

which implies that xs(w(x))−1 ∈ π1,Q by exactness of Equation (2.1). Define the map:

φ̃ :
{
π1,K → G
x 7→ φ(xs(w(x))−1) .

If x ∈ π1,Q, then w(x) = 1 and thus φ̃(x) = φ(x). If σ ∈ ΓK , then s(w(s(σ))) = s(σ) so
φ̃(s(σ)) = φ(s(σ)s(σ)−1) = φ(1) = 1. So φ = φ̃ ◦ ι and φ̃ ◦ s = 1. It remains to check that φ̃
is a morphism. Let x, y ∈ π1,K and compute:

φ̃(x)φ̃(y) = φ(xs(w(x))−1)φ(ys(w(y))−1) by definition of φ̃
= φ(xs(w(x))−1)(w(x).φ)(ys(w(y))−1) because φ is defined over K

= φ(xs(w(x))−1)φ
(
s(w(x))ys(w(y))−1s(w(x))−1

)
by definition of the ΓK-action

= φ(xys(w(xy))−1) = φ̃(xy) by definition of φ̃.

This concludes the proof.

2.3.3. The Galois action on components and fields of definition. The Galois action on
marked G-covers induces a well-defined ΓK-action on the graded set Comp(G). Specifically, if m ∈
Comp(G), an automorphism σ ∈ ΓK maps marked G-covers in the component m to marked G-
covers in the component σ.m. We do not claim that the Galois action is compatible with the monoid
structure of Comp(G): this is precisely the difficulty of Question 1.1.

Definition 2.8. A component m ∈ Comp(G) is defined over K if for all σ ∈ ΓK we have σ.m = m.

2.3.4. Comparison between the marked and the unmarked cases. Let m ∈ Comp(G) be a
component of H∗(G,n)Q, and m̃ be the component of H(G,n)Q obtained by forgetting the marked
points. The component m is defined over K when σ.m = m for all σ ∈ ΓK . A weaker property,
in general, is that m̃ is defined over K, meaning that for all σ ∈ ΓK there is a γ ∈ G such that
σ.m = mγ . There are two situations to consider:

• If ⟨m⟩ = G, then, by Proposition 2.4 (iv), we have mγ = m for all γ ∈ G. In this instance,
there is no difference between m and m̃ being defined over K.

• If ⟨m⟩ is a proper subgroup H of G, we introduce the component mH of H∗(H,n)Q obtained
by removing all connected components except for the component of the marked points from
the covers in m, making them connected H-covers. We also introduce the component m̃H of
H(H,n)Q, obtained by forgetting the marked points of the connected H-covers in mH .
The fields of definition of mH and m̃H are the same, according to the previous point. Since
the ambient group is not relevant in the definition of σ.m, it is also clear that m is defined over
K if and only if mH is defined over K.
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The comparison between the situations is summarized in the figure below:

m mH

m̃ m̃H

see covers as
connected H-covers

unmark unmark

same field of definition

may have a smaller
field of definition

Figure 1: A summary of the situation

This discussion implies that considering the fields of definitions of components of marked G-
covers with monodromy groupH is equivalent to studying the fields of definitions of components
of connected unmarked H-covers, which is the choice made in [Cau12]. However, we opt for
the former approach because it allows for a unified treatment of these components and leads
to a simpler algebraic structure.
There are still ways to relate the fields of definition of m̃ and m. For instance, the following
lemma can be applied:

Lemma 2.9. If m̃ is defined over K and H is either self-normalizing in G or has no outer
automorphisms, then m is defined over K.

Proof. Consider some σ ∈ ΓK . The equality σ.m = mγ implies H = Hγ , i.e. conjugation by γ
defines an automorphism of H.

– If H is self-normalizing, this implies γ ∈ H.
– If H has no outer automorphisms, conjugation by γ has to be an inner automorphism. So

there is a γ′ ∈ H such that hγ = hγ
′ for all h ∈ H, and in particular mγ = mγ′ .

In both cases, Proposition 2.4 (iv) shows that σ.m = m. Therefore m is defined over K.

2.4. The branch cycle lemma

The action of the Galois group ΓK on multidiscriminants of G-covers or their components is precisely
known. If σ ∈ ΓK is an automorphism, we denote by σ too the permutation of {1, . . . , n} such that
σ.ti = tσ(i). Consider a marked G-cover branched at t, seen as a morphism φ : π1,Q → G. Let
(γ1, . . . , γn) ∈ πn1,Q be a bouquet associated to t. The following result is classical, cf. [Fri77] (or
[Cau12, Lemme 2.2] for a statement closer to ours):

Lemma 2.10. For every σ ∈ ΓK , the element (σ.φ)(γi) is conjugate to
(
φ(γσ−1(i))

)χ(σ)−1

.

We restate Lemma 2.10 in terms of multidiscriminants of components. Let g = (φ(γ1), . . . , φ(γn))
be the tuple associated to φ, and σ.g = (φ(σ.γ1), . . . , φ(σ.γn)) be the tuple associated to σ.φ for all
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σ ∈ ΓK . Let H be a group containing
〈
g
〉

and c be a K-rational (cf. Definition 2.1) conjugation-
invariant subset of H containing cH(g). Denote by D the set of conjugacy classes of H contained
in c and by pσ the map D → D induced by the χ(σ)-th power operation for σ ∈ ΓK . Let x ∈
Comp(G) be the component represented by the tuple g. Recall from Subsection 2.1 that the (H, c)-
multidiscriminant µH,c(x) of x is the map that counts the occurrences in g of each conjugacy class
in D.

Definition 2.11. We say that x has a K-rational (H, c)-multidiscriminant if for all σ ∈ ΓK we have:

µH,c(x) = µH,c(x) ◦ pσ,

i.e. every conjugacy class γ ∈ D appears as many times in g as the classes γχ(σ) for σ ∈ ΓK .

Note that a product of components with K-rational multidiscriminants has a K-rational multi-
discriminant. Lemma 2.10 has the following corollary:

Corollary 2.12.

(i) For all σ ∈ ΓK , the (H, c)-multidiscriminants of x and σ.x are related by the equality:

µH,c(σ.x) = µH,c(x) ◦ pσ.

(ii) If x is defined over K, then x has a K-rational (H, c)-multidiscriminant.

(iii) If x has a K-rational (H, c)-multidiscriminant and H is abelian, then x is defined over K.

Point (ii) furnishes an easily checked necessary condition for a component to be defined over
K. Point (iii) says that the implication of point (ii) is an equivalence in the abelian case: in this
situation, fields of definition of components are well-understood.

Proof. (i) Let γ ∈ D be a conjugacy class of H. Then µH,c(σ.x)(γ) is the number of occurrences
of γ in σ.g. Lemma 2.10 implies that this is also the number of occurrences of γχ(σ) in g, which
is precisely µH,c(x)(γχ(σ)).

(ii) Since x is defined over K, we have σ.x = x for all automorphisms σ ∈ ΓK . By (i), this implies
µH,c(x) = µH,c(x) ◦ pσ, i.e. x has a K-rational (H, c)-multidiscriminant.

