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The performance of deep learning-based methods depends mainly on the availability of largescale labeled learning data. However, obtaining precisely annotated examples is challenging in the medical domain. Although some semi-supervised deep learning methods have been proposed to train models with fewer labels, only a few studies have focused on the uncertainty caused by the low quality of the images and the lack of annotations. This paper addresses the above issues using Dempster-Shafer theory and deep learning: 1) a semi-supervised learning algorithm is proposed based on an image transformation strategy; 2) a probabilistic deep neural network and an evidential neural network are used in parallel to provide two sources of segmentation evidence; 3) Dempster's rule is used to combine the two pieces of evidence and reach a final segmentation result. Results from a series of experiments on the BraTS2019 brain tumor dataset show that our framework achieves promising results when only some training data are labeled.

Introduction

The precise diagnosis of the disease and the accurate delineation of the target lesion are critical for helping radiotherapy and improving the clinical treatment effect. Important progress in computer vision tasks, such as image classification and segmentation, have been made thanks to the development of feature representation through deep neural network models such as, e.g., residual or dense connection [START_REF] Zhang | Automatic segmentation of acute ischemic stroke from DWI using 3-D fully convolutional DenseNets[END_REF][START_REF] Karthik | Ischemic lesion segmentation using ensemble of multi-scale region aligned CNN[END_REF], attention-gated connection [START_REF] Karthik | Delineation of ischemic lesion from brain MRI using attention gated fully convolutional network[END_REF], multiple scales features integration by model ensemble [START_REF] Karthik | Delineation of ischemic lesion from brain MRI using attention gated fully convolutional network[END_REF], transformer mechanism [START_REF] Hatamizadeh | Unetr: Transformers for 3D medical image segmentation[END_REF], etc. Though the study of better feature representation in deep learning shows promising performance, there still remains a big gap between experimental performance and clinical application, due to the requirement of labeled training data, the inability to model imperfect information, and the limited information provided by a single source of evidence.

First, acquiring a big labeled training dataset is particularly challenging in the medical domain; this issue has become one of the bottlenecks of learning-based approaches. Region labeling in medical image segmentation tasks requires domain knowledge, skilled expertise, and careful delineation of boundaries. The contradiction between the increasing demand for segmentation accuracy on the one hand, and the shortage of perfect (precise and reliable) annotations on the other hand has so far limited the performance of learning-based medical image segmentation methods. In recent years, many methods have been developed to address the scarce annotation problem, such as self-training [START_REF] Li | Transformation consistent self-ensembling model for semisupervised medical image segmentation[END_REF], adversarial training [START_REF] Ian | Generative adversarial nets[END_REF], co-training [START_REF] Peng | Deep co-training for semi-supervised image segmentation[END_REF], and clustering [START_REF] Lian | Spatial evidential clustering with adaptive distance metric for tumor segmentation in FDG-PET images[END_REF], in which only partially labeled or unlabeled data are used. It should be noted that training a deep learning model with unsupervised learning is more challenging and cannot always meet high precision requirements. Therefore, researchers now focus increasingly on semi-supervised learning.

Second, probabilistic deep networks, such as UNet [START_REF] Ronneberger | Convolutional networks for biomedical image segmentation[END_REF], SegResNet [START_REF] Myronenko | 3D MRI brain tumor segmentation using autoencoder regularization[END_REF] or DesNet [START_REF] Zhang | Automatic segmentation of acute ischemic stroke from DWI using 3-D fully convolutional DenseNets[END_REF] have limitations when it comes to quantifying prediction uncertainty. Most models are trained to approximate conditional class probabilities using the softmax transformation. However, the predictions of deep networks are not always reliable in regions containing uncertain information, such as the pixels close to the lesion boundary; as a result, probabilistic deep neural models are often over-confident for these pixels, resulting in a high risk of misclassification.

Third, a single source of information provides limited information, resulting in high uncertainty. Multiple sources of information can provide complementary information, making it possible to improve segmentation performance. Fusion methods, such as majority voting and averaging, are not robust in case of strongly conflicting information sources, making the fusion result unreliable. Thus, an effective fusion strategy to combine different sources of evidence is important for improving segmentation accuracy.

