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The Baum-Connes property for a quantum
(semi-)direct product

Rubén Martos

Abstract. The well known “associativity property” of the crossed product by a semi-direct product
of discrete groups is generalized into the context of discrete quantum groups. This decomposition allows to
define an appropriate triangulated functor relating the Baum-Connes property for the quantum semi-direct
product to the Baum-Connes property for the discrete quantum groups involved in the construction. The
corresponding stability result for the Baum-Connes property generalizes the result [5] of J. Chabert for a
quantum semi-direct product under torsion-freeness assumption. The K-amenability connexion between
the discrete quantum groups involved in the construction is investigated as well as the torsion phenomena.
The analogous strategy can be applied for the dual of a quantum direct product. In this case, we obtain,
in addition, a connection with the Künneth formula, which is the quantum counterpart to the result [7] of
J. Chabert, S. Echterhoff and H. Oyono-Oyono. Again the K-amenability connexion between the discrete
quantum groups involved in the construction is investigated as well as the torsion phenomena.

Keywords. Quantum groups, divisible discrete quantum subgroups, quantum semi-direct product,
quantum direct product, Baum-Connes conjecture, torsion, K-amenability, Künneth formula.

1. Introduction

The Baum-Connes conjecture has been formulated in 1982 by P. Baum and A. Connes. We still do not know
any counter example to the original conjecture but it is known that the one with coefficients is false. For
this reason we refer to the Baum-Connes conjecture with coefficients as the Baum-Connes property. The
goal of the conjecture was to understand the link between two operator K-groups of different nature that
would establish a strong connexion between geometry and topology in a more abstract and general index-
theory context. More precisely, if G is a (second countable) locally compact group and A is a (separable)
G-C˚-algebra, then the Baum-Connes property for G with coefficients in A claims that the assembly map
µGA : Ktop

˚ pG;Aq ÝÑ K˚pG ˙
r
Aq is an isomorphism, where Ktop

˚ pG;Aq is the equivariant K-homology with
compact support of G with coefficients in A and K˚pG˙

r
Aq is the K-theory of the reduced crossed product

G˙
r
A. This property has been proved for a large class of groups; let us mention the remarkable work of N.

Higson and G. Kasparov [11] about groups with Haagerup property and the one of V. Lafforgue [13] about
hyperbolic groups.
The equivariant K-homology with compact support Ktop

˚ pG;Aq is, of course, the geometrical object obtained
from the classifying space of proper actions of G, thus it is, a priori, easier to calculate than the group
K˚pG˙

r
Aq which is the one of analytical nature and then less flexible in its structure. Nevertheless, sometimes

the group Ktop
˚ pG;Aq creates non-trivial troubles. This is why R. Meyer and R. Nest provide in 2006 a new

formulation of the Baum-Connes property in a well-suited category framework [18]. More precisely, if K K G is
the G-equivariant Kasparov category and F pAq :“ K˚pG˙

r
Aq is the homological functor over K K G defining

the right-hand side of the Baum-Connes assembly map, then Meyer and Nest show in [18] that the assembly
map µGA is equivalent to the natural transformation ηGA : LF pAq ÝÑ F pAq, where LF is the localisation of the
functor F with respect to an appropriated complementary pair of (localizing) subcategories pL ,N q; namely,
L is the subcategory of K K G of compactly induced G-C˚-algebras and N is the subcategory of K K G of
compactly contractible G-C˚-algebras.
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This reformulation allows, particularly, to avoid any geometrical construction and thus to replace G by a
locally compact quantum group G. The problem is the torsion structure of such a G. Indeed, if G is a discrete
group, its torsion is completely described in terms of the finite subgroups of G whereas for the case in which
pG is a discrete quantum group, the notion of torsion is a non trivial problem that has been introduced firstly
by R. Meyer and R. Nest (see [19] and [17]) and recently re-interpreted by Y. Arano and K. De Commer in
terms of fusion rings (see [1]). But torsion phenomena in the quantum setting are far from been completely
understood, so that the current proper formulation of the quantum Baum-Connes property concerns only
torsion-free discrete quantum groups pG.

In this article, we study the stability of the Baum-Connes property under the semi-direct product construction.
Namely, consider a semi-direct product of locally compact groups F :“ Γ ˙G such that F is equipped with
a γ-element and for every compact subgroup Λ ă Γ the semi-direct product FΛ :“ Λ˙G satisfies the Baum-
Connes property. In this situation, J. Chabert shows in [5] that if the Baum-Connes property with coefficients
holds for Γ, so it does for F . The strategy consists in using the canonical ˚-isomorphism F ˙

r
A – Γ˙

r
pG˙

r
Aq

for any F -C˚-algebra A with the goal of constructing, in a natural way, partial descent homomorphisms and
thus to translate the assembly map for F into an assembly map for Γ through the transitional group G. The
assumption of the existence of a γ-element for F is actually unnecessary (as it is shown in [6]). In fact, all
technical problems we have to deal with, in order to get such a translation, appear in the treatment of the
equivariant K-homology with compact support in relation with the associativity above. Hence, our strategy
is to apply the Meyer-Nest machinery thanks to which all these shortcomings will be encoded in functorial
and localization functors properties obtaining that the Baum-Connes property with coefficients holds for F
if and only if it holds for Γ under the same assumptions concerning the compact subgroups of Γ (Theorem
3.2.5). It is important to say that H. Oyono-Oyono has already shown in [23] this “if and only if” result as a
consequence of the stability of the Baum-Connes property for extensions of discrete groups.
Our goal is to generalize this result when we have a quantum semi-direct product F :“ Γ ˙ G where Γ is a
discrete group acting by quantum automorphisms in the compact quantum group G (such a construction is
due to S. Wang [32]). Observe that the ˚-isomorphism F ˙

r
A – Γ˙

r
pG˙

r
Aq in the classical case is the key tool

to reach all subsequent constructions; therefore our main technical problem is to obtain such associativity in
the quantum setting. Namely, we prove that there exists a canonical ˚-isomorphism pF ˙

r
A – Γ ˙

r
ppG ˙

r
Aq

for any pF-C˚-algebra A (Theorem 3.2.2). With this aim in mind, it is convenient to analyze the structure
of the reduced crossed products by a discrete (quantum) group and, in this sense, we establish an universal
property for such a crossed product (Theorem 2.3.1), which will be very useful throughout all the article. This
decomposition allows to define a triangulated functor K K

pF ÝÑ K K Γ, which translates the Baum-Connes
property for pF into the Baum-Connes property for Γ through the transitional quantum group pG.
Notice however that, according to the above discussion about the torsion phenomena of quantum groups, we
need pF to be torsion-free in order to give a meaning to the quantum Baum-Connes property. In this way,
we give a more precise picture of the torsion nature of such a quantum semi-direct product and obtain the
natural result that we expect: if Γ and pG are torsion-free, then pF is torsion-free (Theorem 3.1.1). Since we
work with torsion-freeness assumption in order to legitimate the formulation of the quantum Baum-Connes
property, we have in particular that the only finite subgroup of Γ is the trivial one as opposed to the classical
case of [5]. A last property of own interest is studied: K-amenability (see Theorem 3.3.1). Namely, we prove
that pF is K-amenable if and only if Γ and pG are K-amenable. A crucial observation is done concerning a
compact bicrossed product in the sense of [10]. Namely, if F “ Γα ’β G is such a compact quantum group, the
torsion-freeness assumption about pF implies that the action β is trivial (Proposition 4.2). Hence F becomes
a quantum semi-direct product, for which the stabilization property has already been established.
Finally, we observe that the preceding categorical strategy can be adapted for the study of the stabilization of
the Baum-Connes property under other constructions of compact quantum groups. For instance we examine
the quantum direct product construction (due to S. Wang [32]). If F :“ G ˆ H is a direct product of
two compact quantum groups and A0 P ObjpK K

pGq is a fixed object, we define a triangulated functor
K K

pH ÝÑ K K
pF, which allows to establish the Baum-Connes property for pF (with coefficients in tensor

products) whenever pG and pH satisfy the strong Baum-Connes property (Theorem 5.2.3). Moreover the usual
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Baum-Connes property for pF is closely related to the Künneth formula in the analogous way as established
in [7] by J. Chabert, S. Echterhoff and H. Oyono-Oyono (Corollary 5.2.5). Again the torsion phenomena and
the K-amenability property are studied. We prove that pG and pH are strong torsion-free if and only if pF is
strong torsion-free (Proposition 5.1.1). We prove that pF is K-amenable if and only if pG and pH are K-amenable
(Theorem 5.3.1).

Acknowledgements. I would like to thank sincerely my advisor Pierre Fima because of his very useful
remarks, comments and rectifications. The rewarding and passionate discussions with him have been a
continuous motivation. It is a pleasure to thank as well Roland Vergnioux who has read very carefully my
PhD manuscript in order to improve in a capital way the present paper.

2. Preliminary results

2.1. Notations and conventions

First of all, let us fix the notations we use throughout the whole article.
We denote by BpHq the space of all linear operators of the Hilbert space H and by LApHq the space of all
adjointable operators of the Hilbert A-module H. All our C˚-algebras are supposed to be separables and all
our Hilbert modules are supposed to be countably generated. Hilbert A-modules are considered to be right
A-modules, so that the corresponding inner products are considered to be conjugate-linear on the left and
linear on the right. We use systematically the leg and Sweedler notations. We denote by A b the abelian
category of abelian groups and by A bZ{2 the abelian category of Z{2-graded groups of A b. The symbol b
stands for the minimal tensor product of C˚-algebras, the exterior/interior tensor product of Hilbert modules
depending on the context. The symbol b

max
stands for the maximal tensor product of C˚-algebras. If M

and N are two R-modules for some ring R, the symbol d stands for their algebraic tensor product over R,
and we write M d

R
N . If S,A are C˚-algebras, we denote by MpAq the multiplier algebra of A and we put

ĂMpAb Sq :“ tx PMpAb Sq | xpidA b Sq Ă Ab S and pidA b Sqx Ă Ab Su, which contains MpAq b S.
If H is a finite dimensional Hilbert space, we denote by H its dual or conjugate vector space, so that if
tξ1, . . . , ξdimpHqu is an orthonormal basis for H and tω1, . . . , ωdimpHqu its dual basis in H, we denote by ˚ the
usual homomorphism between H and H such that ξ˚i “ ωi, for all i “ 1, . . . , dimpHq.
If G “ pCpGq,∆q is a compact quantum group, the set of all unitary equivalence classes of irreducible
unitary finite dimensional representations of G is denoted by IrrpGq. The collection of all finite dimensional
unitary representations of G is denoted by ReppGq and the C˚-tensor category of representations of G is
denoted by ReppGq. The trivial representation of G is denoted by ε. If x P IrrpGq is such a class, we
write wx P BpHxq b CpGq for a representative of x and Hx for the finite dimensional Hilbert space on which
wx acts (we write dimpxq :“ nx for the dimension of Hx). The linear span of matrix coefficients of all
finite dimensional representations of G is denoted by PolpGq. Given x, y P IrrpGq, the tensor product of
x and y is denoted by x j y. Given x P IrrpGq, there exists a unique class of irreducible unitary finite
dimensional representation of G denoted by x such that Morpε, x j xq ‰ 0 ‰ Morpε, x j xq and it is called
contragredient or conjugate representation of x. Consequently, there exist non-trivial invariant vectors in
Hx b Hx and Hx b Hx denoted by Ex and Ex, respectively; which regarded as intertwiner operators, they
will be denoted by Φx and Φx, respectively and called canonical intertwiners. In this way, there exists an
antilinear isomorphism Jx : Hx ÝÑ Hx. We define the operator Qx :“ J˚x Jx, which is an invertible positive
self-adjoint operator unique up to multiplication of a real number. We choose this number such that Jx is
normalized meaning that TrpJ˚x Jxq “ TrppJ˚x Jxq

´1q. Thus, the quantum dimension of a class x P IrrpGq is
defined by dimqpxq “ TrpQxq. Let tξx1 , . . . , ξxnxu be an orthonormal basis of Hx which diagonalizes Qx and
let tωx1 , . . . , ωxnxu be its dual basis in Hx. If tξx1 , . . . , ξxnxu is an orthonormal basis of Hx and tωx1 , . . . , ωxnxu
denotes its dual basis in Hx , then we identify systematically Hx and Hx via the linear map ωxk ÞÑ 1?