(iii) Since H is abelian, conjugacy classes of H and elements of H are “the same”, and components
are just unordered product-one tuples of elements of H (the braid group acts by permutation).
Hence, two components are equal exactly when their (H, c)-multidiscriminants are equal.
Since x has a K-rational (H, c)-multidiscriminant, we know that for every σ ∈ ΓK we have
µH,c(x) = µH,c(x) ◦ pσ, which is equal to µH,c(σ.x) by point (i). In other words, x and σ.x are
components with equal (H, c)-multidiscriminants, and therefore they are equal.

Example 2.13. Assume that the group G is abelian. Corollary 2.12 (iii) lets one determine the field
of definition of components. A consequence is that the answer to Question 1.1 is always “yes” in this
case. For example, a component represented by a tuple g ∈ Gn is defined over Q exactly when every
element g ∈ G appears as many times in g as the elements gk for k relatively prime with ord(g). Let
us give concrete examples:

• The component (1, 1, 1) ∈ Comp(Z/3Z) is not defined over Q, because 1 does not appear as
many times as −1.

• The component (1,−1) ∈ Comp(Z/nZ) is defined over Q for n ∈ {2, 3, 4, 6}, and not defined
over Q for n = 5 or n ≥ 7.
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Example 2.14. It follows from [Seg22, Theorem 10.6] that components of Sd-covers whose mon-
odromy elements are transpositions are entirely determined by their monodromy group H and their
H-multidiscriminant. Since transpositions are involutions, all conjugacy classes involved are Q-
rational, therefore Lemma 2.10 implies that the action of Gal(Q | Q) preserves multidiscriminants.
Since components of Sd-covers whose monodromy elements are transpositions are determined by
their multidiscriminants, which are Q-rational, these components are all defined over Q.

3. The group-theoretic approach

In this section, we propose new applications of ideas introduced in [Cau12], which we recall in Sub-
section 3.1. In Subsection 3.2, we prove the main result Theorem 3.3 (iii), which corresponds to
Theorem 1.2 (i). This theorem is generalized in Subsection 3.5 and examples are given in Sub-
section 3.3. In Subsection 3.4, we use similar methods to reduce the Galois action to components
of small degree, cf. Propositions 3.8 and 3.9. Our approach is based on braid manipulations and
group-theoretic criteria.

3.1. Cau’s theorem

Following [Cau12], if x1, . . . , xn ∈ Comp(G) and H is a subgroup of G which contains ⟨x1, . . . , xn⟩,
we define the following subset of Comp(G):

niH(x1, . . . , xn) =
{

n∏
i=1

xγi
i

∣∣∣∣∣ γi ∈ H

}
.

We also introduce the following subset, which always contains x1 · · ·xn:

ni♮H(x1, . . . , xn) =
{

n∏
i=1

xγi
i

∣∣∣∣∣ γi ∈ H
⟨xγ1

1 · · ·xγn
n ⟩ = ⟨x1 · · ·xn⟩

}
.

When H is not specified, it is assumed that H = ⟨x1 · · ·xn⟩.
In Cau’s terminology, a family of elements of Comp(G) corresponds to a degenerescence structure

∆, and elements of niH(∆) are called ∆-components. Cau gave a criterion to identify whether a
given component is a ∆-component depending on the existence of a specific “∆-admissible cover” on
its boundary. This characterization is key for his proof of the following theorem, which is [Cau12,
Théorème 3.2]:

Theorem 3.1. Let x1, . . . , xn be components, H a subgroup of G which contains ⟨x1, . . . , xn⟩, and
σ ∈ ΓK . Then the action of σ on components induces a bijection:

niH(x1, . . . , xn) → niH(σ.x1, . . . , σ.xn)

and the same statement holds if niH is replaced by ni♮H .

That Theorem 3.1 holds if niH is replaced with ni♮H follows from the fact that the Galois action
preserves the monodromy group. If X is a finite set of components and σ ∈ ΓK , we write Theorem 3.1
under the form σ.ni(X) = ni(σ.X), where σ.X is a shorthand for {σ.x | x ∈ X}.

3.2. Permuting components

In [Cau12, Proposition 2.10] and [Cau16, Théorème 3.8], Cau applies Theorem 3.1 in situations
where he shows ni(x1, . . . , xn) = {x1 · · ·xn}. We introduce a different condition that will later be
shown to imply ni♮(x1, . . . , xn) = {x1 · · ·xn}:
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Definition 3.2. Two components x, y ∈ Comp(G) of respective monodromy groups H1 = ⟨x⟩ and
H2 = ⟨y⟩ are permuting if H1H2 = ⟨H1, H2⟩.

This terminology comes from the fact that subgroups H1, H2 of a group G are classically called
permuting when H1H2 is a subgroup of G. Two elements of Comp(G) are permuting exactly when
their monodromy groups are permuting subgroups of G. This condition is neither stronger nor weaker
than the completeness conditions considered by Cau. In Subsection 3.5, we give a condition that
generalizes both Definition 3.2 and the hypothesis of [Cau12, Proposition 2.10].

Note that x, y ∈ Comp(G) are permuting whenever ⟨x⟩ or ⟨y⟩ is normal in ⟨x, y⟩, and in particular
when one monodromy group contains the other. Cases of interest are ⟨x⟩ = ⟨y⟩ as well as ⟨x⟩ = G
or ⟨y⟩ = G. Moreover, if x, y are permuting and σ ∈ ΓK , then σ.x and σ.y are permuting.

We are now ready to prove Theorem 3.3, whose third point is Theorem 1.2 (i):

Theorem 3.3. Let x, y ∈ Comp(G) be permuting components. Then:

(i) The set ni♮(x, y) contains only the component xy.

(ii) For all σ ∈ ΓK we have σ.(xy) = (σ.x)(σ.y).

(iii) If x and y are defined over K, then xy is defined over K.

Proof. (i) Let γ, γ′ ∈ H such that
〈
xγyγ

′
〉

= H. We have to show xγyγ
′ = xy. We use

Proposition 2.4 (iv) to reduce to the case γ = 1: indeed, we have xγyγ
′ = xyγ

−1γ′ since
γ−1 ∈

〈
xγyγ

′
〉

= H. Write γ′ = γ1γ2 with γi ∈ Hi. We have:

xy = xyγ2 by Proposition 2.4 (iv), because γ2 ∈ ⟨y⟩
= x(yγ2)γ1 by Proposition 2.4 (iv), because γ1 ∈ ⟨x⟩
= xyγ1γ2

= xyγ
′
.

(ii) Let σ ∈ ΓK . By Theorem 3.1, the component σ.(xy) belongs to the set ni♮(σ.x, σ.y) and thus
it is equal to (σ.x)(σ.y), by point (i) applied to the permuting components σ.x and σ.y.

(iii) Follows from point (ii).

A noteworthy corollary of Theorem 3.3 (iii) is the following:

Corollary 3.4. If x is a component defined over K, then so is xn for all n ≥ 0.

Remark 3.5. To deduce Theorem 3.3 (iii) from Theorem 3.3 (i), one can use Theorem 5.4 instead of
Theorem 3.1.