In this work, we address the above challenges using Dempster-Shafer theory (DST) [START_REF] Dempster | Upper and lower probability inferences based on a sample from a finite univariate population[END_REF] [39] and semi-supervised learning 1 . The main idea is to address the annotation requirements through the design of semi-supervised learning and to decrease the uncertainty caused by the lack of annotations with evidential segmentation and evidential fusion. In particular, compared with our previous conference paper [START_REF] Huang | Belief function-based semi-supervised learning for brain tumor segmentation[END_REF], we now use a slighter encoding-decoding feature extraction module with a multi-fiber unit connection instead of a residual unit connection and we use a class-independent Dice loss function to optimize the model. Moreover, we evaluate the method through complete experiments on the BraTS2019 dataset 2 . We first perform a sensitivity analysis by evaluating the impact of hyperparameters, i.e., the number of prototypes used to model segmentation uncertainty and the percentage of labeled training data. We then carry out a comparative analysis of segmentation performance with the state-of-the-art in the cases of fully supervised learning and semi-supervised learning. The contributions of this work can be summarized as follows:

• We propose a semi-supervised learning algorithm based on similarity constraints between two outputs, allowing the model to maintain a good performance when trained with fewer labels;

• We use a softmax transformation to generate segmentation probabilities and an evidential segmentation network to generate degrees of belief quantifying segmentation uncertainty;

• We propose a multiple evidence fusion strategy to combine the evidence from probability and mass distribution with Dempster's rule;

• The whole model is optimized with a class-independent Dice loss in the case of training with labels and optimized with mean square loss in the case of training without labels.

The rest of the paper is organized as follows: Section 2 starts with a brief reminder of Dempster-Shafer theory, the evidential neural network, and medical image segmentation with semi-supervised learning. The proposed framework is then introduced in Section 3. Section 4 shows experimental results on the BraTS2019 dataset. Section 5 gives conclusions and perspectives.

Related work

The theory of belief functions will first be summarized in Section 2.1. The evidential neural network model, a classifier based on DST used in our approach, will then be recalled in Section 2.2. Finally, semi-supervised medical image segmentation will be reviewed in Section 2.3.

Dempster-Shafer theory

Dempster-Shafer theory, first introduced by Dempster [START_REF] Dempster | Upper and lower probability inferences based on a sample from a finite univariate population[END_REF] and Shafer [START_REF] Shafer | A mathematical theory of evidence[END_REF] is a generalization of Bayesian probability theory. The DST is more flexible and suitable under weaker conditions [START_REF] Sun | A multi-attribute fusion approach extending Dempster-Shafer theory for combinatorial-type evidences[END_REF], i.e., imperfect (uncertain, imprecise, partial) information. Compared to probabilistic approaches, the DST model has more degrees of freedom, making it possible to represent severe uncertainty [START_REF] Denoeux | Representations of uncertainty in artificial intelligence: Beyond probability and possibility[END_REF].

Representation of evidence.

Let Ω = {ω 1 , ω 2 , . . . , ω K } be a finite set of hypotheses about some question, called the frame of discernment. Evidence about this question can be represented by a mass function m from the power set 2 Ω to [0, 1], such that A⊆Ω m(A) = 1, and m(∅) = 0. The method used to generate mass functions in this paper will be introduced in Section 2.2. Any subset A ⊆ Ω such that m(A) > 0 is called a focal set of m. The mass m(Ω) represents the degree of ignorance about the problem. When all focal sets are singletons, the mass function is said to be Bayesian. The information provided by a mass function m can be represented by a belief function Bel or a plausibility function P l from 2 Ω to [0, 1] defined, respectively, as

Bel(A) = B⊆A m(B) (1a) 
and

P l(A) = B∩A̸ =∅ m(B) = 1 -Bel( Ā), (1b) 
for all A ⊆ Ω; in (1b), Ā denotes the complement of A. The quantity Bel(A) can be interpreted as a degree of support to A, while P l(A) can be seen as a measure of lack of support given to the complement of A.

Dempster's rule. Two mass functions m 1 and m 2 derived from two independent items of evidence can be combined by Dempster's rule [START_REF] Shafer | A mathematical theory of evidence[END_REF] as

(m 1 ⊕ m 2 )(A) = 1 1 -κ B∩C=A m 1 (B)m 2 (C), (2) 
for all A ⊆ Ω, A ̸ = ∅, and (m 1 ⊕ m 2 )(∅) = 0. In (2), κ represents the degree conflict between m 1 and m 2 defined as

κ = B∩C=∅ m 1 (B)m 2 (C). (3) 
Decision-making. After combining all the available evidence in the form of a mass function, it is necessary to make a decision. Decision methods based on DST are reviewed in [START_REF] Denoeux | Decision-making with belief functions: a review[END_REF]. In classification, the most usual decision rule is to select the class with maximum plausibility. DST has been applied in the medical image domain and achieved great success in uncertainty modeling, and evidence fusion, such as dose painting [START_REF] Lelandais | Fusion of multi-tracer PET images for dose painting[END_REF], disease diagnoses [START_REF] Huang | Covid-19 classification with deep neural network and belief functions[END_REF], tumor segmentation [START_REF] Lian | Spatial evidential clustering with adaptive distance metric for tumor segmentation in FDG-PET images[END_REF][20] [START_REF] Huang | Lymphoma segmentation from 3D PET-CT images using a deep evidential network[END_REF], etc. A review of DST-based medical image segmentation can be found in [START_REF] Huang | Application of belief functions to medical image segmentation: A review[END_REF]. In this paper, we construct the semi-supervised evidence fusion model under the framework of DST.