λx
k

ξxk , for
all k “ 1, . . . , nx, where tλx1 , . . . , λxnxu are the eigenvalues of Qx. The fundamental unitary of G is denoted by
WG P BpL2pGqbL2pGqq and we recall that ∆paq “W˚

G p1baqWG, for all a P CpGq and p∆paq “ xW˚
G p1baqxWG,
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for all a P c0ppGq where xWG :“ ΣW˚
GΣ. The Haar state of G is denoted by hG and the corresponding GNS

construction by pL2pGq, λ,Ωq. We adopt the standard convention for the inner product on L2pGq, which
means that xλpaqΩ, λpbqΩy :“ hGpa

˚bq for all a, b P CpGq. We denote by phL the left Haar weight of pG and by
pλ : c0ppGq ÝÑ BpL2pGqq the corresponding left regular representation. For more details of these definitions and
constructions we refer to [33]. If H is another compact quantum group such that pH ă pG is a discrete quantum
subgroup, then we define an equivalence relation in IrrpGq in the following way: x, y P IrrpGq, x „ y ô there
exists an irreducible representation z P IrrpHq such that y j x Ą z. We say that pH is divisible in pG if for
each α P„ zIrrpGq there exists a representation lα P α such that s j lα is irreducible for all s P IrrpHq and
sj lα – s1j lα implies s – s1, for all s, s1 P IrrpHq. This is equivalent to say that for each α P IrrpGq{ „ there
exists a representation rα P α such that rα j s is irreducible for all s P IrrpHq and rα j s – rα j s1 implies
s – s1, for all s, s1 P IrrpHq. This is again equivalent to say that there exists a pH-equivariant ˚-isomorphism
c0ppGq – c0ppHq b c0ppHzpGq (see [29] for a proof). The trivial quantum subgroup of pG is denoted by E.

If α : A ÝÑ ĂMpc0ppGq b Aq is a left action of pG on a C˚-algebra A and x P IrrpGq, we write αxpaq :“
αpaqppxb idAq P BpHxqbA, for all a P A where px is the central projection of c0ppGq on BpHxq so that αpaq “
‘c0

xPIrrpGq
αxpaq. If tξx1 , . . . , ξxnxu is an orthonormal basis of Hx and ωξi,ξj is the linear form of BpHxq defined by

ωξi,ξj pT q :“ xξi, T pξjqy for all T P BpHxq, we define αxi,jpaq :“ pωξx
i
,ξx
j
b idAqpα

xpaqq P A, for all a P A and all
i, j “ 1 . . . , nx. Hence, if tmx

i,jui,j“1,...,nx are the matrix units in BpHxq associated to the basis tξx1 , . . . , ξxnxu,

then we have αxpaq “
nx
ř

i,j“1
mx
i,j b α

x
i,jpaq. In an analogous way, if U PMpc0ppGq b Cq for some C˚-algebra C,

then we define Ux :“ UppxbidCq P BpHxqbC and Uxi,j :“ pωξx
i
,ξx
j
bidCqU

x P C, for all i, j “ 1 . . . , nx. We use
systematically the well known one-to-one correspondence between unitary representations U PMpc0ppGq bCq
and non-degenerate ˚-homomorphisms φU : CmpGq ÝÑ MpCq which is such that φU pwxi,jq :“ Uxi,j for all
x P IrrpGq and all i, j “ 1, . . . , nx. If u P ReppGq is any finite dimensional unitary representation of G,
then we can define αupaq P BpHuq b A and Uu P BpHuq b C using the decomposition of u into direct sum
of irreducible representations. It is worth mentioning that giving an action α : A ÝÑ ĂMpc0ppGq b Aq is
equivalent to give a family of ˚-homomorphisms αx : A ÝÑ BpHxq b A, for every x P IrrpGq satisfying
iq pΦ b idAqα

xpaq “ pidHz b αyqpαzpaqqpΦ b idAq and iiq rαxpAqpHx b Aqs “ Hx b A, for all a P A, all
x, y, z P IrrpGq and all Φ P Morpx, y j zq. This can be checked straightforwardly by using the above
definitions.
Let pA, δq be a right G-C˚-algebra; the fixed points space of A is denoted by Aδ and we say that δ is a torsion
action if δ is ergodic and A is finite dimensional (hence unital). Given an irreducible representation x P IrrpGq,
we put Kx :“ tX P Hx b A | pidb δqpXq “

“

X
‰

12

“

wx
‰

13qu and use systematically the natural identification
Kx – Morpx, δq, with Morpx, δq :“ tT : Hx ÝÑ A | T is linear such that δpT pξqq “ pT b idCpGqqw

xpξ b
1CpGqqu. The corresponding x-spectral subspace of A is denoted by Ax so that the corresponding Podleś
subalgebra of A is denoted by AG. By abuse of language, both Kx and Morpx, δq are called spectral subspaces
as well. Finally, from the general theory of spectral subspaces (see [9] for the details) we recall that each
x-spectral subspace Ax is finite dimensional with dimpAxq ď dimqpxq whenever δ is ergodic; and that there
always exists a conditional expectation Eδ : A ÝÑ Aδ which is faithful on AG so that we have the following
decomposition AG “

À

xPIrrpGq
Ax.

For our purposes it is convenient to introduce the following operations in AG: given irreducible representations
of G, say x, y, z P IrrpGq, we define the following element X b

Φ
Y :“ p

“

X
‰

13

“

Y
‰

23qpΦb 1Aq P Hz b A, for all

X P Kx and Y P Ky and all intertwiner Φ P Morpz, x j yq; where
“

X
‰

13 and
“

Y
‰

23 are the corresponding
legs of X and Y in Hx b Hy b A. It is straightforward to check that X b

Φ
Y P Kz. Precisely, we have the

following formula pid b δq
´

“

X
‰

13

“

Y
‰

23

¯

“

”

“

X
‰

13

“

Y
‰

23

ı

12

“

wxjy
‰

13, where the legs of the right hand side
of the identity are considered in Hxjy b A b CpGq. Hence, the decomposition of x j y into direct sum of

irreducible representations, say tzkuk“1,...,r for some r P N yields that
“

X
‰

13

“

Y
‰

23 P
r
À

k“1
Kzk . The element

X b
Φ
Y is called spectral product of X by Y with respect to Φ.
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Given an irreducible representation x P IrrpGq and an element X P Kx, we define the spectral conjugate of
X as the element X# :“ p˚ ˝ Jx b idAqpX

˚q P Kx. If tξx1 , . . . , ξxdimpxqu is an orthonormal basis of Hx which
diagonalizes the canonical operator Qx and tωx1 , . . . , ωxdimpxqu is its dual basis in the dual space Hx, then the

intertwiner Φx can be written in coordinates under the expression Φx “
nx
ř

i“1

a

λxi ξ
x
i bξ

x
i , where λxi P R` is the

eigenvalue of Qx associated to the vector ξxi , for each i “ 1, . . . , nx ” dimpxq. In this situation, the element

X P Kx can be written in coordinates under the form X “
nx
ř

i“1
ωxi b ai as element of Hx bA, for some ai P A,

for all i “ 1, . . . , nx and its spectral conjugate is given by X# :“
nx
ř

i“1
Jxpξ

x
i q
˚ba˚i P HxbA. A straightforward

computation shows that the association X ÞÝÑ X# is antilinear and that X# P Kx.
2.1.1 Remark. We can do thus the multiplication over Φx and over Φx defined above. Namely, the previous
constructions show that X b

Φx
X# P Kε and X# b

Φx
X P Kε. Observe that Kε “ Aδ. Hence, if δ is an ergodic

action, X b
Φx
X# and X# b

Φx
X are scalar multiples of 1A. It will be useful to write down explicit formulas in

coordinates for these products: X b
Φx
X# “

nx
ř

i“1
λxi aia

˚
i ; X# b

Φx
X “

nx
ř

i“1
a˚i ai.

Concerning these constructions, the following technical observation will help to conclude later on our torsion
analysis for a quantum semi-direct product.

2.1.2 Lemma. Let G be a compact quantum group and pA, δq a right ergodic G-C˚-algebra. Given irre-
ducible representations x, y P IrrpGq and non-zero elements X P Kx, Y P Ky; then there exist an irreducible
representation z P IrrpGq and an intertwiner Φ PMorpz, xj yq such that X b

Φ
Y ‰ 0.

Proof. Let us fix orthonormal basis tξx1 , . . . , ξxdimpxqu of Hx and tξy1 , . . . , ξ
y
dimpyqu of Hy that diagonalise the

canonical operators Qx “ J˚x Jx and Qy “ J˚y Jy, respectively; with eigenvalues tλxi ui“1,...,nx and tµyj uj“1,...,ny ,
respectively. Denote by tωx1 , . . . , ωxdimpxqu and tω

y
1 , . . . , ω

y
dimpyqu the corresponding dual basis of Hx and Hy,

respectively.
Suppose that for all irreducible representation z P IrrpGq and all intertwiner Φ P Morpz, x j yq we have
X bΦ Y “ 0, that is, X bΦ Y “

ř

i,j

ωxi b ω
y
j ˝Φb aibj “ 0 where we use the coordinate expressions for X and

Y as above.
Multiplying by Φ˚ b 1A, this is still zero,

ÿ

i,j

ωxi b ω
y
j ˝ ΦΦ˚ b aibj “ 0 (2.1)

This is true for every irreducible representation z P IrrpGq and every intertwiner Φ P Morpz, x j yq. Let
us consider the decomposition in direct sum of irreducible representations of x j y, say tzlul; and denote
by tplul Ă BpHx bHyq the corresponding family of mutually orthogonal finite-dimensional projections with
sum idHxbHy . Likewise, for every k “ 1, . . . , dimpMorpz, x j yqq consider the corresponding intertwiners

Φk PMorpzl, xj yq for each l which are such that Φ˚kΦk “ id and
dimpMorpz,xjyqq

ř

k“1
ΦkΦ˚k “ pl.

Hence we consider the identity (2.1) above for these intertwiners Φk for each k “ 1, . . . , dim
`

Morpz, xjyq
˘

and
next we sum over k. We get

ř

i,j

ωxi bω
y
j plbaibj “ 0. Next, we can sum over l and we get

ř

i,j

ωxi bω
y
j baibj “ 0,

what implies that aibj “ 0, for all i “ 1, . . . , nx and all j “ 1, . . . , ny.

Since δ is an ergodic action by assumption we have that X# b
Φx

X “
nx
ř

i“1
a˚i ai “ λ 1A and Y b

Φy
Y # “

ny
ř

j“1
µyj bjb

˚
j “ µ 1A, for some λ, µ P C. Since X and Y are supposed to be non-zero, there exist at least one
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i “ 1, . . . , nx and one j “ 1, . . . , ny such that ai ‰ 0 and bj ‰ 0. Consequently, X# b
Φx
X ‰ 0 and Y b

Φy
Y # ‰ 0.

In other words, we have λ ‰ 0 and µ ‰ 0. Using equation the preceding discussion, we write

0 ‰ λ µ “
´

nx
ÿ

i“1
a˚i ai

¯´

ny
ÿ

j“1
µyj bjb

˚
j

¯

“
ÿ

i,j

µyj a
˚
i aibjb

˚
j “ 0,

a contradiction. �

2.2. Fusion rings and (strong) torsion-freeness

The notion of torsion-freeness for a discrete quantum group was initially introduced by R. Meyer and R. Nest
(see [19], [17] and [31] for more details).