3.3. Applications and examples

The rest of this section is concerned with applications of Theorem 3.3.

Example 3.6. Theorem 3.3 implies a slightly stronger version of [Cau12, Théorème 3.5]. Indeed, let
G = H1⋉H2 be a semi-direct product of groups. Assume that for i = 1, 2 there is a rigid (cf. [Cau12,
Definition 2.4]) ri-tuple ci of Q-rational conjugacy classes of Hi. Then for i = 1, 2 there is a unique
component mi ∈ Comp(G) such that ⟨mi⟩ = Hi and the Hi-multidiscriminant of mi counts the
appearances of a class in ci. By the rigidity hypothesis and the branch cycle lemma (Corollary 2.12),
these components are defined over Q. Cau’s results led him to observe that (H1, H1, H2, H2) is a
complete family of subgroups of G and therefore m2

1m
2
2 is defined over Q. We obtain a slightly better
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result: since G is a semi-direct product of H1 and H2, the components m1,m2 are permuting and
therefore the component m1m2 is defined over K.

Assume G is a semi-direct product of symmetric groups: G = Sn ⋉ Sm. There are rigid Q-
rational triples of conjugacy classes of Sn and Sm. The reasoning above shows that there is a
component defined over Q of G-covers with six branch points, instead of the twelve needed by Cau,
which already improved upon the thirty-two needed by Dèbes and Emsalem.

We now prove a result which can be perceived as the existence of a field norm for components:

Corollary 3.7. Let x ∈ Comp(G) be a component, and H = ⟨x⟩. Let Γx be the subgroup of finite
index of ΓK consisting of elements σ ∈ ΓK such that σ.x = x. Then the following component, which
has monodromy group H, is defined over K:

NK(x) =
∏

σ∈ΓK/Γx

σ.x.

This result is a variant of [Cau12, Corollaire 1.1/Corollaire 3.4]: Cau shows that the concatenation
of all components with a given degree is defined over Q; here we are more precise by restricting our
attention on a single Galois orbit, leading to a lower degree for the product component.

Proof. Let ΓK .x be the set {σ.x |σ ∈ ΓK/Γx}. Since all components of the form σ.x have group H,
repeated applications of Theorem 3.3 (i) show that:

ni♮H(ΓK .x) = {NK(x)}. (3.1)

Consider an automorphism σ ∈ ΓK . The action of σ permutes ΓK .x. Finally:

{NK(x)} = ni♮H(ΓK .x) by Equation (3.1)

= ni♮H(σ.(ΓK .x)) because σ permutes ΓK .x

= σ.ni♮H(ΓK .x) by Theorem 3.1
= σ.{NK(x)} by Equation (3.1)
= {σ.NK(x)}

and thus NK(x) is defined over K.

3.4. Reduction of the Galois action to components of small degree

In this subsection we express the Galois action of ΓK on components in terms on the action on
components of small degree. Let ψ(G) be the sum of the orders of the elements of G:

ψ(G) def=
∑
g∈G

ord(g).

Consider a n-tuple g = (g1, . . . , gn) ∈ Gn, and let H =
〈
g
〉
. If n > ψ(G), then there is an element

g ∈ G which appears at least ord(g) + 1 times in the tuple g. Usual braid manipulations allow one
to move these occurrences of g to the beginning of the tuple. This shows that we have the following
equality in Comp(G):

g = (g, . . . , g︸ ︷︷ ︸
ord(g)

)y

for some y ∈ Comp(G) of group H. Note that (g, . . . , g) and y are permuting components and that
⟨(g, . . . , g)⟩ = ⟨g⟩ is abelian. We have:

σ.g = (σ.(g, . . . , g)) (σ.y) by Theorem 3.3 (ii)

=
(
gχ(σ−1), . . . , gχ(σ−1)

)
(σ.y) by the branch cycle lemma (Corollary 2.12 (i)).
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We can iterate this factorization process until the size of y is smaller than ψ(G): this shows that
the Galois action on components is entirely determined by the cyclotomic character and the Galois
action on components of small degree. We turn this into a precise proposition:

Proposition 3.8. Let x ∈ Comp(G) be a component and H = ⟨x⟩. There are elements g1, . . . , gr ∈
H and a component y ∈ Comp(G) of group H with deg(y) ≤ ψ(G) such that:

x =

 r∏
i=1

(gi, . . . , gi︸ ︷︷ ︸
ord(gi)

)

 y.
Moreover, once x is expressed under this form, the Galois action of an automorphism σ ∈ ΓK on x
can be expressed in terms of the cyclotomic character χ, and of the Galois action on components of
degree ≤ ψ(G):

σ.x =

 r∏
i=1

(
g
χ(σ−1)
i , . . . , g

χ(σ−1)
i︸ ︷︷ ︸

ord(gi)

) (σ.y).

Here is another example of this phenomenon. Let H be a subgroup of G and c a K-rational
conjugation-invariant subset of H. Denote by CH,c the set of components x ∈ Comp(G) such that
⟨x⟩ = H and cH(x) ⊆ c. Then:

Proposition 3.9. Assume every component x ∈ CH,c of degree ≤ 2 |c|ψ(G) with a K-rational (H, c)-
multidiscriminant is defined over K. Then, every component x ∈ CH,c with a K-rational (H, c)-
multidiscriminant is defined over K.

Proof. We prove the result by induction. Consider a component x ∈ CH,c of degree n > 2 |c|ψ(G)
with a K-rational (H, c)-multidiscriminant. Assume that every component in CH,c of degree < n
with a K-rational (H, c)-multidiscriminant is defined over K. Choose a tuple g ∈ cn representing x.
Since n > 2 |c|ψ(G), there is some g ∈ c which appears at least 2ord(g) |c| + 1 times in g.

Let g1, . . . , gr be the elements obtained as gχ(σ) for some σ ∈ ΓK . By Corollary 2.12 (iii), the
following component, whose group is the abelian group ⟨g⟩, is defined over K:

y
def= (g1, . . . , g1︸ ︷︷ ︸

ord(g)

, g2, . . . , g2︸ ︷︷ ︸
ord(g)

, . . . , gr, . . . , gr︸ ︷︷ ︸
ord(g)

).

In particular, the component y has a K-rational (H, c)-multidiscriminant by Corollary 2.12 (ii).
We now show that there is a component z with ⟨z⟩ = H such that x = yz. For this, we apply

the factorization result of [Seg22, Lemma 4.6]. Consider a conjugacy class γ of H which appears in
y. Then:

• The conjugacy class γ is some χ(σ)-th power of the conjugacy class of g, which appears at least
2ord(g) |c|+1 times in g because g itself does. Since x has aK-rational (H, c)-multidiscriminant,
we have µH,c(x)(γ) ≥ 2ord(g) |c| + 1.

• The conjugacy class γ appears at most ord(g) |c| times in y since deg(y) ≤ ord(g) |c|.