Evidential neural network (ENN)

In [START_REF] Denoeux | A neural network classifier based on Dempster-Shafer theory[END_REF], Denoeux proposed an evidential neural network classifier (ENN) [START_REF] Denoeux | A k-nearest neighbor classification rule based on Dempster-Shafer theory[END_REF] using a three-layer fully connected network. The first layer is composed of I radial basis function (RBF) units, each of which computes an activation based on the Euclidean distance between input vector x and a prototype p i ,

a i = exp(-γ i ∥x -p i ∥ 2 ), (4) 
where γ i is a positive scale parameter. The second layer then represents the evidence of each prototype p i by a mass function m i defined as

m i ({ω k }) = α i u ik a i , k = 1, . . . , K (5a) m i (Ω) = 1 -α i a i , (5b) 
where α ∈ (0, 1) is a parameter associated with prototype p i and Ω = {ω 1 , . . . , ω K } is the set of classes. Parameter u ik is the membership degree of prototype p i to class ω k ; the following equality holds:

K k=1 u ik = 1.
The degree of belief that x belongs to class ω k based on the evidence of prototype p i is, thus, proportional to the degree of membership of p i to ω k , and to a decreasing function of the distance between x and p i . Finally, the third layer combines the evidence from the I prototypes using Dempster's rule [START_REF] Bakas | Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features[END_REF]. The network output is the mass function m defined as m = I i=1 m i . The focals sets of m are the singletons {ω k } for k = 1, . . . , K and Ω. After fusion, input vector x is assigned to the most plausible class ω k * , with k * = arg max k m({ω k }).

In the ENN model, the parameters to be learnt are the prototypes p i , their membership value u ik , as well as parameters α i and γ i . Let ψ denote the vector of all parameters. The network is trained by minimizing the regularized loss function

L(ψ) = K k=1 (pl k -y k ) 2 + λ I i=1 α i , (6) 
where pl k is the output plausibility of class ω k , y k = 1 if the true class is ω k and y k = 0 otherwise, and λ is a regularization coefficient. The idea of applying the ENN model to features extracted by a convolutional neural network (CNN) was first proposed by Tong et al. in [START_REF] Tong | An evidential classifier based on Dempster-Shafer theory and deep learning[END_REF]. In this paper, we use ENN as one of the segmentation models to obtain segmentation results with a measure of uncertainty.

Semi-supervised medical image segmentation

Techniques for semi-supervised medical image segmentation can be divided into three classes: graph-constrained [START_REF] Xu | Deep grabcut for object selection[END_REF], self-learning [START_REF] Li | Transformation consistent self-ensembling model for semisupervised medical image segmentation[END_REF][START_REF] Min | A two-stream mutual attention network for semisupervised biomedical segmentation with noisy labels[END_REF], and generative adversarial learning methods [START_REF] Mondal | Few-shot 3D multi-modal medical image segmentation using generative adversarial learning[END_REF][START_REF] Sun | Parasitic GAN for semi-supervised brain tumor segmentation[END_REF]. As an example in the first category, the authors of [START_REF] Xu | Deep grabcut for object selection[END_REF] used a rectangle as a soft constraint by transforming it into a Euclidean distance map and predicting object masks with a convolutional neural network. Self-learning methods use techniques such as an auxiliary model to generate similar pseudos labels so as to guide to training process. In [START_REF] Baur | Semi-supervised deep learning for fully convolutional networks[END_REF], Baur et al. lifted the concept of auxiliary manifold embedding for semi-supervised learning by using the labeled data to optimize the network with a primary loss function; they further augmented the training batches with unlabelled samples and prior knowledge. In [START_REF] Li | Transformation consistent self-ensembling model for semisupervised medical image segmentation[END_REF], Li et al. employed a transformation consisting of a self-ensembling model to enhance the regularization effect for pixel-level predictions. Generative adversarial training has become widely used for semi-supervised learning because of its strong feature simulation ability. In [START_REF] Mondal | Few-shot 3D multi-modal medical image segmentation using generative adversarial learning[END_REF], Mondal et al. designed a few-shot 3D multi-modality medical image segmentation method with a generative adversarial network (GAN). The authors used a K + 1 class prediction method to guide GAN output plausible predictions for actual unlabelled data by restricting its output for fake examples.