2.2.1 Definition. Let G be a compact quantum group. We say that pG is torsion-free if one of the following
equivalent condition holds:

i) Any torsion action of G is G-equivariantly Morita equivalent to the trivial G-C˚-algebra C.

ii) Let pA, δq be a finite dimensional left G-C˚-algebra.

a) If δ is ergodic, then A is simple.
b) If A is simple, then there exists a finite dimensional unitary representation pHu, uq of G such that

A – KpHuq as G-C˚-algebras.

2.2.2 Remark. If pG is a discrete quantum group that has a non-trivial finite discrete quantum subgroup, then
pG is not torsion-free because the co-multiplication of such a non-trivial finite discrete quantum group Λ would
define an ergodic action of G on CpΛq.

It is important to observe that torsion-freeness in the sense of Meyer-Nest is not preserved, in general, by
discrete quantum subgroups. For instance, consider {SOqp3q ă {SUqp2q. While {SUqp2q is torsion-free by [30],
{SOqp3q is not torsion-free by [26].
In relation with the results obtained in [16], we can consider an other example more complicated. Let G
be a compact quantum group such that pG is torsion-free. Then the dual of the free product G ˚ SUqp2q is
torsion-free (because {SUqp2q is torsion-free for all q P p´1, 1qzt0u as it is shown in [30] and torsion-freeness is
preserved by free product as it is shown in [1]). Consider the Lemeux-Tarrago’s discrete quantum subgroup
pHq ă {G ˚ SUqp2q which is such that Hq is monoidally equivalent to the free wreath product G o˚ S`N (see [15]
for more details). It is explained in [16] that the dual of G o˚ S`N is never torsion-free. Hence pHq neither
(because torsion-freeness is preserved under monoidally equivalence as it is shown in [30] or [25]).
It is reasonable to expect that torsion-freeness is preserved under divisible discrete quantum subgroups. In-
spired by the study carried out in [16], we expect to be able to apply the techniques from [1] for proving the
following stability result: given a compact quantum group G, pG is torsion-free if and only if every divisible
discrete quantum subgroup pH ă pG is torsion-free.

Recently [1], Y. Arano and K. De Commer have re-interpreted this notion in terms of fusion rings giving a
strong torsion-freeness definition that implies the Meyer-Nest’s one. Let us recall briefly the corresponding
fusion rings theory (we refer to [1] for all the details and further properties).
Let pI,1q be an involutive pointed set and J any set. Let pZI ,‘,bq be a fusion ring with fusion rules given
by the collection of natural numbers tNα

β,γuα,β,γPI and pZJ ,‘,bq a J-based co-finite module with respect to
ZI defined by a collection of natural numbers tN c

α,buαPI,b,cPJ . We say that pZI ,‘,bq is trivial if I “ t1u.
We say that pZJ ,‘,bq is connected if for any b, c P J , there exists α P I such that N c

α,b ‰ 0. Remark that
pZI ,‘,bq is a natural I-based (connected) co-finite module with respect to itself with left b-multiplication
and bilinear form given by xα, βy :“ αb β, for all α, β P I. It is called the standard I-based module.

6



If pG be a discrete quantum group, we denote by RpGq :“ FusppGq the usual fusion ring of pG given by the
irreducible representations of G. If pZI1 ,‘,b, d1q and pZI2 ,‘,b, d2q are two fusion rings, we define the tensor
product of ZI1 and ZI2 as the free Z-module ZI1 dZ

ZI2 which is naturally a fusion ring denoted by ZI1 bZI2 .

In this situation, a fusion ring pZI ,‘,b, dq is called torsion-free if any based connected co-finite module is
isomorphic to the standard based module. In particular, we have

2.2.3 Definition. Let G be a compact quantum group. We say that pG is strong torsion-free if FusppGq is
torsion-free.

2.2.4 Remark. It is known that the strong torsion-freeness is not preserved by quantum subgroups (see [1] for
a counter example). However, we can show (see [1] for a proof) that if G and H are compact quantum groups
such that pH ă pG is a divisible discrete quantum subgroup, then pH is strong torsion-free whenever pG is strong
torsion-free.

Observe that torsion-freeness of fusion rings is not preserved, in general, by tensor product. More precisely,
we have the following result (see [1] for a proof).

2.2.5 Theorem. Let pZI1 ,bq and pZI2 ,bq be torsion-free fusion rings and assume that pZI1 dZI2 ,bq is not
torsion-free. Then pZI1 ,bq and pZI2 ,bq have non-trivial isomorphic finite fusion subrings.

2.3. Quantum crossed products

We recall here the crossed product construction. The next result is well known to specialists. Since we could
not find any reference in the literature, we include the complete proof for the reader’s convenience.

2.3.1 Theorem-Definition. Let G be a compact quantum group and pA,αq a left pG-C˚-algebra. There exists
a unique (up to a canonical isomorphism) C˚-algebra P with a non-degenerate ˚-homomorphism π : A ÝÑ P ,
a unitary representation U P Mpc0ppGq b P q and a non-degenerate completely positive KSGNS-faithful map
E : P ÝÑMpAq such that

i) πpaqUui,j “
dimpuq
ř

k“1
Uui,kπpα

x
k,jpaqq, for all u P ReppGq, all a P A and all i, j “ 1, . . . , dimpuq.

ii) P “ C˚xπpaqUui,j : a P A, u P ReppGq, i, j “ 1, . . . , dimpuqy

iii) EpπpaqUui,jq “ δu,εa for all u P IrrpGq and all a P A.

In addition, P is unique up to a canonical isomorphism meaning that for any C˚-algebra Q with a triple
pρ, V,E1q where ρ : A ÝÑ Q is a non-degenerate ˚-homomorphism, V P Mpc0ppGq b Qq is a unitary repre-
sentation and E1 : Q ÝÑ MpAq is a strict completely positive KSGNS-faithful map satisfying the analogous
properties piq, piiq and piiiq above, there exists a (necessarily unique) ˚-isomorphism ψ : P ÝÑ Q such that
ψpπpaqUui,jq “ ρpaqV ui,j, for all u P ReppGq, all a P A and all i, j “ 1, . . . , dimpuq. Moreover, E1 is a
non-degenerate map and we have E “ E1 ˝ ψ.
The C˚-algebra P constructed in this way is called reduced crossed product of A by pG and is denoted by
pG ˙
α,r

A.

2.3.2 Note. We should notice that the conditions in the preceding theorem can be written coordinate-free as
follows, which gives a more common and conceptual statement:

i) U˚pidb πpaqqU “ pidb πqαpaq, for all a P A,

ii) P “ C˚pπpAqφU pCmpGqqq,

iii) pidb Eq
`

p1b πpaqqU
˘

“ pε b a, for all a P A.
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Proof. First of all, notice that the statement is proven once it is proven for any x P IrrpGq.
P will be a sub-C˚-algebra of LApL2pGq b Aq. For the non-degenerate ˚-homomorphism π we consider
the representation of A on L2pGq b A “twisting” by the action α. Precisely, take the GNS representation
pL2pGq, pλ,Ωq associated to the left Haar weight phL of pG. So we have that pλbidA : c0ppGqbA ÝÑ LApL2pGqbAq
is a non-degenerate ˚-homomorphism. We define the non-degenerate ˚-homomorphism π : A ÝÑ LApL2pGqb
Aq by πpaq :“ ppλb idAq ˝ αpaq, for all a P A.

For U we consider the unitary representation of pG on L2pGq b A induced by λ. Precisely, take the unitary
representation V :“

Àc0

xPIrrpGq
wx PMpc0ppGq b CrpGqq with wx P BpHxq b CpGq, for all x P IrrpGq. We define

the unitary U :“ pidc0ppGq b λqpV q b idA PMpc0p
pGq b LApL2pGq bAqq.

A straightforward computation yields the following expressions

Ux “ pidBpHxq b λq b w
x b idA P BpHxq b LApL2pGq bAq

Uxi,j “ λpwxi,jq b idA P LApL2pGq bAq

for all x P IrrpGq and all i, j “ 1, . . . , dimpxq.

In this situation, we can check the formula πpaqUxi,j “
nx
ř

k“1
Uxi,kπpα

x
k,jpaqq, for all x P IrrpGq, all a P A and all

i, j “ 1, . . . , dimpxq. Indeed,

nx
ÿ

k“1
Uxi,kπpα

x
k,jpaqq “

nx
ÿ

k“1
pωξx

i
,ξx
k
b idq

´

ppidb λqpV q b idAqppx b idq
¯

`

ppλb idAq ˝ αpα
x
k,jpaqq

˘

“

nx
ÿ

k“1
pωξx

i
,ξx
k
b idq

´

pppλb λqpV q b idAqppx b idq
¯

`

αpαxk,jpaqq
˘

“

nx
ÿ

k“1
pωξx

i
,ξx
k
b idq

´

pppλb λqpV q b idAqppx b idq
¯

`

α
`

pωξx
k
,ξx
j
b idqαpaqppx b idq

˘˘

“

nx
ÿ

k“1
pωξx

i
,ξx
k
b idqpωξx

k
,ξx
j
b idq

´

ppx b idqpppλb λqpV q b idAq
¯

`

pidb αqαpaqppx b idq
˘˘

p1q
“

nx
ÿ

k“1
pωξx

i
,ξx
k
b idqpωξx

k
,ξx
j
b idq

´

ppx b idqpppλb λqpV q b idAq
¯

`

pp∆b idqαpaqppx b idq
˘˘

p2q
“

nx
ÿ

k“1
pωξx

i
,ξx
k
b idqpωξx

k
,ξx
j
b idq

´

ppx b idqp1b αpaqqppλb λqpV q b idAq
¯

ppx b idq

“ pωξx
i
,ξx
j
b idb idq

´

p1b αpaqqppλb λqpV q b idAq
¯

ppx b idq

“ ppλb idqαpaqpωξx
i
,ξx
j
b idb idq

´

pidb λqpV q b idAq
¯

ppx b idq “ πpaqUxij ,

where the equality p1q holds because α is a left action of pG on A and the equality p2q holds because of the
definition of the co-multiplication p∆ of pG in terms of its fundamental unitary (observe that xWG “ pidbλqpV q).
Thus we define P :“ C˚xπpaqUxi,j : a P A, x P IrrpGq, i, j “ 1, . . . , dimpxqy which is a sub-C˚-algebra of
LApL2pGq bAq.
To conclude the construction of P as in the statement, we have to define a non-degenerate completely positive
KSGNS-faithful map E : P ÝÑMpAq “ LApAq satisfying the formula EpπpaqUxi,jq “ aδx,ε for all x P IrrpGq,
all a P A and all i, j “ 1, . . . , dimpxq. Namely, let us define the linear map Υ : A ÝÑ L2pGq b A by
Υpaq :“ Ω b a, for all a P A. It is actually an adjointable map between A and L2pGq b A whose adjoint
is such that Υ˚pλpwxi,jqΩ b aq “ hGpw

x
i,jqa, for all x P IrrpGq, all i, j “ 1, . . . , dimpxq and all a P A. Thus

EpXq :“ Υ˚ ˝X ˝Υ, for all X P P defines a completely positive map from P into MpAq.