Finally:

µH,c(x)(γ) ≥ 2ord(g) |c| + 1
≥ ord(g)(|γ| + |c|)
= ord(γ) |γ| + ord(g) |c|
≥ ord(γ) |γ| + µH,c(y)(γ).
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By [Seg22, Lemma 4.6], there exists z ∈ Comp(G) such that x = yz and ⟨z⟩ = H, and in particular
z ∈ CH,c. Since x = yz and y both have K-rational (H, c)-multidiscriminants, the component z has a
K-rational (H, c)-multidiscriminant too. By the induction hypothesis, z is defined over K. Moreover
⟨y⟩ ⊆ H so y and z are permuting, and thus x = yz is defined over K by Theorem 3.3 (iii). We
conclude by induction.

Remark 3.10. When we have discussed the lifting invariant in Section 4, it will appear that the hy-
pothesis “with a K-rational (H, c)-multidiscriminant” in Proposition 3.9 can be replaced by the more
precise necessary condition “whose (H, c)-lifting invariant is ΓK-invariant”. The proof of Proposi-
tion 3.9 can be reproduced identically except for the two following details:

• That γ appears at least 2ord(g) |c| + 1 times in g follows from the fact that a component with
a ΓK-invariant (H, c)-lifting invariant also has a K-rational (H, c)-multidiscriminant. This
follows directly from the definition of the ΓK-action on lifting invariants in Subsection 4.3.

• To apply the induction hypothesis, we have to show that the component z obtained using the
factorisation lemma has a ΓK-invariant lifting invariant. At that point in the proof, we know
that x = yz, and that x and y both have ΓK-invariant lifting invariants. First notice that
x = yz implies:

ΠH,c(x) = ΠH,c(y)ΠH,c(z). (3.2)

Now, consider an automorphism σ ∈ ΓK . Theorem 4.10 together with the equality x = yz
imply:

σ.ΠH,c(x) = (σ.ΠH,c(y))(σ.ΠH,c(z))

i.e.:
ΠH,c(x) = ΠH,c(y)(σ.ΠH,c(z)). (3.3)

Since the lifting invariant takes values in a group, Equation (3.2) and Equation (3.3) together
imply ΠH,c(z) = σ.ΠH,c(z). Hence the (H, c)-lifting invariant of z is ΓK-invariant.

Remark 3.11. The constant 2 |c|ψ(G) in Proposition 3.9 can easily be improved to:

∑
γ∈D

|γ|
[
ord(γ)

(
|γ| + φ

(
ord(γ)

))
− 1

]

where D is the set of conjugacy classes of H contained in c and φ is Euler’s totient function.

Example 3.12. In the situation of Example 2.14, where G is the symmetric group Sd and c is the
set of transpositions in G, checking that all components of degree ≤ 1

2d
4 are defined over Q would

have been enough to prove that they are all defined over Q.

3.5. Generalized permuting components

In this subsection, we prove Theorem 3.14, which generalizes both Theorem 3.3 and [Cau12, Propo-
sition 2.10]. First, we introduce the following definition:

Definition 3.13. Let x1, . . . , xn ∈ Comp(G) be components, let Hi = ⟨xi⟩ and H = ⟨H1, . . . ,Hn⟩.
The family (x1, . . . , xn) is permuting when for all elements γ1, . . . , γn ∈ H and for all i ∈ {2, . . . , n}
we have:

if
〈
H1, H2, . . . ,Hi−1, Hi, H

γi+1
i+1 , . . . ,H

γn
n

〉
= H,

then
〈
H1, H2, . . . ,Hi−1, H

γi+1
i+1 , . . . ,H

γn
n

〉
Hi = H.

Theorem 3.14. Let (x1, . . . , xn) be a permuting family of components. Then:
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(i) ni♮H(x1, . . . , xn) = {x1 · · ·xn}.

(ii) For all automorphisms σ ∈ ΓK , we have σ.(x1 · · ·xn) = (σ.x1) · · · (σ.xn).

(iii) If x1, . . . , xn are defined over K then x1 · · ·xn is defined over K.

The case n = 2 gives back Theorem 3.3. The hypothesis of Theorem 3.14 is slightly weaker than
the one required to apply Theorem 3.3 multiple times recursively.

Proof. We focus on proving point (i), from which points (ii) and (iii) follow like in the proof of
Theorem 3.3. Let γ1, . . . , γn ∈ G such that ⟨

∏
xγi
i ⟩ = H. First we can assume γ1 = 1 as in the proof

of Theorem 3.3 (i). We proceed by induction. Assume we have shown:

x1 · · ·xn = x1x2 · · ·xi−1xix
γi+1
i+1 · · ·xγn

n .

In particular, we have
〈
H1, H2, . . . ,Hi−1, Hi, H

γi+1
i+1 , . . . ,H

γn
n

〉
= H. Since (x1, . . . , xn) is permuting,

we can write γi = γ
(1)
i γ

(2)
i with γ

(1)
i ∈

〈
H1, H2, . . . ,Hi−1, H

γi+1
i+1 , . . . ,H

γn
n

〉
and γ

(2)
i ∈ Hi. Therefore:

x1 · · ·xn = x1 · · ·xi−1x
γ

(2)
i
i x

γi+1
i+1 · · ·xγn

n by Proposition 2.4 (iv), because γ(2)
i ∈ ⟨xi⟩

= x1 · · ·xi−1

(
x
γ

(2)
i
i

)γ(1)
i

x
γi+1
i+1 · · ·xγn

n because γ(1)
i ∈

〈
x1 · · ·xi−1, x

γi+1
i+1 · · ·xγn

n

〉
= x1 · · ·xi−1x

γi
i x

γi+1
i+1 · · ·xγn

n

and we conclude by induction.

We now give an application of Theorem 3.14:

Example 3.15. Let c be a K-rational conjugation-invariant set of G. Assume that c is complete,
i.e. no proper subgroup of G intersects every conjugacy class contained in c (for example, Jordan’s
lemma implies that c = G \ {1} is complete).

The following component (introduced in [EVW12, Paragraph 5.5]) is defined over K:

V =
∏
g∈c

(g, . . . , g︸ ︷︷ ︸
ord(g)

).

Indeed, consider an automorphism σ ∈ ΓK . Since ⟨g⟩ is abelian, Corollary 2.12 (i) implies that
σ.(g, . . . , g) = (gχ(σ−1), . . . , gχ(σ−1)). The profinite integer χ(σ−1) is invertible and so the action of σ
permutes the factors of V . Now:

σ.V = σ.
∏
g∈c

(g, . . . , g) ∈ ni♮({(g, . . . , g) | g ∈ c}).

We want to apply Theorem 3.14 (i) to show that ni♮({(g, . . . , g) | g ∈ c}) is a singleton, from which
σ.V = V follows. Consider an element g ∈ c and elements γg′ ∈ G for all g′ ∈ c \ {g}, such
that G is generated by g together with the elements (g′)γg′ for g′ ∈ c \ {g}. We want to show
⟨(g′)γg′ for g′ ∈ c \ {g}⟩ ⟨g⟩ = G. There are two distinct cases:

• If g ∈ Z(G), then this follows easily from, say, the fact that ⟨g⟩ is normal in G.