Compared with graph-constrained methods, self-learning and adversarial learning methods have gained popularity in recent brain tumor segmentation research as they do not require additional annotation information for training. In [START_REF] Min | A two-stream mutual attention network for semisupervised biomedical segmentation with noisy labels[END_REF], Min et al. proposed a selftraining framework for semi-supervised brain tumor segmentation. A hierarchical distillation was used to generate reliable pseudo labels for unlabeled data, which were mixed with manual labels to retrain a two-stream mutual attention network. In [START_REF] Sun | Parasitic GAN for semi-supervised brain tumor segmentation[END_REF] a segmenter, a generator, and a discriminator. The discriminator learns the tumor boundary with the label maps produced by the segmenter and the supplementary label maps synthesized by the generator.
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The above approaches focus on training a segmentation model with partially labeled training data. Though experimental results are promising, only a few authors have studied the uncertainty caused by the low quality of the images and the lack of annotations. In this paper, we adopt the main idea of self-training and use the image information to construct a semi-supervised brain tumor segmentation framework. We propose to use a probabilistic segmentation module and an evidential segmentation module in parallel. The available evidence is then combined using Dempster's rule to decrease segmentation uncertainty.

Proposed framework

The proposed SEFNet architecture is composed of four modules for feature extraction, probability/belief calculation, and evidence fusion. Figure 1 shows the overall flowchart of our proposal. The first step is to extract features from input images x. Second, two modules are used in parallel to map features into probabilities and mass functions. The probability assignment module uses the softmax transformation to map the extracted features to probabilities. The belief assignment module uses the ENN model recalled in Section 2.2 to map the extracted features to mass functions. Third, the two sources of evidence, probabilities and mass functions, are combined by Dempster's rule in the multiple evidence fusion module. This architecture will be described in greater detail in Section 3.1. The semi-supervised learning algorithm will be introduced in Section 3.2. 

Evidential segmentation framework with multiple evidence fusion

Figure 2 shows the detailed evidential segmentation framework. The input is composed of four MRI modalities. (Here, we show an example of input data of size 4×128×128×128.) Feature extraction. As the focus of this paper is to improve the segmentation performance by modeling prediction uncertainty and combing evidence from different classifiers, we selected UNet, a basic medical image segmentation model, as our feature extraction module with some small modifications. Our proposed framework could alternatively be applied to any state-of-the-art feature extraction models such as, e.g., DenseCNN [START_REF] Karthik | Ischemic lesion segmentation using ensemble of multi-scale region aligned CNN[END_REF], attentionCNN [START_REF] Karthik | Delineation of ischemic lesion from brain MRI using attention gated fully convolutional network[END_REF], transformerUNet [START_REF] Hatamizadeh | Unetr: Transformers for 3D medical image segmentation[END_REF], uResNet [START_REF] Guerrero | White matter hyperintensity and stroke lesion segmentation and differentiation using convolutional neural networks[END_REF], to obtain better performance. As shown in Figure 2, we apply a multi-fiber unit in the encoding stage to achieve multi-scale representation. In the decoding stage, the high-resolution features from the encoding stage are concatenated with the upsampled features, which makes the whole feature extraction module similar to UNet [START_REF] Ronneberger | Convolutional networks for biomedical image segmentation[END_REF]. Figure 3(a) shows an example of a multi-fiber unit with a multiplexer layer. Such a unit slices the residual unit into M parallel and separated fibers with the multiplexer layer, which enables information sharing among parallel fibers. Let V in , V mid , and V out denote the number of input channels, middle channels, and output channels, respectively. The total number of connections for the residual unit and multi-fiber units is, respectively,

V in × V mid + V mid × V out and (V in × V mid + V mid × V out )/M .
Probability and belief assignment modules. The probability assignment module comprises a 1 × 1 × 1 projection layer followed by a softmax layer, which maps the feature vectors into probabilities directly. The output of the probability assignment module is denoted as p CN N , and we assume that each voxel belongs to one of four classes denoted as {0, 1, 2, 4}. The belief assignment module is based on the ENN model recalled in Section 2.2; it comprises three layers: an RBF layer that computes distance-based activations using (4), a mass calculation layer that computes mass functions using [START_REF] Chen | 3D dilated multi-fiber network for real-time brain tumor segmentation in MRI[END_REF], and a combination layer that combined mass functions derived from prototypes using Dempster's rule (2). Evidence fusion. The objective of this module is to make a final segmentation decision. The decision based on several information sources can be expected to be more accurate and reliable than using a single source of information. In our case, if only part of the training data is labeled, the uncertainty is higher than it is in the fully supervised case. To increase the segmentation performance, we propose an additional evidence fusion layer to combine evidence from the probability and belief assignment modules. Here, the voxel-wise output probability distributions p CN N from the probability assignment module can be seen as a Bayesian mass functions, which can be combined with the voxel-wise output mass functions m EN N from the belief assignment module using Dempster's rule [START_REF] Bakas | Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features[END_REF]. The combined mass functions are Bayesian, and are given by

(p CN N ⊕ m EN N )({ω k }) = p CN N (ω k )pl EN N (ω k ) K l=1 p CN N (ω l )pl EN N (ω l ) , k = 1, . . . , K, (7) 
where

pl EN N (ω k ) = m EN N ({ω k }) + m EN N (Ω)
is the plausibility of class ω k derived from mass function m EN N .