8



We claim that the triple pL2pGq b A, id,Υq is the KSGNS construction for E. We only have to prove that
L2pGqbA “ spantPΥpAqu; but, by construction, it suffices to show that λpwxi,jqΩb a P PΥpAq for all a P A,
all x P IrrpGq and all i, j “ 1, . . . , dimpxq; which is straightforward.
Finally, an easy computation shows that the formula EpπpaqUxi,jq “ aδx,ε holds for all x P IrrpGq, all a P A
and all i, j “ 1, . . . , dimpxq. For, fix an orthonormal basis tξx1 , . . . , ξxnxu of Hx diagonalizing the canonical

operator Qx with eigenvalues tλxj uj“1,...,nx , so that the formula λpwxi,jqΩ “

?
λx
j?

dimqpxq
ξxi b ωxj holds for all

i, j “ 1, . . . , nx where tωx1 , . . . , ωxnxu is the dual basis of tξx1 , . . . , ξxnxu in the dual space Hx. We write

EpπpaqUxi,jqpbq “ Υ˚
`

πpaqUxi,jpΥpbqq
˘

“ Υ˚
`

πpaqUxi,jpΩb bq
˘

“ Υ˚
`

πpaqpλpwxi,jq b idAqpΩb bq
˘

“ Υ˚
`

πpaq
`

λpwxi,jqΩb b
˘˘

“ Υ˚
´

ppλb idAq ˝ αpaq
`

λpwxi,jqΩb b
˘

¯

“ Υ˚
´

ppx b idAq
”

ppλb idAq ˝ αpaq
ı

ppx b idAq
`

λpwxi,jqΩb b
˘

¯

“ Υ˚
´

ppx b idAq
”

ppλb idAq ˝ α
xpaq

ı

`

λpwxi,jqΩb b
˘

¯

“ Υ˚
´

ppx b idAq
”

ppλb idAq ˝
nx
ÿ

i,j“1
mx
i,j b α

x
i,jpaq

ı´´

a

λxj
a

dimqpxq
ξxi b ω

x
j

¯

b b
¯¯

“ Υ˚
´

nx
ÿ

i,j“1

`

mx
i,j b idHx b α

x
i,jpaq

˘

´´

a

λxj
a

dimqpxq
ξxi b ω

x
j

¯

b b
¯¯

“ Υ˚
´

a

λxj
a

dimqpxq

nx
ÿ

i,j“1
δj,iξ

x
i b ω

x
j b α

x
i,jpaqb

¯

“ Υ˚
´

a

λxi
a

dimqpxq
ξxi b ω

x
i b α

x
i,ipaqb

¯

“ Υ˚
´

λpwxi,iqΩb αxi,ipaqb
¯

“ hGpw
x
i,iqα

x
i,ipaqb “ αxi,ipaqbδx,ε “ abδx,ε,

where we use the orthogonality relations (and the definition of the KSGNS construction). Since it is true for
all b P B, we conclude the required formula.
Observe that by KSGNS construction, E is just a strict completely positive map (see [14] for the details).
But, thanks to the property Epπpaqq “ a, for all a P A that we’ve just proved, it is clear that E is actually a
non-degenerate completely positive map as assured in the statement.
Next, let us establish the uniqueness of such a construction. Suppose Q is another C˚-algebra with a triple
pρ, V,E1q where ρ : A ÝÑ Q is a non degenerate ˚-homomorphism, V P Mpc0ppGq b Qq is a unitary repre-
sentation and E1 : Q ÝÑ MpAq is a strict completely positive KSGNS-faithful map satisfying the analogous
properties piq, piiq and piiiq of the triple pπ, U,Eq associated to P . We have to show that there exists a
(unique) ˚-isomorphism ψ : P ÝÑ Q such that ψpπpaqUxi,jq “ ρpaqV xi,j , for all x P IrrpGq, all a P A and all
i, j “ 1, . . . , dimpxq.
Given the strict completely positive KSGNS-faithful maps E : P ÝÑ MpAq and E1 : Q ÝÑ MpAq, consider
their KSGNS constructions; say pL2pGq b A, id,Υq and pK,σ,Υ1q, respectively. This means in particular
that L2pGq b A “ spantPΥpAqu, σ : Q ÝÑ LApKq is a non-degenerate faithful ˚-homomorphism such that
K “ spantσpQqΥ1pAqu and that E1pY q “ pΥ1q˚ ˝ σpY q ˝Υ1, for all all Y P Q.
Define a unitary operator U : L2pGq b A ÝÑ K. If such an operator exists, it must verify the formula
U

`

XΥpbq
˘

“ σpY qΥ1pbq, for all X “ πpaqUxi,j P P , Y “ ρpaqV xi,j P Q and all b P A.
Actually, a straightforward computation shows that the formula above defines an isometry. Indeed, doing
the identification Q – σpQq (by virtue of the faithfulness of the KSGNS construction), let us take X “

πpaqUxi,j , X
1 “ πpa1qUx

1

i,j P P , Y “ ρpaqV xi,j ,
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Y 1 “ ρpa1qV x
1

i,j P Q, b, b1 P A and write

xU
´

XΥpbq
¯

,U
´

X 1Υpb1q
¯

y “ xYΥ1pbq, Y 1Υ1pb1qy

“ xρpaqV xi,jΥ1pbq, ρpa1qV x
1

i,jΥ1pb1qy “ xΥ1pbq, pV xi,jq˚ρpa˚qρpa1qV x
1

i,jΥ1pb1qy

“ xb, pΥ1q˚
`

pV xi,jq
˚ρpa˚a1qV x

1

i,jΥ1pb1q
˘

y “ xb, E1
`

pV xi,jq
˚ρpa˚a1qV x

1

i,j

˘

pb1qy

“ xb, E1
`

V xi,jρpa
˚a1qV x

1

i,j

˘

pb1qy “ xb, E1
´

nx
ÿ

k“1
ρpαxj,kpa

˚a1qqV xi,kV
x1

i,j

¯

pb1qy

p1q
“ xb, E1

´´

nx
ÿ

k“1
ρpαxjεj,k pa

˚a1qqV xjx
1

r,t

¯

pb1qy “ xb,
ÿ

t

αxjεj,k pa
˚a1qδxjx1,ε b

1y

“ xb, E
´

nx
ÿ

k“1
πpαxjεj,k pa

˚a1qqUxjx
1

r,t

¯

pb1qy

“ xb, E
´

nx
ÿ

k“1
πpαxj,kpa

˚a1qqUxi,k U
x1

i,j

¯

pb1qy “ xb, E
`

Uxi,jπpa
˚a1qUx

1

i,j

˘

pb1qy

“ xb, E
`

pUxi,jq
˚πpa˚a1qUx

1

i,j

˘

pb1qy “ xb,Υ˚
`

pUxi,jq
˚πpa˚a1qUx

1

i,jΥpb1q
˘

y

“ xΥpbq, pUxi,jq˚πpa˚a1qUx
1

i,jΥpb1qy “ xΥpbq, pUxi,jq˚πpa˚qπpa1qUx
1

i,jΥpb1qy

“ xπpaqUxi,jΥpbq, πpa1qUx
1

i,jΥpb1qy “ xXΥpbq, X 1Υpb1qy,

where it should be noticed that in p1q we use the index notation r :“ pi, iq, t :“ pk, jq in order to write down
properly the coefficients for the tensor product xj x1.
Doing again the identification Q – σpQq, we define

ψ : P ÝÑ Q
X ÞÝÑ ψpXq :“ U ˝X ˝U ˚

It is clear that ψ is a ˚-isomorphism and the formula ψpπpaqUxi,jq “ ρpaqV xi,j for all x P IrrpGq, all a P A and
all i, j “ 1, . . . , dimpxq is easily checked.
Moreover, by assumption we have E1pρpaqV xi,jq “ aδγ,e for all x P IrrpGq, all a P A and all i, j “ 1, . . . , dimpxq
and so E1pρpaqq “ a for all a P A; then it is clear that E1 is in fact a non-degenerate map. Finally, the relation
E “ E1 ˝ ψ holds by construction. �

Applying the universal property of the preceding theorem, we get the following results.

2.3.3 Corollary. Let G, H be two compact quantum groups and let F :“ GˆH be the corresponding quantum
direct product of G and H.
If pA,αq is a left pG-C˚-algebra and pB, βq is a left pH-C˚-algebra, then there exists a canonical ˚-isomorphism
pF ˙
δ,r
C – pG ˙

α,r
Ab pH ˙

β,r
B, where C :“ AbB is the pF-C˚-algebra with action δ :“ αb β.

2.3.4 Note. By abuse of notation we denote by αb β the composition

AbB
αbβ
ÝÑĂMpc0ppGq bAq b ĂMpc0ppHq bBq Ă ĂMpc0ppGq bAb c0ppHq bBq

Σ
– ĂMpc0ppGq b c0ppHq bAbBq “ ĂMpc0ppFq bAbBq,

which is a left action of pF on AbB.

2.3.5 Corollary. Let G be a compact quantum group. If pA,αq is a left pG-C˚-algebra and B is any C˚-
algebra, then we have a canonical ˚-isomorphism pG ˙

idbα,r
pB b Aq – B b pG ˙

α,r
A, where idb α : B b A ÝÑ

ĂMpc0ppGq bB bAq denotes, by abuse of notation, the action given by the composition pΣ12 b idAqpidB b αq.
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2.3.6 Remark. Let G be a compact quantum group, pA,αq, pB, βq two left pG-C˚-algebras and ϕ : A ÝÑ B a
pG-equivariant ˚-homomorphism.
On the one hand, there exists a ˚-homomorphism Zpϕq :“ id˙ϕ : pG˙

α,r
A ÝÑ pG˙

β,r
B such that ZpϕqpπαpaqpUαqxi,jq “

πβpϕpaqqpU
βqxi,j , for all a P A, all x P IrrpGq and all i, j “ 1, . . . , dimpxq where pπα, Uα, Eαq and pπβ , Uβ , Eβq

are the canonical triples associated to the reduced crossed products pG ˙
α,r

A and pG ˙
β,r

B, respectively.

The ˚-homomorphism Zpϕq above is nothing but the restriction of LApL2pGqbAq ÝÑ LBpL2pGqbBq defined
by T ÞÝÑ UϕpT bϕ idBqU ´1

ϕ , for all T P LApL2pGq b Aq, where Uϕ : L2pGq b Abϕ B
„
ÝÑ L2pGq bB is the

canonical isometry of Hilbert modules such that Uϕpξ b abϕ bq “ ξ b ϕpaqb, for all ξ P L2pGq, all a P A and
all b P B.
Finally, observe that Zpϕq “ id˙ϕ is, by construction, compatible with the elements of the canonical triples
in the following sense

Zpϕqpπαpaqq “ πβpϕpaqq, ZpϕqppUαqxi,jq “ pUβqxi,j , Eβ ˝ Zpϕq “ Eα ˝ ϕ,

for all a P A, all x P IrrpGq and all i, j “ 1, . . . , dimpxq.
On the other hand, the cone Cϕ is a pG-C˚-algebra with action

δ : Cϕ ÝÑ Mpc0ppGq b Cϕq
pa, hq ÞÝÑ δpa, hq :“ pαpaq, β ˝ hq

Given an irreducible representation x P IrrpGq, the matrix coefficients of δx with respect to an orthonormal
basis of Hx are given by δxi,jpa, hq :“

`

αxi,jpaq, β
x
i,j ˝ h

˘

P Cϕ, for all pa, hq P Cϕ and all i, j “ 1, . . . , nx.

The following is a straightforward but useful result for our purpose.

2.3.7 Proposition. Let G and H be two compact quantum groups and put F :“ G ˆ H. If A0 is a pG-C˚-
algebra and φ : B ÝÑ B1 is a pH-equivariant ˚-homomorphism, then there exists a canonical pF-equivariant
˚-isomorphism A0 b Cφ – Cidbφ, where Cφ denotes the cone of the ˚-homomorphism φ and Cidbφ the cone
of the induced ˚-homomorphism idA0 b φ : A0 bB ÝÑ A0 bB

1.