• If g ̸∈ Z(G), then there is a g′ ∈ c \ {g} such that g and g′ are conjugate. Therefore〈
g′γg′ for g′ ∈ c \ {g}

〉
is a subgroup of G that intersects every conjugacy class contained in

c, and therefore it equals G by the completeness assumption.
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4. The lifting invariant approach

In this section, we use the lifting invariant of [EVW12, Woo21] to study Question 1.1. We first
recall known properties of this invariant (Subsection 4.1) and then give arithmetic applications
(Subsection 4.2 and Subsection 4.3), including Theorem 4.7 (which is Theorem 1.2 (ii)).

4.1. Presentation of the lifting invariant

4.1.1. Definition and first properties. In this subsection, we present the lifting invariant. For
exhaustivity and convenience of the reader, we include some proofs for known facts. In what follows,
H is a subgroup of G and D is a set of conjugacy classes of H which together generate H. We denote
by c the union of the conjugacy classes in D.

We define the group U(H, c) in the following way: it is generated by elements [g] for each g ∈ c,
satisfying the relations [g][h][g]−1 = [ghg−1] for all g, h ∈ c.

Definition 4.1. Let g = (g1, . . . , gn) ∈ cn be a tuple. Its (H,c)-lifting invariant is the following
element of U(H, c):

ΠH,c(g) = [g1] · · · [gn].

Proposition 4.2. The (H, c)-lifting invariant ΠH,c(g) depends only on the braid orbit of g.

Proof. The relation [g][h][g]−1 = [ghg−1] in U(H, c) can be rewritten as [g][h] = [hg][g]. So the
(H, c)-lifting invariant is unchanged by elementary braids, which generate the braid group.

Proposition 4.2 implies that we can talk about the (H, c)-lifting invariant ΠH,c(x) of a component
x ∈ Comp(G) as soon as ⟨x⟩ ⊆ H and cH(x) ⊆ c. If (H, c) is not specified, the lifting invariant of a
component is its (H, c)-lifting invariant with H =

〈
g
〉

and c = cH(g).
We denote by π the morphism U(H, c) → H induced by the formula [g] 7→ g. The use of the

letter π is justified by the observation that for all g ∈ cn, we have π(ΠH,c(g)) = πg. The kernel of
the morphism π is denoted by U1(H, c).

Proposition 4.3. The subgroup U1(H, c) = ker(π) is central in U(H, c).

Proof. Let x be an element of U1(H, c) decomposed as [g1]ε1 · · · [gn]εn with gε1
1 · · · gεn

n = 1 and εi ∈
{−1, 1}. Now consider one of the generators [h] of U(H, c). We have:

x[h] = [g1]ε1 · · · [gn−1]εn−1 [gn]εn [h]

= [g1]ε1 · · · [gn−1]εn−1 [hg
εn
n ][gn]εn

= [hg
ε1
1 ···gεn

n ][g1]ε1 · · · [gn−1]εn−1 [gn]εn

= [h]x.

Hence x commutes with a generating set of elements of U(H, c) and thus x ∈ Z(U(H, c)). This shows
that U1(H, c) is a central subgroup of U(H, c).

It follows from Proposition 4.2 and Proposition 4.3 that ΠH,c induces a morphism of monoids
from the following submonoid of Comp(G):

Comp(H, c) =
{
m ∈ Comp(G)

∣∣∣∣∣ ⟨m⟩ ⊆ H
cH(m) ⊆ c

}

into the abelian group U1(H, c). In fact, the abelian group U1(H, c) is the Grothendieck group of
Comp(H, c), i.e. ΠH,c is universal among morphisms from Comp(H, c) into groups. This follows from
[EVW12, Theorem 7.5.1]. In some sense, this means that the lifting invariant is the best possible
group-valued multiplicative invariant for components.
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The (H, c)-multidiscriminant defines a morphism from Comp(H, c) into the group ZD of maps
from D to Z. By the universal property of the Grothendieck group, the (H, c)-multidiscriminant can
be recovered from the (H, c)-lifting invariant. Indeed, the formula:

[g] 7→ (0, 0, . . . , 0, 1, 0, . . . , 0),

where the nonzero coefficient occurs at the coordinate corresponding to the conjugacy class of g,
induces a morphism U(H, c) → ZD whose restriction is the expected morphism U1(H, c) → ZD. So
the (H, c)-lifting invariant refines the (H, c)-multidiscriminant.

The (G,G)-lifting invariant of a component x ∈ Comp(G) only depends on the component of
unmarked covers obtained by forgetting the marked points of covers in x. This follows from the
following proposition:

Proposition 4.4. If γ ∈ H and x ∈ Comp(H, c) then ΠH,c(x) = ΠH,c(xγ).

Proof. Since c generates H, we can choose elements γ1, . . . , γn ∈ c such that γ1 · · · γn = γ. In U(H, c),
we have:

[γ1] · · · [γn]ΠH,c(x) = [γ1] · · · [γn−1]ΠH,c(xγn)[γn]
= ΠH,c(xγ1···γn)[γ1] · · · [γn]
= ΠH,c(xγ)[γ1] · · · [γn].

By Proposition 4.3, the element ΠH,c(xγ) ∈ U1(H, c) is central and thus we can cancel [γ1] · · · [γn] in
this equality. This concludes the proof.

4.1.2. The structure of the group U(H, c). We give a quick description of the group U(H, c).
The proofs for the facts stated here are contained in [Woo21, Paragraph 2.1]. The main result is
that the group U(H, c) is isomorphic to a fibered product:

U(H, c) ≃ Sc ×
Hab

ZD

where Sc (a reduced Schur cover of G) is a finite group which fits in an exact sequence:

1 → H2(H, c) → Sc → H → 1

for a specific quotient H2(H, c) of the second homology group H2(H,Z) of H. In particular, the
central subgroup U1(H, c) is isomorphic to the following direct product:

H2(H, c) × ker(π̃)

where the morphism π̃ : ZD → Hab is defined in the following way: when γ ∈ D is a conjugacy class,
denote by γ̃ the (well-defined) image in Hab of the elements of γ ∈ D; if ψ ∈ ZD, we then let:

π̃(ψ) =
∏
γ∈D

γ̃ψ(γ).

4.1.3. The lifting invariant distinguishes “big” components. The following result, which is
proved in [EVW12, Theorem 7.6.1] and [Woo21, Theorem 3.1], states that components are entirely
determined by their (H, c)-lifting invariant as soon as each conjugacy class of H in c is represented
enough times in their (H, c)-multidiscriminant. This is a stronger version of a result known as the
Conway-Parker theorem.

To state the result, we introduce some notation. If ψ ∈ ZD, we denote by |ψ| the value
∑
γ∈D ψ(γ)

and by min(ψ) the minimal value taken by ψ(γ) for γ ∈ D. Then:
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Theorem 4.5. There is a constant MH,c ∈ N such that for all ψ ∈ ZD satisfying min(ψ) ≥ MH,c,
the morphism ΠH,c induces a bijection:g ∈ G|ψ|

∣∣∣∣∣∣∣
〈
g
〉

= H

cH(g) = c
µH,c(g) = ψ

/B|ψ|
∼−→
{
x ∈ U(H, c)

∣∣∣x has image ψ in ZD
}
.