Semi-supervised learning

We propose a semi-supervised learning algorithm to optimize the framework when only part of the training data is labeled, with the aim of obtaining an accuracy as close as possible to that of a fully supervised learning method. The general idea is that similar images are expected to produce similar classification or segmentation results even if some transformations have been performed because the relevant characteristics are preserved despite the transformation. During each learning epoch, a transformed copy x t of each input image x is computed using one of several transformations, namely, random intensity change, Gaussian blur and exponential noise. This transformation operation will be described in Section 4.1. Two loss functions are proposed for training data with and without labels.

Training with labels. We train the network with the labeled data using the class-independent Dice loss loss1, which measures the overlap region between the output S and the ground truth G:

loss1 = K k=1 1 -2 N 1 n=1 S kn G kn N 1 n=1 S kn + G kn , (8) 
where G kn = 1 if voxel n belongs to class k, and G kn = 0 otherwise, S kn represents the estimated probability that voxel n belongs to class k, and N 1 is the number of labeled voxels.

Training without labels. For the data without labels, we use the mean squared error loss, denoted here as loss2, to optimize the feature representation by minimizing the difference between the original output S and the transformed output S t :

loss2 = 1 2N 2 K K k=1 N 2 n=1 S kn -S t kn 2 , (9) 
where S t kn is the estimated probability that voxel n of the transformed image x t belongs to class k, and N 2 is the number of unlabeled voxels.

Experimental results

In this section, we present numerical experiments to verify the effectiveness of the proposed model. In Section 4.1, we introduce the dataset, the preprocessing of the data, the parameter setting, and the evaluation criteria. An analysis of the sensitivity to hyperparameters and a comparative analysis of segmentation performance are then reported, respectively, in Sections 4.2 and 4.3.

Experimental settings

Dataset. The experiment data are those of the Brain Tumor Segmentation (BraTS) 2019 challenge [START_REF] Menze | The multimodal brain tumor image segmentation benchmark (BraTS)[END_REF][START_REF] Bakas | Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features[END_REF][START_REF] Bakas | Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the BraTS challenge[END_REF]. The dataset consists of 335 cases of patients for training, 125 cases for validation and 166 cases for test. Since the test set has not been made available after the BraTS challenge, we used the official validation set to test our model, i.e., we used it as a test set. For each patient, we have four kinds of MR sequences: T1-weighted (T1), post-contrast T1-weighted (T1Gd), T2-weighted (T2), and Fluid Attenuated Inversion Recovery (FLAIR). Each of them has a volume of 155 × 240 × 240. For training data, each case was annotated into three heterogeneous histological sub-regions: peritumoral edema (ED, label 2), necrotic core and non-enhancing tumor (NRC/NET, label 1), and enhancing tumor (ET, label 4). The background is marked as label 0. Figure 4 shows an example of the four modalities and the corresponding tumor region. The evaluation was based on the segmentation accuracy of three overlap regions: enhancing tumor (ET, label 4), tumor core (TC, the composition of label 1 and 4), and whole tumor (WT, the composition of label 1, 2, and 4). For validation data, only four modalities of MR sequence information are available.

We used five-fold cross-validation to train our SEFNet model. During training, we randomly divided the BraTS2019 training set into five equal-size datasets. The training process was then repeated five times, using each of the five datasets exactly once as the validation set. The cross-validation segmentation performance is the average performance of the five models. For a fair comparison with the state-of-the-art, we fine-tuned the best-performing model with the full training set and tested the performance on the validation set. The segmentation performances were assessed by the online evaluation server CBICA's Image Processing Portal3 . Pre-processing. Before feeding the data into the framework, several pre-processing methods were used to process the input data. We first applied intensity normalization to each MRI modality from each patient independently by subtracting the mean and dividing by the standard deviation of the brain region only. Moreover, to prevent overfitting, we used four types of data augmentation. First, we applied a random intensity shift between [-0.1, 0.1] and random intensity scaling between [0.9 For semi-supervised training, we used additional transformations of each preprocessed input x. We first applied random intensity change on the input with the shift between [-0.2, 0.2] and scaling between [0.9, 1.1]. We then added Gaussian Blur with a standard deviation of 3 to the image. Finally, we added exponential noise with an exponent of 3 to the input. After transformation, for each input image x, we obtained a transformed image x t . Figure 5 shows two examples of input images before and after prepossessing. (To better show the difference between images, here we only show the aligned images without random cropping). Compared with the original image, the augmented image is randomly flipped with a small intensity change and image rotation. Compared with augmented input x, the transformed input x t is more blurry and noisy.