2.3.8 Proposition. Let G be a compact quantum group and pA,αq, pB, βq two left pG-C˚-algebras. If ϕ :
A ÝÑ B is any pG-equivariant ˚-homomorphism, then there exists a canonical ˚-isomorphism pG˙

r
Cϕ – Cid˙ϕ,

where Cϕ denotes the cone of the ˚-homomorphism ϕ and Cid˙ϕ the cone of the induced ˚-homomorphism
id˙ ϕ : pG ˙

α,r
A ÝÑ pG ˙

β,r
B.

Proof. First, recall the definitions of our cones: Cϕ :“ tpa, hq P Aˆ C0
`

p0, 1s, B
˘

| ϕpaq “ hp1qu and
Cid˙ϕ :“ tpX, h̃q P pG ˙

α,r
A ˆ C0

`

p0, 1s, pG ˙
β,r

B
˘

| id ˙ ϕpXq “ h̃p1qu. Observe that if pA,αq, pB, βq are left

pG-C˚-algebras, then pCϕ, δq is again a left pG-C˚-algebra in the obvious way.

In order to show the canonical ˚-isomorphism pG ˙
r
Cϕ – Cid˙ϕ, we are going to show that the C˚-algebra

Cid˙ϕ satisfies the universal property of the reduced crossed product pG˙
r
Cϕ. To do so, we have to define a

triple pρ, V ,Eq associated to Cid˙ϕ in the sense of Theorem 2.3.1.

Given the reduced crossed products pG ˙
α,r
A and pG ˙

β,r
B, consider the corresponding canonical associated triples

pπα, U
α, Eαq and pπβ , Uβ , Eβq, respectively; and define the non-degenerate ˚-homomorphism ρ : Cϕ ÝÑ Cid˙ϕ

by ρpa, hq :“ pπαpaq, πβ ˝ hq, for all pa, hq P Cϕ; the unitary representation V P Mpc0ppGq b Cid˙ϕq is defined
by the non-degenerate ˚-homomorphism φV : CmpGq ÝÑ MpCid˙ϕq as φV pcq :“

`

φUαpcq¨ , φUβ pcq ¨
˘

, for
all c P CmpGq and observe that by construction we have V xi,j “

`

pUαqxi,j ¨ , pU
βqxi,j ¨

˘

P MpCid˙ϕq, for all
x P IrrpGq and all i, j “ 1, . . . , dimpxq. The strict completely positive KSGNS-faithful map E : Cid˙ϕ ÝÑ
MpCϕq “ LCϕpCϕq is defined by EpX, h̃q :“

`

EαpXq¨ , Eβ ˝ h̃ ¨
˘

, for all pX, h̃q P Cid˙ϕ.
To conclude the proof we have to check the following
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i) ρpa, hqV xi,j “
dimpxq
ř

k“1
V
x

i,kρpδ
x
k,jpa, hqq, for all pa, hq P Cϕ, all x P IrrpGq and all i, j “ 1, . . . , dimpxq; which

is a routine computation.

ii) E is always a KSGNS-faithful map such that Epρpa, hqV xi,jq “ pa, hqδx,ε, for all pa, hq P Cϕ, all x P IrrpGq
and all i, j “ 1, . . . , dimpxq. The formula is straightforward and concerning the KSGNS-faithfulness we
are going to exhibit directly the KSGNS-construction for our E : Cid˙ϕ ÝÑMpCϕq “ LCϕpCϕq. In order
to do so, recall that pL2pGq b A, id,Υαq and pL2pGq b B, id,Υβq are the KSGNS constructions for Eα
and Eβ , respectively. First, we need an appropriated Hilbert Cϕ-module. Let us take

H :“ tpξ, ηq P L2pGq bAˆ C0
`

p0, 1s, L2pGq bB
˘

| ηp1q “ Uϕpξ bϕ idBqu,

where Uϕ is the canonical isometry between L2pGq bAbϕ B and L2pGq bB of Remark 2.3.6 above.
Next, consider the adjointable operator Υ : Cϕ ÝÑ H defined by
Υpa, hq :“

`

Υαpaq,Υβ ˝h
˘

, for all pa, hq P Cϕ and the representation σ (faithful, thanks to the faithfulness
of the KSGNS constructions of Eα and Eβ) of Cid˙ϕ on H given by σpX, h̃q :“

`

X¨ , h̃ ¨
˘

, for all
pX, h̃q P Cid˙ϕ.
In this way, it is easy to check that the triple pG , σ,Υq with G :“ spantσpCid˙ϕqΥpCϕqu is the KSGNS
construction of our E and then E is KSGNS-faithful (observe by the way that our E above is defined
exactly through Υ by construction).

�

2.4. The Baum-Connes property for discrete quantum groups

We collect here the main categorical framework for the formulation of the Baum-Connes property for torsion-
free discrete quantum groups. We refer to [18] or [12] for a complete presentation of the subject.

Let pG be a discrete quantum group and consider the corresponding equivariant Kasparov category, K K
pG,

with canonical suspension functor denoted by Σ. The word homomorphism (resp., isomorphism) will mean
homomorphism (resp., isomorphism) in the corresponding Kasparov category; it will be a true homomorphism
(resp., isomorphism) between C˚-algebras or any Kasparov triple between C˚-algebras (resp., any KK-
equivalence between C˚-algebras). From now on, in order to formulate the Baum-Connes property for a
discrete quantum group, we assume that pG is torsion-free. In that case, consider the usual complementary
pair of localizing subcategories in K K

pG, pL
pG,NpGq. Denote by pL,Nq the canonical triangulated functors

associated to this complementary pair. More precisely we have that L
pG is defined as the localizing subcategory

of K K
pG generated by the objects of the form Ind

pG
E pCq “ c0ppGq b C with C any C˚-algebra in the Kasparov

category K K and N
pG is defined as the localizing subcategory of objects which are isomorphic to 0 in K K .

L
pG :“ xtIndpGE pCq “ c0ppGq b C | C P Obj.pK K quy

N
pG “ tA P Obj.pK K

pGq | Res
pG
E pAq “ 0u “ tA P Obj.pK K

pGq | LpAq “ 0u

2.4.1 Note. The following nomenclature is useful. Given A P Obj.pK K
pGq consider a pL

pG,NpGq-triangle
associated to A, say ΣNpAq ÝÑ LpAq

D
ÝÑ A ÝÑ NpAq. We know that such triangles are distinguished and

unique up to isomorphism. The homomorphism D : LpAq ÝÑ A is called Dirac homomorphism for A. In
particular, we consider the Dirac homomorphism for C (as trivial pG-C˚-algebra), DC : LpCq ÝÑ C. We refer
to DC simply as Dirac homomorphism.
More generally, if pT ,Σq is any triangulated category and pLT ,NT q is a complementary pair of localizing
subcategories in T with canonical functors pL,Nq, then for all object X P Obj.pT q there exists a distinguished
triangle (unique up to isomorphism) of the form ΣpNpXqq ÝÑ LpXq

u
ÝÑ X ÝÑ NpXq. By abuse of

language, the homomorphism u is called Dirac homomorphism for X. Given a functor F : T ÝÑ C , where
C is some category, we define LF :“ F ˝ L and ηX :“ F puq, for all X P Obj.pT q. The latter yields a natural
transformation η : LF ÝÑ F .
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Finally, consider the homological functor defining the quantum Baum-Connes assembly map for pG,

F : K K
pG ÝÑ A bZ{2

pA, δq ÞÝÑ F pAq :“ K˚ppG ˙
δ,r
Aq

The quantum assembly map for pG is given by the natural transformation ηpG : LF ÝÑ F .

2.4.2 Definition. Let pG be a torsion-free discrete quantum group.

- We say that pG satisfies the quantum Baum-Connes property (with coefficients) if the natural transfor-
mation ηpG : LF ÝÑ F is a natural equivalence.

- We say that pG satisfies the strong Baum-Connes property if K K
pG “ L

pG.

To the best knowledge of the author it is open to know if the Baum-Connes property is preserved by quantum
subgroups in general. However, we can show that it is preserved by divisible discrete quantum subgroups. Let
pH ă pG be any discrete quantum subgroup of pG. We have two relevant functors: restriction, which is obvious,
and induction, which has been studied by S. Vaes in [27] in the framework of quantum groups.

Res
pG
pH : K K

pG ÝÑ K K
pH and IndpG

pH : K K
pH ÝÑ K K

pG

It is well-known that restriction and induction are triangulated functors by virtue of the universal prop-
erty of the Kasparov category (see [22] for more details). Moreover, they are adjoint in the sense that
KK

pGpInd
pG
pH
pBq, Aq – KK

pHpB,Res
pG
pH
pAqq, for all pG-C˚-algebra A and all pH-C˚-algebra B (see [29] for a proof).

Denote by pL1, N 1q the canonical triangulated functors associated to the complementary pair pL
pH,NpHq.

2.4.3 Lemma. Let G, H be two compact quantum groups. If pG is torsion-free and pH ă pG is a divisible
torsion-free discrete quantum subgroup, then the following properties hold.

i) RespG
pH
pL

pGq Ă L
pH and RespG

pH
pN

pGq Ă N
pH. Hence, we have the following natural isomorphisms RespG

pH
˝ L –

L1 ˝Res
pG
pH
and RespG

pH
˝N – N 1 ˝Res

pG
pH
.

ii) IndpG
pH
pL

pHq Ă L
pG and IndpG

pH
pN

pHq Ă N
pG. Hence, we have the following natural isomorphisms IndpG

pH
˝ L1 –

L ˝ Ind
pG
pH
and IndpG

pH
˝N 1 – N ˝ Ind

pG
pH
.

Consequently, RespG
pH
transforms the assembly map for pG into the assembly map for pH and IndpG

pH
transforms

the assembly map for pH into the assembly map for pG.

Proof. i) Since pH is divisible in pG, then c0ppGq “ c0ppHq b c0ppHzpGq as pH-C˚-algebras. Hence, it is clear that
Res

pG
pH
pL

pGq Ă L
pH. Take N P N

pG, then we have that RespGE pNq “ 0. Restriction by stages yields that
0 “ Res

pG
E pNq “ Res

pH
E
`

Res
pG
pH
pNq

˘

, which means that RespG
pH
pNq P N

pH.

Given any A P Obj.pK K
pGq, its corresponding pL

pG,NpGq-triangle is transformed into a distinguished
triangle by restriction because RespG

pH
is triangulated. We have just seen that restriction functor preserves

the subcategories L and N . Hence the distinguished triangle given by restriction is actually a pL
pH,NpHq-

triangle for RespG
pH
pAq. By uniqueness of these distinguished triangles we get the relations.

ii) Take a generator IndpHE pCq P L
pH with C P ObjpK K q. Induction by stages (see Proposition 2.7 in [22]

for a proof) yields that IndpG
pH

`

Ind
pH
E pCq

˘

“ Ind
pG
E pCq, which is again a generator in L

pG. Hence, we also
have IndpG

pH
pL

pHq Ă L
pG.
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Take N 1 P N
pH. Recall that, since L

pH and N
pH are complementary, then we have N

pH “ L %
pH
. Accordingly,

KK
pHpL1, N 1q “ p0q, for all L1 P L

pH. By virtue of property piq above, we can take L1 :“ Res
pG
pH
pLq

for any L P L
pG. Hence, the adjointness property between restriction and induction functor yields that

KK
pGpL, Ind

pG
pH
pN 1qq “ KK

pHpRes
pG
pH
pLq, N 1q “ p0q, for all L P L

pG, which means that IndpG
pH
pN 1q P L %

pG
“

N
pG.

Given any B P Obj.pK K
pHq, its corresponding pL

pH,NpHq-triangle is transformed into a distinguished
triangle by induction because IndpG

pH
is triangulated. We have just seen that induction functor preserves

the subcategories L and N . Hence the distinguished triangle given by induction is actually a pL
pG,NpGq-

triangle for IndpG
pH
pBq. By uniqueness of these distinguished triangles we get the relations.