4.2. The lifting invariant and fields of definition of glued components

In this subsection, we use Theorem 4.5 to prove Theorem 1.2 (ii). The proof also makes use of
Theorem 3.1.

First, remark that we may choose a (rough) constant M independent from (H, c) that satisfies
the conclusion of Theorem 4.5:

M
def= max

(H,c)
MH,c,

where the maximum is taken over couples (H, c) where H is a subgroup of G and c is a conjugation-
invariant subset of H that generates H. In what follows, the constant M is fixed in this way.

Definition 4.6. A tuple g of elements of G is M -big if every conjugacy class of H =
〈
g
〉

that
appears in g appears at least M times, i.e. minµH(g) ≥ M . A component x ∈ Comp(G) is M -big if
its representing tuples are M -big.

Theorem 4.5 implies that M -big components are determined by their lifting invariant. Note that
if x ∈ Comp(G) and k ≥ M , the component xk is always M -big. We now prove Theorem 4.7, which
is Theorem 1.2 (ii):

Theorem 4.7. Let x1, . . . , xn ∈ Comp(G) be components such that x1 · · ·xn is M -big. Then:

(i) The set ni♮(x1, . . . , xn) contains only the component x1 · · ·xn.

(ii) For all automorphisms σ ∈ ΓK , we have σ.(x1 · · ·xn) = (σ.x1) · · · (σ.xn).

(iii) If x1, . . . , xn are defined over K, then x1 · · ·xn is defined over K.

Proof. Let H = ⟨x1 · · ·xn⟩ and c = cH(x1 · · ·xn). It follows from Proposition 4.4 and from the
multiplicativity of ΠH,c that all elements of ni♮(x1, . . . , xn) have the same (H, c)-lifting invariant.
Moreover they are all M -big and have monodromy group H. By Theorem 4.5, they must be equal
to each other. This proves point (i). Points (ii) and (iii) follow from point (i) and from Theorem 3.1,
like in the proof of Theorem 3.3.

Theorem 4.7 (iii) coupled with Corollary 3.4 imply that if x1, . . . , xn are defined over K, and if
k ≥ M , then (x1 · · ·xn)k is defined over K.

4.3. The Galois action on lifting invariants

Let H be a subgroup of G, c be a K-rational conjugation-invariant subset of H which generates H,
and D be the set of conjugacy classes of H contained in c. In this subsection, we define a Galois
action of ΓK on the set U(H, c). Proposition 4.8 implies that this action effectively describes the
effect on lifting invariants of the Galois action on Comp(G). This generalizes the branch cycle lemma
(Corollary 2.12 (i)). Moreover, in Theorem 4.10, we show that the Galois action on lifting invariants
of elements of Comp(G) is compatible with multiplication.

Consider a Galois automorphism σ ∈ ΓK . Since c is a K-rational subset, the χ(σ)-th power
operation defines a map pσ : D → D.
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If γ ∈ D, choose an arbitrary element gγ of γ and denote by ĝγ (resp. ̂(gγ)χ(σ−1)) the projection
on Sc of the element [gγ ] ∈ U(H, c) (resp.

[
(gγ)χ(σ−1)

]
∈ U(H, c)). Define the following element of

Sc, which can be checked to be independent from the choice of gγ :

w(γ, σ) def= ĝγ
−χ(σ−1) ̂(gγ)χ(σ−1).

Importantly, the element w(γ, σ) is central in Sc (its image in H is (gγ)−χ(σ−1)(gγ)χ(σ−1) = 1, and
thus Proposition 4.3 applies).

Consider an element v ∈ U(H, c), decomposed as (h, ψ) via the isomorphism U(H, c) ≃ Sc ×
Hab

ZD

(cf. Paragraph 4.1.2). We let:

σ.v =

 hχ(σ−1) ∏
γ∈D

w(γ, σ)ψ(c) , ψ ◦ pσ

 .
This formula is shown to define an action of ΓK on the set U(H, c). This construction is taken from
[Woo21, Paragraph 4.1], and the following proposition follows from [Woo21, Paragraph 6.1]:

Proposition 4.8. Let x ∈ Comp(G) with ⟨x⟩ ⊆ H and cH(x) ⊆ c. Then:

ΠH,c(σ.x) = σ.ΠH,c(x).

By projection on ZD, Proposition 4.8 gives back the branch cycle lemma (Corollary 2.12 (i)). A
consequence of Proposition 4.8 is the following necessary condition, which refines Corollary 2.12 (ii):

Corollary 4.9. Let x ∈ Comp(G) with ⟨x⟩ ⊆ H and cH(x) ⊆ c. If the component x is defined over
K, then its (H, c)-lifting invariant is ΓK-invariant.

We now show that a product of ΓK-invariant elements of U1(H, c) is ΓK-invariant, and thus the
lifting invariant cannot be used to detect negative answers to Question 1.1. This follows from the
following fact:

Theorem 4.10. The action of ΓK on U1(H, c) is compatible with multiplication.

Proof. Let v, v′ ∈ U1(H, c), and decompose them as v = (h, ψ), v′ = (h′, ψ′) with h, h′ ∈ H2(H, c)
and ψ,ψ′ ∈ ker(π̃). We have vv′ = (hh′, ψ + ψ′). Let σ ∈ ΓK . With notation as above, we have:

σ.(vv′) =

 (hh′)χ(σ−1) ∏
γ∈D

w(γ, σ)(ψ+ψ′)(c) , (ψ + ψ′) ◦ pσ


=

 hχ(σ−1)(h′)χ(σ−1) ∏
γ∈D

w(γ, σ)ψ(c)w(γ, σ)ψ′(c) , ψ ◦ pσ + ψ′ ◦ pσ


=

 (
hχ(σ−1) ∏

γ∈D
w(γ, σ)ψ(c)

)(
(h′)χ(σ−1) ∏

γ∈D
w(γ, σ)ψ′(c)

)
, ψ ◦ pσ + ψ′ ◦ pσ


= (σ.v)(σ.v′).

We have used repeatedly that H2(H, c) is abelian in the final computation: this proof does not
apply to arbitrary elements of U(H, c). However, the same proof shows that σ.(vv′) = (σ.v)(σ.v′)
holds as soon as v and v′ commute in U(H, c).

Theorem 4.10 implies positive answers to Question 1.1 in situations where the lifting invariant is
shown to characterize components. For example, Theorem 4.7 (iii) can be deduced from Theorem 4.5
by using Theorem 4.10 instead of Theorem 3.1.
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5. The patching approach

In this section, we use patching results over complete valued fields to study the fields of definition of
components obtained by gluing two components x, y ∈ Comp(G) defined over the number field K.
The main result is Theorem 5.4, which is Theorem 1.2 (iii). We now give a sketch of the argument,
which also serves as an outline of the section.

In Subsection 5.1, we recall and use a version of Hilbert’s irreducibility theorem (Theorem 5.1)
to construct infinitely many field extensions K1,K2, . . . of K, pairwise linearly disjoint, over which
the components x and y both have points (Lemma 5.2). For each n ∈ N, denote by fn (resp. gn)
a Kn((X))-point of x (resp. y) obtained from a Kn-point of x (resp. y). Note that Kn((X)) is a
complete valued field for the (X)-adic valuation.