Parameter settings. For the feature extraction module, the spatial dimension and input channel were set, respectively, to 3 and 4. The number of channels (filters) of the input layer was set to 16. The number of channels of MF units were set to 32, 64, 64 for the three encoders and each MF unit had 16 parallel fibers.

For the belief assignment module, parameters α and γ were initialized at 0.5 and 0.01. The prototypes p i as well as the membership degrees u ik were initialized randomly from Xavier uniform [START_REF] Hanin | How to start training: The effect of initialization and architecture[END_REF] distributions. Regularization coefficient λ in ( 6) was set to 0 because regularization is done through data augmentation, as explained above. The impact of the number of prototypes will be discussed in Section 4.2.

The maximum training epoch was set to 300. The training process was stopped when the performance did not increase in 20 epochs. The Adam optimization algorithm with batch size 8 was used to train the model. The initial learning rate was set to 0.001 at the beginning and decayed with an adjusted learning rate

lr q = lr 0 1 - q N q 0.9 , ( 10 
)
where q is an epoch counter and N q is the maximum number of epochs. The model with the best cross-validation performance was saved as the final model for testing. All experiments were performed using Python and the PyTorch framework on a desktop computer with a 2.20GHz Intel(R) Xeon(R) CPU E5-2698 v4 and a Tesla V100-SXM2 graphics card with 32 GB GPU memory.

Evaluation criteria. We used two performance criteria: the Dice score and the Hausdorff distance, to measure the segmentation performance. The Dice score is defined as

Dice(S,G) = 2 |S ∩ G| |S| + |G| , (11) 
where G denotes the manually labeled region, S the segmented region, and S ∩G the overlap area between S and G; the notation |•| denotes the area of a region. The Hausdorff distance is defined as

Hausdorff = max max i∈S min j∈G d(i, j), max j∈G min i∈S d(i, j) , (12) 
where d represents the Euclidean distance between voxels of S and G. For each patient, we separately computed these two indices for the three classes and then averaged indices over the patients.

Sensitivity analysis Number of prototypes.

The number of prototypes in the belief assignment module is an important hyper-parameter that may impact segmentation performance. We trained the model with 6, 8, 10, 12, 16, and 20 prototypes. Figure 6 shows the corresponding results. We can see that, when the number of prototypes is comprised between 6 and 12, the performance is stable. SEFNet achieves the best performance in terms of Dice score and Hausdorff Distance with 10 prototypes. With more than 12 prototypes, the performance decreases. In the following experiments, the number of prototypes in SEFNet was fixed to 10.

Proportion of labeled data. To evaluate the impact of the proportions of the labeled training data, we trained our model with 100%, 70%, 50%, and 30% labeled data. The crossvalidation performance is reported in Table 1 in terms of Dice score and Hausdorff distance 

Comparative analysis of segmentation performance

Comparison with fully-supervised methods. We first compared our results with the state-ofthe-art under fully-supervised learning on the BraTS2019 validation set. The comparison is presented in Table 3. We highlight the best results in bold characters and underline the second-best results. SEFNet achieved Dice scores of 0.793, 0.868, 0.861, and 0.841, respectively, for ET, WT, TC, and the mean over the three regions. Compared with MFNet, this corresponds to an increase of 4%, 6.2%, and 4.2% of Dice score in ET, TC and the mean, respectively. Also, SEFNet surpasses most of the reported methods, i.e., UNet, attention UNet, and MCNet. The performance of SEFNet is not as good as the top one solution of the BraTS2019 challenge segmentation task, which uses a two-stage cascaded U-Net [START_REF] Jiang | Two-stage cascaded U-Net: 1st place solution to BraTS challenge 2019 segmentation task[END_REF] (double model), with marginal performance gaps of 0.9%, 4.1%, and 0.3% for ET, WT, and TC in Dice score, respectively. The two-stage cascaded U-Net framework uses one UNet for coarse segmentation and another one for accurate segmentation, which makes it possible to increase the segmentation accuracy to a certain degree. However, the computation cost is high and the reported memory requirement is over 12 GB during the experiment with a batch size of 1. Figure 9 presents a visual comparison of the brain tumor segmentation results obtained from different slices. From left to right, we can see the ground truth (GT), the segmentation result of the baseline method (MFNet), our proposal (SEFNet), and the difference maps between MFNet and GT on the one hand and between SEFNet and GT on the other hand. The white points in the difference map indicate wrong-segmented voxels. We highlight the regions with fewer misclassified voxels by red circles in Figure 9, where there are fewer white points. Compared with MFNet, SEFNet can generate more precise segmentation results. Comparison with semi-supervised methods. We also compared the segmentation performance with the state-of-the-art under semi-supervised learning. Comparing our results with those of other semi-supervised methods is difficult because these methods have been tested on BraTS datasets from different years (2015, 2017, 2018, or 2019), resulting in the various training and validation set components. Also, the different definitions of training labels make the comparison difficult. In this work, we simplified the analysis by only comparing the results when 50% of the training data are labeled. As we can see from Table 4, SEFNet achieves the best performance on validation data with the reported 0.792 mean Dice score on the BraTS2019 dataset. Compared with the performance of MASSL and SAM-GAN on the BraTS2018 dataset, SEFNet yields an increase of 10% and 4.1% in the Dice score of WT and Mean, respectively. Compared with the best performance of PGAN on the BraTS2017 dataset, SEFNet shows an increase of 16.6%, 12.8%, and 8.9% in the Dice score of WT, TC, and Mean, respectively. Compared with the performance of TSMAN on the BraTS2015 dataset, SEFNet yields an increase of 9% in the mean Dice score. This comparison provides empirical evidence for the effectiveness of SEFNet in semi-supervised learning tasks.