�

2.4.4 Proposition. Let G, H be two compact quantum groups. Assume that pG is torsion-free. pG satisfies the
quantum Baum-Connes property if and only if every divisible torsion-free discrete quantum subgroup pH ă pG
satisfies the quantum Baum-Connes property.

Proof. Assume that pG satisfies the quantum Baum-Connes property and consider a divisible torsion-free
discrete quantum subgroup pH ă pG.
By assumption, pG satisfies the quantum Baum-Connes property with coefficients. In particular, we have a
natural isomorphism η

pG
Ind

pG
pH
pBq

: K˚
`

pG˙ LpIndpG
pH
pBqq

˘

ÝÑ K˚
`

pG˙ IndpG
pH
pBq

˘

, for all B P ObjpK K
pHq.

Thanks to the preceding lemma IndpG
pH
˝ L1 – L ˝ Ind

pG
pH
, so that we have a natural isomorphism η

pG
Ind

pG
pH
pBq

:

K˚
`

pG˙ IndpG
pH
pL1pBq

˘

ÝÑ K˚
`

pG˙ IndpG
pH
pBq

˘

, for all B P ObjpK K
pHq.

By virtue of the quantum Green’s Imprimitivity theorem (see Theorem 7.3 in [27] for a proof) we have a
natural Morita equivalence pG ˙ Ind

pG
pH
pBq „

M

pH ˙ B for all B P ObjpK K
pHq, which yields an isomorphism

between pG˙ IndpG
pH
pBq and pH˙B in K K .

Moreover, the induction functor transforms the assembly map for pH into the assembly map for pG by the
preceding lemma. More precisely, given B P ObjpK K

pHq if ΣpN 1pBqq ÝÑ L1pBq
u1
ÝÑB ÝÑ N 1pBq is the

pL
pH,NpHq-triangle for B, then ΣpIndpG

pH

`

N 1pBqq
˘

ÝÑ Ind
pG
pH

`

L1pBq
˘Ind

pG
pH
pu1q

ÝÑ Ind
pG
pH

`

B
˘

ÝÑ Ind
pG
pH

`

N 1pBq
˘

is the
pL

pG,NpGq-triangle for IndpG
pH

`

B
˘

.

Apply the triangulated functors pH ˙
r
¨ and pG ˙

r
¨ to these two triangles, respectively so that we get the

following distinguished triangles in K K , ΣppH ˙
r
N 1pBqq ÝÑ pH ˙

r
L1pBq

pH˙u1
ÝÑ pH ˙

r
B ÝÑ pH ˙

r
N 1pBq and

Σ
`

pG˙
r
Ind

pG
pH

`

N 1pBq
˘˘

ÝÑ pG˙
r
Ind

pG
pH

`

L1pBq
˘

pG˙IndpG
pH
pu1q

ÝÑ pG˙
r
Ind

pG
pH

`

B
˘

ÝÑ pG˙
r
Ind

pG
pH

`

N 1pBq
˘

.

Since the isomorphism between pG˙ IndpG
pH
pBq and pH˙B in K K is natural by the quantum Green’s Imprim-

itivity theorem, then we get an isomorphism of distinguished triangles

ΣppH˙
r
N 1pBqq

o

��

// pH˙
r
L1pBq

pH˙ u1 //

o

��

pH˙
r
B //

o

��

pH˙
r
N 1pBq

o

��
Σ
`

pG˙
r
Ind

pG
pH

`

N 1pBq
˘˘

// pG˙
r
Ind

pG
pH

`

L1pBq
˘

pG˙ IndpG
pH
pu1q

// pG˙
r
Ind

pG
pH

`

B
˘

// pG˙
r
Ind

pG
pH

`

N 1pBq
˘
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which allows to consider the following commutative diagram,

LF 1pBq
η
pH
B //

o

��

F 1pBq

o

��
LF

`

Ind
pG
pH

`

L1pBq
˘˘

η
pG
Ind

pG
pH
pBq

// F
`

Ind
pG
pH

`

B
˘˘

Since ηpG
Ind

pG
pH
pBq

is an isomorphism for all B P ObjpK K
pHq, we conclude that the same is true for ηpHB , that is,

pH satisfies the quantum Baum-Connes property with coefficients. The converse is obvious and the proof is
complete. �

2.4.5 Remark. For classical groups it is well-known that the Baum-Connes property is preserved by closed
subgroups. It was showed by J. Chabert and S. Echterhoff in [6]. To this end they showed that the induction
homomorphism Ktop

˚ pH;Bq ÝÑ Ktop
˚ pG; IndGHpBqq is always bijective (see Theorem 2.2 in [6] for a proof). In

our case, this result is encoded in the identification K˚ppH˙ L1pBqq – K˚ppG˙ LpInd
pG
pH
pBqqq, obtained by the

property IndpG
pH
˝ L1 – L ˝ Ind

pG
pH
plus the quantum Green’s Imprimitivity theorem.

2.4.6 Remark. To the best knowledge of the author it is open to know if the strong Baum-Connes property
is preserved by quantum subgroups in general. However, it is well-known that it is preserved by divisible
discrete quantum subgroups (see Lemma 6.7 in [29] for a proof).

3. Quantum semi-direct product

Let G “ pCpGq,∆q be a compact quantum group and Γ be a discrete group so that Γ is acting on G by
quantum automorphisms with action α. In this situation, we can construct the quantum semi-direct product
of G by Γ and it is denoted by F :“ Γ˙

α
G, where CpFq “ Γ ˙

α,m
CmpGq (see [32] for more details). By definition

of the crossed product by a discrete group we have a unital faithful ˚-homomorphism π : CmpGq ÝÑ CpFq
and a group homomorphism u : Γ ÝÑ UpCpFqq defined by uγ :“ λγ b idCmpGq, for all γ P Γ such that
CpFq ” Γ ˙α,m CmpGq “ C˚xπpaquγ : a P CmpGq, γ P Γy. The co-multiplication Θ of F is such that
Θ˝π “ pπbπq˝∆ and Θpuγq “ uγbuγ , for all γ P Γ. The Haar state on F is given by hF :“ hG ˝E ˝κ, where
hG is the Haar state of G, κ : Γ ˙

α,m
CmpGq� Γ˙

α,r
CrpGq is the canonical surjection and E : Γ˙

α,r
CrpGq Ñ CrpGq

is the canonical conditional expectation.
3.1 Note. It should be noticed that the notation F :“ Γ ˙

α
G to refer the semi-direct product of a compact

quantum group G by a discrete group Γ is not well behaved with the classical case. Indeed, if G is a classical
compact group, the semi-direct product Γ˙G is non-discrete in general. In order to cover the compatibility
with the classical case, one possible replacement for this notation could be F :“ Γp˙

α
G meaning pF :“ Γ ¸

α

pG.
Nevertheless, the above notation will be kept for the rest of the paper.

We have IrrpFq “ Γ
Ê

IrrpGq, which means precisely that if y P IrrpFq, then there exist unique γ P Γ and
x P IrrpGq such that wy :“ wpγ,xq “ vγjvx “

“

vγ
‰

13

“

vx
‰

23 P BpCbHxqbCpFq, where vγ :“ 1Cbuγ P CbCpFq
and vx :“ pidb πqpwxq P BpHxq b CpFq.
The representation theory of a quantum semi-direct product F described above allows to give some explicit
expressions which are useful for subsequent computations. For instance, it is advisable to give an explicit
description of pF in terms of Γ and pG.
First of all, since α is an action of Γ on G by quantum automorphisms, then for every γ P Γ, we have that
pid b αγqpw

xq is an irreducible unitary finite dimensional representation of G on Hx whenever x P IrrpGq.
Hence there exists a unique class αγpxq P IrrpGq such that pid b αγqpw

xq – wαγpxq. Since dimpαγpxqq “
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dimpxq we can assume that wαγpxq P BpHxq bCpGq, for all γ P Γ (if this is not the case, we might change the
representative of αγpxq by an appropriate one in the orbit of x).
Hence, there exists a unique, up to a multiplicative factor in S1, unitary operator Vγ,x P UpHxq such that
pid b αγqpw

xq “ pVγ,x b idqwαγpxqpV ˚γ,x b idq. Notice that it is clear that αepxq “ x, for all x P IrrpGq and
that αγpεq “ ε, for all γ P Γ. Therefore, we can choose the multiplicative factor defining Vγ,x such that
Ve,x “ idHx , for all x P IrrpGq and Vγ,ε “ 1C, for all γ P Γ. We keep this choice for the sequel.
Given γ, γ1 P Γ and x, x1 P IrrpGq, consider the corresponding irreducible representations of F, say y :“
pγ, xq, y1 :“ pγ1, x1q P IrrpFq, which means that wy “ vγ j vx and wy

1

“ vγ
1

j vx
1 . A straightforward

computation yields the following wyjy1 :“ wy j wy
1

“ vγγ
1

j
`

pVγ1´1 b idqvαγ1´1 pxqpV ˚
γ1´1 b idq j v

x1
˘

, where
vαγ1´1 pxq :“ pidbπ ˝αγ1´1qpwxq P BpHxqbCpFq. Consequently, the decomposition of yjy1 into direct sum of
irreducible representations depends only on the corresponding decomposition of αγ1´1pxqjx1. More precisely,
if txkuk“1,...,r is such a decomposition for αγ1´1pxqjx1, then the formula above implies that the corresponding
decomposition for y j y1 is given by tpγγ1, xkquk“1,...,r.
The following lemma provides explicit and useful formulas for the sequel.

3.2 Lemma. Let G “ pCpGq,∆q be a compact quantum group and Γ be a discrete group acting on G by
quantum automorphisms with action α. Let F :“ Γ˙

α
G be the corresponding quantum semi-direct product.

i) For all γ, g, h P Γ and all x, y, z P IrrpGq, we have

hF

´

χFpγ, xq
˚χF

`

pg, yq j ph, zq
˘

¯

“

#

hG

´

χGpxq
˚χG

`

αh´1pyq j z
˘

¯

, if γ “ gh

0, otherwise

ii) For all γ, g, h P Γ and all x, y, z P IrrpGq, we have

Mor
´

pγ, xq, pg, yq j ph, zq
¯

–

#

Mor
´

x, αh´1pyq j z
¯

, if γ “ gh

0, otherwise

iii) The dual discrete quantum group pF “ pc0ppFq, pΘq is given precisely by

c0ppFq – c0pΓq b c0ppGq

and pΘ : c0ppFq ÝÑMpc0ppFq b c0ppFqq such that

pΘpδγ b aq
`

ppg,yq b pph,zq
˘

“ δγ,gh pδg b py b δh b pzq
´

pVh´1,y b pzqp∆paqppy b pzqpV ˚h´1,y b pzq
¯

24
,

for all γ, g, h P Γ, all a P c0ppGq and all y, z P IrrpGq.

Proof. i) This follows from elementary properties of the character together with the definition of the Haar
state of F.

ii) On the one hand, given γ, g, h P Γ and all x, y, z P IrrpGq, the computation ofMor
´

pγ, xq, pg, yqjph, zq
¯

reduces to case when γ “ gh thanks to the formula of piq. On the other hand, as observed above,
for all γ P Γ and all x P IrrpGq there exists a unique (up to a multiplicative factor) unitary operator
Vγ,x P UpHxq such that pidb αγqpwxq “ pVγ,x b idCpGqqwαγpxqpV ˚γ,x b idCpGqq.
Hence for all γ, g, h P Γ and all x, y, z P IrrpGq such that γ “ gh, we define

ψ : Mor
´

x, αh´1pyq j z
¯

ÝÑ Mor
´

pγ, xq, pg, yq j ph, zq
¯

Φ ÞÝÑ ψpΦq :“ pVh´1,y b idHz q ˝ Φ,

which is a linear isomorphism with inverse ψ´1prΦq “ pV ˚
h´1,y

b idHz q ˝
rΦ, for all rΦ PMor

´

pγ, xq, pg, yq j

ph, zq
¯

. Routine computations show that ψ is well-defined.
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iii) It is clear that c0ppFq – c0pΓq b c0ppGq. For the formula of the statement we have just to use the fact that
the co-multiplication pΘ is characterized by the relation pΘpSq ˝ rΦ “ rΦ ˝ S, for all S P BpHpγ,xqq – BpHxq

with pγ, xq P IrrpFq, rΦ P Mor
´

pγ, xq, pg, yq j ph, zq
¯

and all pg, yq, ph, zq P IrrpFq together with the
isomorphism ψ of piiq.