In Subsection 5.2, we prove that for each n ∈ N, the cover obtained by patching the Kn((X))-
G-covers fn and gn is a Kn((X))-G-cover which lies in a component mn ∈ ni♮(x, y) (Lemma 5.3). In
particular, the field of definition of the component mn is included in Q ∩Kn((X)) = Kn.

Finally, we observe that at least two components mn,mn′ have to be equal because ni♮(x, y) is
finite. Such a component mn = mn′ has its field of definition included in Kn ∩ Kn′ = K. In other
words, we have found a component defined over K in ni♮(x, y): this is precisely Theorem 5.4. The
detailed proof is the focus of Subsection 5.3.

Note that the results of this section rely crucially on the fact that number fields are Hilbertian.

5.1. Constructing covers with linearly disjoint fields of definition

We will use the following form of Hilbert’s irreducibility theorem, which is close to the statement in
[BSFP14]:

Theorem 5.1 (Hilbert’s irreducibility theorem). Let L′ | L be a finite extension of number fields
and p : X → Y be a finite étale morphism from a variety X over L to an open subvariety Y of AnL.
Assume XL′ is irreducible. Then there exists an L-point t ∈ Y (L) such that the Q-points of X that
are mapped to t by p lie in a single Gal(Q | L′)-orbit.

When L = L′, this theorem is well-known. The fact that L′ may be chosen larger than L follows
from [FJ08, Corollary 12.2.3]. Using Theorem 5.1, we prove the following lemma:

Lemma 5.2. Let L′ | L be a finite Galois extension of number fields and S be an irreducible com-
ponent of the Hurwitz scheme H∗(G,n)L which is geometrically irreducible. Then there exists a field
extension L̃ | L such that L̃ and L′ are linearly disjoint over L, and an L̃-point f ∈ S(L̃).

Proof. Since S is geometrically irreducible, its extension SL′ is irreducible. The branch point mor-
phism S → (Confn)L is finite étale. By Hilbert’s irreducibility theorem (Theorem 5.1), there is a
configuration t ∈ Confn(L) such that the fiber F ⊂ S(Q) above t consists of a single Galois orbit.

Let f be any of the points in F and L̃ be the smallest extension of L over which the point f is
rational. Note that L̃L′ is the smallest extension of L′ over which the point f is rational. The fiber
F is the Gal(Q | L′)-orbit of f , hence the degree of the extension L̃L′ | L′ is the cardinality of F .
The same argument shows that the degree of the extension L̃ | L is also equal to the cardinality of
F . The equality [L̃L′ : L′] = [L̃ : L] implies that L′ and L̃ are linearly disjoint over L.

5.2. Relating patching and gluing

Let O be a complete discrete valuation ring of characteristic zero and L its fraction field, which is a
complete valued field. Since Q is algebraically closed and L contains Q, extension of scalars induces
a bijection between the irreducible components of H∗(G,n)Q and those of H∗(G,n)L. We denote by
Φn this bijection. This lets us do the following slight terminological abuse: we say that a component
x ∈ Comp(G) has an L-rational point if its extension Φdeg(x)(x) to L has an L-rational point.
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Lemma 5.3. Let x1, x2 ∈ Comp(G) be components which have L-rational points. Then there is a
component y ∈ ni♮(x1, x2) which has an L-rational point.

Proof.

• Step 1: Setting things up
For i = 1, 2, let ri = deg(xi), Gi = ⟨xi⟩ and fix an L-model fi ∈ H∗(G, ri)(L) of an L-rational
point of Φri(xi). The point fi corresponds to an L-G-cover with a marked L-point above
∞. In the cover fi, keep only the geometrically irreducible component of the marked point,
which is defined over L since the marked point is L-rational. This turns fi into a geometrically
irreducible L-Gi-cover with a marked L-point. The cover fi belongs to the component x′

i of
H∗(Gi, ri)L obtained by keeping only the component of the marked points in the covers of xi,
like in Paragraph 2.3.4. Without loss of generality, we may assume G = ⟨G1, G2⟩.

• Step 2: Patching covers over L
We use the algebraic patching results of [HV96]. First define:

L{z} =
{∑

i≥0 aiz
i ∈ L[[z]]

∣∣∣∣ ai →
i→∞

0
}

Q1 = Frac(L{z})

L{z−1} =
{∑

i≥0 aiz
−i ∈ L[[z−1]]

∣∣∣∣ ai →
i→∞

0
}

Q2 = Frac(L{z−1})

L{z, z−1} =
{∑

i∈Z aiz
i ∈ L[[z, z−1]]

∣∣∣∣ ai →
i→±∞

0
}

Q̂ = Frac(L{z, z−1}).

Let also Q′
1 = Q2 and Q′

2 = Q1. From the point of view of rigid analytic geometry, Q1 (resp.
Q2, and Q̂) is the algebra of analytic functions on the unit disk D1 centered at 0 (resp. a disk
D2 centered at ∞, and the annulus D1 ∩D2):

D1

D2

0

∞

Figure 2: The rigid analytic projective line

The marked points of the G-covers f1, f2 are L-points in an unramified fiber. Their existence
ensures that the corresponding field extensions F1, F2 of L(z) have an unramified prime of
degree 1. By [HV96, Lemma 4.2], for i = 1, 2, we can then replace fi by an isomorphic L-Gi-
cover such that Fi is included in Q′

i, and in particular the branch locus ti ∈ Confri(L) of fi is
included in a disk strictly smaller than Di. [HV96, Proposition 4.3] implies that f1 and f2 can
be patched into a geometrically irreducible L-G-cover f with an L-point.

• Step 3: Restriction of the patched cover f to disks
Denote by F the field extension corresponding to f , i.e. the compound of F1 and F2 in the
terminology of [HV96], which is included in Q̂. By [HV96, Lemma 3.6 (b)], we have the

24



equalities FQi = FiQi (for i = 1, 2) inside Q̂. Moreover, the morphism Gal(FQi | Qi) →
Gal(F | L(z)) corresponds to the inclusion Gi ↪→ G. We sum this up by the following diagram:

Q̂

FQi = FiQi

F Qi Fi

L(z)
GiG

Gi

Geometrically, the equality FQ1 = F1Q1 means that the cover f1 is isomorphic to f as a rigid
analytic cover when both are restricted to the unit disk D1, and similarly for f2 and f in
restriction to D2.
In consequence, the branch points of f are given by the configuration t = t1 ∪ t2. Let y be the
component of H∗(G, r1 + r2)L containing f (seen as an L-point). To show that the component
y fits, it remains to check that Φ−1

r1+r2(y) ∈ ni(x1, x2).

• Step 4: Admissibility of the special fiber f of the patched cover
Since t1 and t2 are included in disks strictly smaller than D1, D2, each of the configurations
t1, t2 maps to a single element a1, a2 modulo the maximal ideal of O, with a1 ̸= a2. The
projective line P1

L marked by t = t1 ∪ t2 has a semistable model P̃t over O, whose special fiber
P t is a “comb” with two teeth T1, T2, one for each coset a1, a2. For i = 1, 2, the points of
the configuration ti extend to sections which specialize to ri distinct nonsingular points of the
tooth Ti.