Conclusion

In this paper, we have presented a semi-supervised evidence fusion framework (SEFNet) for medical image segmentation. In the SEFNet framework, we compute two pieces of segmentation evidence: probability functions generated by a softmax layer, and mass functions generated by an evidential neural network module. Dempster's rule is then used to fuse the two pieces of evidence and to decrease segmentation uncertainty. For labeled images, we used the supervised class-independent Dice loss to guide the training process. For unlabeled images, we used information constraints through image transformation operations to provide training guidance. Quantitative and qualitative results on the BraTS2019 dataset show that using evidence fusion with semi-supervised learning makes it possible to efficiently deal with segmentation uncertainty and to achieve only a small performance degradation with 50% of labeled data, as compared to the fully-supervised case.

This work can be continued in several directions. First, it would be interesting to study the evidence from the belief assignment module in greater detail; in particular, the masses assigned to the frame of discernment could be meaningful and exploited in the decision. Second, one of the potential issues in this work may be the dependence of the sources of information. The two pieces of evidence obtained from the probability and belief assignment modules are not independent because they are derived from the same features. The use of alternative combination rules such as the cautious rule [START_REF] Denoeux | Conjunctive and disjunctive combination of belief functions induced by non distinct bodies of evidence[END_REF] or even parameterized families of rules [START_REF] Quost | Classifier fusion in the Dempster-Shafer framework using optimized t-norm based combination rules[END_REF] could be investigated. In the future, we also plan to study the reliability of segmentation results with the expected calibration error [START_REF] Guo | On calibration of modern neural networks[END_REF] or reliability diagrams. Finally, the multimodal evidence fusion framework could be extended to other medical data analysis tasks, such as biological indicators analysis, survival prediction, and gene-disease correction prediction.
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Figure 1 :

 1 Figure 1: Overall flowchart of our proposal, composed of four modules for feature extraction, probability assignment, basic belief assignment, and evidence fusion.

Figure 2 :

 2 Figure 2: Proposed evidential medical image segmentation framework.

Figure 3 :

 3 Figure3: Illustration of the multi-fiber and residual units. (a) A multi-fiber unit with a multiplexer for transferring information across separated fibers (example of three fibers here)[START_REF] Chen | Multi-fiber networks for video recognition[END_REF], (b) A single fiber with residual unit[START_REF] He | Deep residual learning for image recognition[END_REF].

Figure 4 :

 4 Figure 4: Example of one patient from BraTS2019 dataset. The first and second rows show MR images and MR images with labeled tumor masks, respectively. From left to right: FLAIR, T1, T1Gd, T2. Labels 1, 2, and 4 are marked in red, green, and yellow, respectively.

Figure 5 :

 5 Figure 5: Example of pre-processed images. From left to right: the original image, the augmented image and the transformed image, respectively.

Figure 6 :

 6 Figure 6: Values of the (a) Dice score (the higher the better), (b) Hausdorff distance (HD) (the lower the better) of ET, TC, WT with the different number of prototypes.

Figure 7 :

 7 Figure 7: Plots of Dice loss and Dice score during training. (a) Mean training Dice loss, (b) Mean Dice training score during, (c) Mean cross-validation Dice loss, (d) Mean cross-validation Dice score.

Figure 8 :

 8 Figure 8: Dice score of ET, TC, and WT with different percentages of labeled training data. From left to right: the results of training with 100%, 70%, 50%, and 30% labels. The first, second, and third rows show the Dice score of ET, WT, and TC, respectively. The pink and light-blue boxplots represent the results of our proposal (SEFNet) and the baseline model (MFNet), respectively. The orange line and green triangle represent the median and mean values of the Dice score, respectively.