�

3.3 Remarks. 1. It is important to observe that Γ and pG are quantum subgroups of pF with canonical
surjections given respectively by ρ

pG :“ εΓ b idc0ppGq and ρΓ :“ idc0pΓq b ε
pG, where εΓ denote de co-unit

of Γ and ε
pG the co-unit of pG, which can be checked by using the formulae of the preceding lemma.

In other words, we have the following canonical injections

ιrΓ : C˚r pΓq ãÑ CrpFq and ιmΓ : C˚mpΓq ãÑ CmpFq

ιrG : CrpGq ãÑ CrpFq and ιmG : CmpGq ãÑ CmpFq

which intertwine the corresponding co-multiplications.
Let us describe this injections more precisely. The co-unit map εG : PolpGq ÝÑ C extends to a (α-
invariant) character on CmpGq, which we always denote by εG : CmpGq ÝÑ C. Recall that CmpFq “
Γ ˙
α,m

CmpGq “ C˚xπpaquγ : a P CmpGq, γ P Γy. So, with the help of the α-invariant character above,

we can identify C˚mpΓq with the subalgebra of CmpFq generated by tuγ : γ P Γu by universal property
(see Remark 3.6 in [10] for more details). Likewise, recall that CrpFq “ Γ ˙

α,r
CrpGq “ C˚xπpaquγ : a P

CrpGq, γ P Γy is equipped with a GNS-faithful conditional expectation E : Γ ˙α,r CrpGq ÝÑ CrpGq,
which restricted to the subalgebra generated by tuγ : γ P Γu is just Epuγq “ δγ,e P C. Remember as
well that uγ “ λγ b idCrpGq –

“

λγ
‰

1 in Γ ˙
α,r

CrpGq Ă LCrpGqpl2pΓq b CrpGqq; so that this subalgebra is

identified canonically to C˚r pΓq “ Γ ˙
tr,r

C by universal property (here tr denotes the trivial action).

Observe that, by construction, we have the following relations

τF ˝ ι
m
Γ “ ιrΓ ˝ τΓ, εF ˝ ιmΓ “ εΓ, τF ˝ ιmG “ ιrG ˝ τG and εF ˝ ιmG “ εG,

where τF : CmpFq � CrpFq, τΓ : C˚mpΓq � C˚r pΓq, τG : CmpGq � CrpGq are the canonical surjections
and εF : PolpFq ÝÑ C, εΓ : Γ ÝÑ C, εG : PolpGq ÝÑ C are the co-unit of F, Γ and G, respectively
whose extension to CmpFq, C˚mpΓq and CmpGq are still denoted by εF, εΓ and εG, respectively.

2. Accordingly, if pA, δq is a left pF-C˚-algebra, then pA, δ
pGq is a left pG-C˚-algebra with δ

pG :“ pρ
pGb idAq ˝ δ

and pA, δΓq is a left Γ-C˚-algebra with δΓ :“ pρΓ b idAq ˝ δ.
Here it is important to notice the following. Since Γ is a classical group, a Γ-C˚-algebra is equivalent to
a C˚-algebra equipped with a co-action of c0pΓq. This correspondence explains the abuse of language
used above. Indeed, the non-degenerate ˚-homomorphism δΓ :“ pρΓ b idAq ˝ δ : A ÝÑ Mpc0pΓq b Aq

defined above is a co-action of pc0pΓq, p∆Γq. The latter is equivalent to give a family of ˚-homomorphisms
δγΓ : A ÝÑ A, for all γ P Γ satisfying δeΓ “ idA and δγγ

1

Γ “ δγ
1

Γ ˝δ
γ
Γ for all γ, γ1 P Γ, among other properties.

Hence, the map
Γ ÝÑ AutpAq

γ ÞÝÑ
`

δΓ
˘

γ
,
`

δΓ
˘

γ
paq :“ δγ

´1

Γ paq

defines an action of Γ on A. By abuse of notation, we denote this action by δΓ and the difference between
the action and the co-action will be clear by the context.

3. Moreover, the representation theory of F yields that Γ and pG are divisible in pF. Namely, given an
irreducible representation y :“ pγ, xq P IrrpFq with γ P Γ and x P IrrpGq, then x “ pe, xq, γ “ pγ, εq P rys
in „ zIrrpFq. For all s P Γ we have that s j pe, xq “ ps, εq j pe, xq “ ps, xq P IrrpFq, which shows that
Γ is divisible in pF. For all s P IrrpGq we have that pγ, εq j s “ pγ, εq j pe, sq “ pγ, sq, which shows that
pG is divisible in pF.
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Using the formulae of Lemma 3.2 and the previous remarks we get the following formulas.

3.4 Corollary. The following properties hold

i) The C˚-algebra c0ppFq “ c0pΓq b c0ppGq is a pG-C˚-algebra with action pΘ
pG :“ pρ

pG b idc0ppFqq ˝
pΘ such that

pΘ
pGpδγ b aq

`

py b δh b pz
˘

“ δγ,h ppy b δh b pzq
´

pVh´1,y b pzqp∆paqppy b pzqpV ˚h´1,y b pzq
¯

13
,

for all γ, h P Γ, all a P c0ppGq and all y, z P IrrpGq.

ii) The C˚-algebra c0ppFq “ c0pΓq b c0ppGq is a Γ-C˚-algebra with action pΘΓ :“ pρΓ b idc0ppFqq ˝
pΘ such that

pΘΓpδγ b aq
`

δg b δh b pz
˘

“ δγ,gh pδg b δh b pzqpidb idb aq,

for all γ, g, h P Γ, all a P c0ppGq and all z P IrrpGq.

iii) If η : c0pΓqb c0ppGq ÝÑ ĂMpc0ppGqb c0pΓqb c0ppGqq denotes the action of pG on c0ppFq “ c0pΓqb c0ppGq given
by the composition pΣ12 b idc0ppGqq ˝ pidc0pΓq b

p∆q, then

pΘ
pGp¨q “ pU b idc0ppGqqηp¨qpU

˚ b idc0ppGqq,

where U P U
`

Mpc0ppGqb c0pΓqq
˘

is the unitary such that U ppxb δγq “ Vγ´1,xb δγ , for every x P IrrpGq
and every γ P Γ.

3.5 Remark. In accordance with the previous remarks, let us give the expression of pΘΓ as a true action of
Γ on c0pΓq b c0ppGq and not as a co-action of pc0pΓq, p∆Γq as done in the previous corollary. By applying the
formula obtained in the previous corollary, for every γ, r P Γ and a P c0ppGq we write

pΘγ
Γpδr b aq “

pΘΓpδr b aqpδγ b idc0ppFqq “
ÿ

s,t
r“st

pδs b δt b idc0ppGqqpidc0pΓq b idc0pΓq b aqpδγ b idc0ppFqq “ δγ´1r b a

Hence, the corresponding action of Γ on c0pΓq b c0ppGq, still denoted by pΘΓ, is given by
`

pΘΓ
˘

γ
pδr b aq “

pΘγ´1

Γ pδr b aq “ δγr b a, for all γ, r P Γ and a P c0ppGq.

Let us set some notations for the sequel. The canonical triple (in the sense of Theorem 2.3.1) associated to the
reduced crossed product Γ ˙

δΓ,r
A Ă LApl2pΓq b Aq is denoted by pσ, ν, Eq, the one associated to the reduced

crossed product pF ˙
δ,r
A Ă LApL2pFq b Aq is denoted by pπδ, V, Eδq and the one associated to the reduced

crossed product pG ˙
δ
pG,r
A Ă LApL2pGq bAq is denoted by pπδ

pG
, U,Eδ

pG
q.

3.6 Remark. Using the universal property of pG ˙
δ
pG,r
A and the notations above, it is straightforward to see that

if pA, δq is a left pF-C˚-algebra, there exists a canonical ˚-isomorphism

pG ˙
δ
pG,r
A – C˚xπδpaqV

pe,xq
i,j : a P A, x P IrrpGq, i, j “ 1, . . . , dimpxqy “: C

For this we have just to restrict the canonical triple pπδ, V, Eδq to C .
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Finally, let pA, δq be a left pF-C˚-algebra and consider the reduced crossed product pG ˙
δ
pG,r
A. We use system-

atically the canonical identifications πδ
pG
paq – πδpaq and Uxi,j – V

pe,xq
i,j , for all a P A, all x P IrrpGq and all

i, j “ 1, . . . , dimpxq given by the preceding remark.

Let us define an action B : Γ Ñ AutppG ˙δ
pG,r

Aq. Given γ P Γ we define the automorphism Bγ : pG ˙
δ
pG,r
A ÝÑ

pG ˙
δ
pG,r
A by Bγ :“ AdφV puγq, where Adp¨q denotes the adjoint map. This defines clearly an invertible map for

each γ P Γ so it remains to show that the space pG ˙
δ
pG,r
A is preserved.

On the one hand, we have Bγ
`

φV pw
x
i,jq

˘

“ φV puγqφV pw
x
i,jqφ

˚
V puγq “ φV

`

uγw
x
i,ju

˚
γ

˘

“ φV
`

αγpw
x
i,jq

˘

P pG ˙
δ
pG,r
A,

for all γ P Γ, x P IrrpGq, i, j “ 1, . . . , nx. On the other hand, the relations of the reduced crossed product pF˙
δ,r
A

following Theorem 2.3.1 are precisely πδpaqφV puγvxi,jq “
nx
ř

k“1
φV puγv

x
i,kqπδpδ

y
k,jpaqq, for all y :“ pγ, xq P IrrpFq,

a P A and all i, j “ 1, . . . , nx. In particular, if we take x :“ ε this formula becomes πδ
pG
paqφV puγq “

φV puγqπδ
pG

`

δγΓpaq
˘

, which means
`

Bγpπδ
pG
paqq

˘˚
“ φ˚V puγqπδpGpaqφV puγq “ πδ

pG

`

δγΓpaq
˘

P pG ˙
δ
pG,r
A, for all γ P Γ,

a P A. In particular, we have φV puγqπδ
pG
paqφ˚V puγq “ πδ

pG

`

δγ
´1

Γ paq
˘

. Hence, B is a well-defined action of Γ on
pG ˙δ

pG,r
A such that Bγ

`

πδ
pG
paqUxi,j

˘

“ πδ
``

δΓ
˘

γ
paq

˘

φU
`

αγpw
x
i,jq

˘

, for all γ P Γ, all a P A, all x P IrrpGq and
all i, j “ 1, . . . , nx

The preceding results are true for any pF-C˚-algebra. We can apply them to the case of the pF-C˚-algebra
pc0ppFq, pΘq, which is particularly interesting for our purpose. Recall from Lemma 3.2 that we have the identi-
fication c0ppFq “ c0pΓqb c0ppGq and that the dual co-multiplication pΘ has been explicitly described in terms of
this identification. Next, we want to describe explicitly the action B of Γ on pG ˙

pΘ
pG

`

c0pΓqb c0ppGq
˘

constructed

above. Let us set some notations. We denote by pπ
pΘ, UpΘ, EpΘq, pπ p∆, U p∆, E p∆q, pπη, Uη, Eηq the canonical

triples (following Theorem 2.3.1) associated to the reduced crossed products pG ˙
pΘ

pG

`

c0pΓqb c0ppGq
˘

, pG˙
p∆
c0ppGq,

pG˙
η

`

c0pΓqbc0ppGq
˘

, respectively. We denote by U P U
`

Mpc0ppGqbc0pΓqq
˘

the unitary introduced in Corollary

3.4 such that U ppx b δγq “ Vγ´1,x b δγ , for every x P IrrpGq and every γ P Γ.