T0

T1 T2

singular points

t1 t2

Figure 3: The comb with two teeth P t

The cover f , branched at t, extends to a cover f̃ of the semistable model P̃t, which is ramified
along the sections of the points in t. The special fiber f of f̃ is a cover of the comb which
lies on the “boundary” of the component y in the sense of the Wewers’ compactification, see
[DE06, Paragraph 1.2] or [Cau12, Paragraph 3.3.1].
To prove that the special fiber f of f̃ is unramified at the singular points of the comb, we follow
[DE06, Paragraph 2.3] closely. The restriction of f to D1 extends to a cover (namely, f1) of
the rigid projective line which has no branch points outside D1. By the arguments of [DE06,
Proposition 2.3, (ii)⇒(i)⇒(iii)], the restricted cover f|D1 is trivial above the annulus ∂D1. The
same holds for f|D2 . Hence, f is unramified at the singular points of the comb.

25



We conclude that f is a cover of the comb P t unramified at the singular points, whose restriction
to the i-th tooth is isomorphic to the cover fi – which belongs to the component x′

i.

• Step 5: Conclusion
The conclusion of Step 4 implies that f is a ∆-admissible cover in the sense of [Cau12, Definition
3.7], where:

∆ =
(
G, (G1, G2),

(
x′

1, x
′
2
) )

is the degenerescence structure associated to (x′
1, x

′
2). By [Cau12, Proposition 3.9], the com-

ponent of f is a ∆-component, which in our terminology means that Φ−1
r1+r2(y) ∈ ni(x1, x2) as

we noted in Subsection 3.1. This concludes the proof.

5.3. Proof of the theorem

Theorem 5.4. Let x, y ∈ Comp(G) be components defined over K. Then ni♮(x, y) contains a
component defined over K.

Proof. Let r1 = deg(x), r2 = deg(y). Since the components x, y are defined over K, we fix{
a K-model X ⊆ H∗(G, r1)K of x
a K-model Y ⊆ H∗(G, r2)K of y . Note that X and Y are geometrically irreducible. The proof

consists of three steps:

1. First, we inductively construct two sequences of marked G-covers (fn)n≥1 and (gn)n≥1, as well
as a sequence (Kn) of field extensions of K such that:

• Kn is linearly disjoint with the Galois closure of K1 · · ·Kn−1 over K.
• fn and gn are Kn-points of X and Y respectively.

For f1 and g1, choose arbitrary Q-points of X and Y respectively, and let K1 be the smallest
extension of K over which they are both rational.
Assume we have constructed K1, . . . ,Kn−1 and f1, g1, . . . , fn−1, gn−1. Let Ln be the Galois
closure of K1 · · ·Kn−1 over K.
Apply Lemma 5.2 with L = K, L′ = Ln and S = X. This yields a field extension K̃n of K
such that K̃n and Ln are linearly disjoint over K, and a K̃n-point fn of X. Let L′

n be the
Galois closure of LnK̃n. Apply once again Lemma 5.2 with L = K̃n, L′ = L′

n and S = Y
K̃n

.
This yields a field extension Kn of K̃n such that Kn and L′

n are linearly disjoint over K̃n, and
a Kn-point gn of Y . Finally, replace the K̃n-point fn by fn seen as a Kn-point.
The inclusions between the fields introduced above are summed up by the following diagram:

L′
n Kn

Ln K̃n

K

By construction, we have fn ∈ X(Kn) and gn ∈ Y (Kn). Now:

Kn ∩ Ln = Kn ∩
(
L′
n ∩ Ln

)
=
(
Kn ∩ L′

n

)
∩ Ln = K̃n ∩ Ln = K.
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Since Ln | K is Galois, this is enough to conclude that Kn and Ln are linearly disjoint over K.
We have verified that the constructed sequences (fn), (gn), (Kn) satisfy the desired properties.

2. Next, we show that for each n there is a component zn ∈ ni♮(x, y) defined over Kn.
Denote by f̃n (resp. g̃n) the Kn((X))-point of X (resp. Y ) obtained by seeing fn ∈ X(Kn)
(resp. gn ∈ Y (Kn)) as a Kn((X))-point. Since F = Kn((X)) is a complete valued field,
Lemma 5.3 implies that there is a component zn ∈ ni♮(x, y) which has a Kn((X))-rational
point. In particular, the field of definition of zn is included in Kn((X)) ∩ Q = Kn.
We have established that there is a component zn ∈ ni♮(x, y) defined over Kn for all n.

3. Finally, since ni♮(x, y) is finite, there must be distinct integers n, n′ such that zn = zn′ . Fix
such n, n′. Then, the field of definition of zn is included in Kn ∩Kn′ = K.
This concludes the proof: there is a component zn ∈ ni♮(x, y) defined over K.

Example 5.5. The Mathieu group M23 is the only sporadic simple group not known to be a Galois
group over Q. In [Cau16, Exemple 3.12], a component defined over Q of connected M23-covers with
15 branch points is constructed. Theorem 5.4 improves upon this result. The group M23 is generated
by two conjugate elements a, aγ of order 3. Using GAP:

a := (1, 22, 14) (2, 13, 9) (3, 8, 6) (7, 16, 21) (10, 18, 19) (11, 23, 12);
b := (2, 4, 16) (3, 5, 7) (6, 11, 12) (8, 9, 14) (10, 21, 20) (15, 18, 17);
StructureDescription(Group(a, b)); # Output: "M23"
IsConjugate(Group(a, b), a, b); # Output: true

By the conclusions of Example 2.13, the component x = (a, a−1) and its conjugate xγ are defined
over Q. By Theorem 5.4, there are elements γ1, γ2 ∈ M23 such that xγ1xγ2γ is a component defined
over Q of connected M23-covers with four branch points. The same is true of the component xxγ̃
where γ̃ = γ−1

1 γ2γ. However, we know little about γ̃ ∈ M23. There are many pairs of generators of
M23 with orders in {2, 3, 4, 6}, and consequently many other examples with four branch points.

Example 5.6. Similarly, the group G = PSL2(16) ⋊ Z/2Z (labeled “17T7” on the Klüners-Malle
database and on LMFDB), which is the transitive group of least degree not known to be a Galois
group over Q, is generated by two conjugate elements a, b of order 6:

a := (1, 11, 5, 13, 14, 17) (3, 15, 7, 12, 8, 6) (9, 10, 16);
b := (1, 2, 15, 12, 8, 5) (3, 14, 11,4, 9, 6) (7, 10, 17);
StructureDescription(Group(a, b)); # Output: "PSL(2,16) : C2"

Like in Example 5.5, we conclude by Theorem 5.4 that there is a component defined over Q of
connected G-covers with 4 branch points.

The same holds for any group generated by two elements with orders in {2, 3, 4, 6}. More generally,
if one has a finite generating set of G and m(i) is the number of generators of order i, then there
is a component defined over Q of connected G-covers whose number of branch points is 2m(2) +∑
i≥3 φ(i)m(i).
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