Table 1 :

 1 Cross-validation performances of SEFNet on the BraTS2019 dataset with different proportions of labeled data. 50%, and 30% training data are labeled. With different proportions of the labeled training data, the model shows comparable performance according to the Hausdorff Distance. Compared with WT segmentation, the Dice score standard deviations are quite high for ET and TC segmentation. Two main reasons can explain this phenomenon: the segmentation between ET and NRC/NET is challenging; some cases do not contain ET or NRC/NET, while the model segment DE into ET or NRC/NET class. Figure 7 shows plots of the Dice loss and Dice score for different proportions of training labels during training. With the decrease in training labels, the segmentation performance only decreases slightly. Table2shows the segmentation performance on the online validation dataset with the five corresponding models obtained by cross-validation. With 70%, 50%, and 30% labeled training data, the Dice score decreased by 2.9%, 4.2%, and 7.5%, respectively, compared with the fully supervised case. These results demonstrate the effectiveness of our semi-supervised learning scheme.Furthermore, we compared the distribution of the Dice score among 125 validation cases in our model SEFNet and the baseline model MFNet, under the different proportions of

	Label		Dice Score (± SD)		Hausdorff distance (± SD)
	proportion ET	WT	TC	ET	WT	TC
	100 %	0.783±0.227 0.906±0.056 0.805±0.220	3.481±4.516 4.618±3.829 6.978±7.595
	70 %	0.762±0.215 0.905±0.056 0.814±0.201	5.151±7.254 6.219±11.037 6.507±7.732
	50 %	0.727±0.261 0.904±0.066 0.806±0.215	5.115±6.149 4.858±5.399 6.672±7.529
	30 %	0.713±0.247 0.897±0.070 0.799±0.215	5.904±7.214 5.554±6.867 6.459±6.489
	with the corresponding standard deviations (SD) among the evaluated cases. Compared with
	100% training data labeled, the Dice score decreased by 2.1%, 5.6%, and 7%, respectively,
	when only 70%,					

Table 2 :

 2 Performances of SEFNet on the BraTS2019 validation dataset with different proportions of labeled data. The results are reported in Figure8. To simplify the comparison, we only show the mean value of the Dice score here. The boxplot displays the data based on a five-number summary: the minimum (the lowest data point excluding any outliers), the maximum (the largest data point excluding any outliers), the median, and the 25% and 75% percentile. As shown in Figure8, SEFNet yields better performance than MFNet with different proportions of labeled training data. When 100% training data are labeled, both SEFNet and MFNet achieve high segmentation accuracy. With the decreasing proportion of labeled training data, the SEFNet becomes increasingly superior to MFNet. Compared with MFNet, when only 30% training data are labeled, SEFNet yields around 4%, 5%, and 8% increase of Dice score for, respectively, ET, WT, and TC.

	Label		Dice Score (± SD)		Hausdorff distance (± SD)
	proportion ET	WT	TC	ET	WT	TC
	100%	0.763±0.254 0.883±0.095 0.808±0.201	4.592±8.401 5.983±6.202 7.671±10.608
	70%	0.734±0.286 0.884±0.110 0.767±0.242	5.021±8.929 5.718±7.929 8.427+11.799
	50%	0.721±0.294 0.877±0.129 0.777±0.227	7.204±17.002 7.942±15.235 11.830±19.809
	30%	0.688±0.289 0.887±0.113 0.744±0.267	8.609±17.533 7.448±12.585 12.236±19.690
	labeled training data.				

Table 3 :

 3 Performance comparison on the BraTS2019 validation set (fully-supervised learning). The best results are in bold, and the second best results are underlined.

Table 4 :

 4 Performance comparison with state-of-the-art semi-supervised methods on the BraTS datasets, with 50% labeled data. Symbol * indicates results that are not available from the published papers.

	Dataset	Method	# Training # Test		Dice score
			instances	instances ET	WT	TC	Mean
	BraTS2019 SEFNet (ours)	285	125	0.721 0.877 0.777 0.792
	BraTS2018	MASSL [6] SAM-GAN[44]	200 285	50 66	* *	0.770 * * *	* 0.751
	BraTS2017	Transfer-UNet[46] 285 PGAN [41] 285	46 46	0.734 0.690 0.631 0.685 0.751 0.711 0.649 0.703
		Transfer-UNet [46] 140	80	0.633 0.616 0.642 0.630
	BraTS2015	PGAN [41]	140	80	0.668 0.652 0.667 0.662
		TSMAN [33]	244	30	*	*	*	0.707
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