3.7 Lemma. The following properties hold.

i) There exists a canonical ˚-isomorphism

pG ˙
pΘ

pG

`

c0pΓq b c0ppGq
˘

– c0pΓq b pG˙
p∆
c0ppGq

which is Γ-equivariant, where c0pΓq b pG˙
p∆
c0ppGq is equipped with the action µ of Γ such that

µγ
`

pδr b π p∆paqqW
x
i,j

˘

“ pδγr b π p∆paqqφW
`

αγpw
x
i,jq

˘

,

for all a P c0ppGq, γ P Γ, x P IrrpGq, i, j “ 1, . . . , nx, where

W :“
`

U
p∆
˘

13

`

idc0ppGq b pidc0pΓq b π p∆q
˘

pU ˚ b idc0ppGqq PM
`

c0ppGq b c0pΓq b pG˙
p∆
c0ppGq

˘

ii) There exists a canonical Γ-equivariant ˚-isomorphism

c0pΓq b pG˙
p∆
c0ppGq – c0pΓq bKpL2pGqq,
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where c0pΓq b pG ˙
p∆
c0ppGq is equipped with the action µ defined in piq, c0pΓq is equipped with the action

induced by co-multiplication p∆Γ and KpL2pGqq is equipped with the adjoint action of Γ with respect to the
unitary representation of Γ on L2pGq induced by α.
In particular, there exists a canonical Γ-equivariant Morita equivalence

c0pΓq b pG˙
p∆
c0ppGq „

Γ´M
c0pΓq

Proof. i) Recall that η “ pΣ12 b idc0ppGqq ˝ pidc0pΓq b
p∆q. By Proposition 2.3.5 we know that there exists a

canonical ˚-isomorphism pG˙
η

`

c0pΓq b c0ppGq
˘

– c0pΓq b pG˙
p∆
c0ppGq, where the latter is equipped with the

triple
`

idc0pΓqbπ p∆,
`

U
p∆
˘

13, idc0pΓqbE p∆
˘

. Next, if we replace
`

U
p∆
˘

13 by the unitaryW of the statement,
the corresponding triple is again associated to c0pΓq b pG˙

p∆
c0ppGq in the sense of Theorem 2.3.1.

Observe that both triple give rise to isomorphic underlying C˚-algebras by means of the unitary U . We
claim that the C˚-algebra described in terms of the triple

`

idc0pΓq b π p∆,W, idc0pΓq bE p∆
˘

is identified to
the reduced crossed product pG ˙

pΘ
pG

`

c0pΓq b c0ppGq
˘

. Let us check its universal property.

On the one hand, for all a P c0pΓq b c0ppGq we write

W˚
`

idc0ppGq b pidc0pΓq b π p∆qpaq
˘

W

“
`

idc0ppGq b pidc0pΓq b π p∆q
˘

pU b idc0ppGqq
`

U˚
p∆

˘

13

`

idc0ppGq b pidc0pΓq b π p∆qpaq
˘`

U
p∆
˘

13
`

idc0ppGq b pidc0pΓq b π p∆q
˘

pU ˚ b idc0ppGqq

p1q
“

`

idc0ppGq b pidc0pΓq b π p∆q
˘

pU b idc0ppGqq
`

idc0ppGq b pidc0pΓq b π p∆
˘

pΣ12 b idc0ppGqqpidc0pΓq b
p∆qpaq

`

idc0ppGq b pidc0pΓq b π p∆q
˘

pU ˚ b idc0ppGqq

“
`

idc0ppGq b pidc0pΓq b π p∆q
˘

´

pU b idc0ppGqqηpaqpU
˚ b idc0ppGqq

¯

p2q
“

`

idc0ppGq b pidc0pΓq b π p∆q
˘

pΘ
pGpaq,

where in p1q we have used Proposition 2.3.5 and in p2q we have used that pΘ
pG is conjugate of η by U

thanks to Corollary 3.4. On the other hand, a routine computation yields the following expression for all
x P IrrpGq, i, j “ 1, . . . , nx W x

i,j “
ř

γPΓ
δγ b

`

Ux
p∆

˘

i,j

`

V ˚γ,x
˘

i,j
PM

`

c0pΓqb pG˙
p∆
c0ppGq

˘

, so that for all r P Γ,

a P c0ppGq, x P IrrpGq, i, j “ 1, . . . , nx we have

pidc0pΓq b E p∆q
´

pidc0pΓq b π p∆qpδr b aqW
x
i,j

¯

“ pidc0pΓq b E p∆q
´

δr b π p∆paq
`

Ux
p∆

˘

i,j

`

V ˚γ,x
˘

i,j

¯

“ δr b a δx,ε
`

V ˚γ,x
˘

i,j
“ δr b a δx,ε “ E

pΘpπpΘpδr b aq
`

Ux
pΘ

˘

i,j
q

Hence, by universal property of pG ˙
pΘ

pG

`

c0pΓq b c0ppGq
˘

there exists a canonical ˚-isomorphism

ψ : pG ˙
pΘ

pG

`

c0pΓq b c0ppGq
˘ „
ÝÑ c0pΓq b pG˙

p∆
c0ppGq

such that
ψ
`

π
pΘpδγ b aq

`

Ux
pΘ

˘

i,j

˘

“ pδγ b π p∆paqqW
x
i,j ,
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for all γ P Γ, a P c0ppGq, x P IrrpGq, i, j “ 1, . . . , nx. Moreover, for all γ, r P Γ, a P c0ppGq, x P IrrpGq,
i, j “ 1, . . . , nx we write

π
pΘpδr b aq

`

Ux
pΘ

˘

i,j

Bγ
ÞÑ π

pΘ
`

ppΘΓqγpδr b aq
˘

φU
xΘ
pαγpw

x
i,jqq

ψ
ÞÑ pδγr b π p∆paqqφW pαγpw

x
i,jqq

π
pΘpδr b aq

`

Ux
pΘ

˘

i,j

ψ
ÞÑ pδr b π p∆paqqW

x
i,j

µγ
ÞÑ pδγr b π p∆paqqφW pαγpw

x
i,jqq,

which yields that µ is a well-defined action of Γ on c0pΓq b pG˙
p∆
c0ppGq and thus the Γ-equivariance of the

statement.

ii) We are going to establish a canonical ˚-isomorphism ψ : c0pΓq b pG ˙
p∆
c0ppGq

„
ÝÑ c0pΓq b KpL2pGqq. For

this, remark firstly that the canonical triple pπ
p∆, U p∆, E p∆q associated to pG ˙

p∆
c0ppGq following Theorem

2.3.1 is exactly ppλ,xWG b idc0ppGq,Ωb idc0ppGqq.

Moreover, it is well-known that pG ˙
p∆
c0ppGq – KpL2pGqq and for the latter we have the triple ppλ,xWG, pEq

where pE is defined as in the proof of Theorem 2.3.1. In particular, we have KpL2pGqq “ C˚xpλpaqλpwxi,jq | a P

c0ppGq, x P IrrpGq, i.j “ 1, . . . , nxy.
Since Γ acts on G by quantum automorphisms with action α, then L2pGq is equipped with the action
of Γ such that γ ¨ λpwx1k,lqΩ “ λ

`

αγpw
x1

k,lq
˘

Ω, for all γ P Γ, x1 P IrrpGq, k, l “ 1, . . . , nx1 . Therefore,
the corresponding action on KpL2pGqq is such that γ ¨ pλpaqλpwxi,jq “ pλpaqλ

`

αγpw
x
i,jq

˘

, for all a P c0ppGq,
x P IrrpGq, i, j “ 1, . . . , nx, which is a straightforward computation.
Since c0pΓq b pG˙

p∆
c0ppGq has been described in piiq with the help of the unitary U , then we consider now

the triple pidc0pΓq b pλ,ĂW, idc0pΓq b
pEq associated to c0pΓq bKpL2pGqq where

ĂW :“
`

xWG
˘

13

`

idc0ppGq b pidc0pΓq b
pλq
˘

pU ˚ b idc0ppGqq PM
`

c0ppGq b c0pΓq bKpL2pGq
˘

Observe that both triple pidc0pΓq b pλ,
`

xWG
˘

13, idc0pΓq b
pEq and pidc0pΓq b pλ,ĂW, idc0pΓq b

pEq give rise to
isomorphic underlying C˚-algebras by means of the unitary U . We claim that the C˚-algebra c0pΓq b
KpL2pGqq described in terms of the triple

`

idc0pΓq b π
p∆,

ĂW, idc0pΓq b E
p∆
˘

is identified to the reduced
crossed product pG ˙

pΘ
pG

`

c0pΓq b c0ppGq
˘

. We check its universal property in an analogous way as in piq by

observing that here we have ĂW x
i,j “

ř

γPΓ
δγ b

`

xW x
G
˘

i,j

`

V ˚γ,x
˘

i,j
PM

`

c0pΓq bKpL2pGqq
˘

, for all x P IrrpGq,

i, j “ 1, . . . , nx.
Hence, by property piq and universal property of pG ˙

pΘ
pG

`

c0pΓq b c0ppGq
˘

there exists a canonical ˚-

isomorphism
ψ : c0pΓq b pG˙

p∆
c0ppGq

„
ÝÑ c0pΓq bKpL2pGqq

such that
ψ
`

pδγ b π p∆paqqW
x
i,j

˘

“ pδγ b pλpaqqĂW x
i,j ,

for all γ P Γ, a P c0ppGq, x P IrrpGq, i, j “ 1, . . . , nx.
Finally, let us study the Γ-equivariance condition. By definition, the action of Γ on c0pΓq b KpL2pGqq
is such that for all γ, r P Γ, a P c0ppGq, i, j “ 1, . . . , nx γ ¨

`

δr b pλpaqλpwxi,jq
˘

“ δγr b pλpaqλ
`

αγpw
x
i,jq

˘

,
which allows to show the Γ-equivariance of the above ˚-isomorphism because for all γ, r P Γ, a P c0ppGq,
x P IrrpGq, i, j “ 1, . . . , nx we write

pδr b π p∆paqqW
x
i,j

µγ
ÞÑ pδγr b π p∆paqqφW

`

αγpw
x
i,jq

˘ ψ
ÞÑ pδγr b pλpaqqφ

ĂW

`

αγpw
x
i,jq

˘

pδr b π p∆paqqW
x
i,j

ψ
ÞÑ pδr b pλpaqqĂW x

i,j
γ¨
ÞÑ pδγr b pλpaqqφ

ĂW

`

αγpw
x
i,jq

˘

�
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3.1. Torsion phenomena

Let us study the torsion in the sense of Meyer-Nest. For the following result it is advisable to keep in mind
the spectral theory for compact quantum groups recalled in Section 2.1.

3.1.1 Theorem. Let F “ Γ˙
α
G be the quantum semi-direct product of G by Γ. If Γ and pG are torsion-free,

then pF is torsion-free.

Proof. Let A be a finite dimensional C˚-algebra equipped with a right torsion action of F, say δ : A ÝÑ

Ab CpFq.
Let us define Λ :“ tγ P Γ | D x P IrrpGq such that Kpγ,xq ‰ 0u, where Kpγ,xq denotes the spectral subspace
associated to the representation pγ, xq “: y P IrrpFq. We claim that Λ is a finite subgroup of Γ. Indeed,
Λ is a subgroup of Γ because given g, h P Λ, let Xg P Kpg,xgq and Xh P Kph,xhq be some non-zero elements
for the corresponding irreducible representations xg, xh P IrrpGq. Put yg :“ pg, xgq, yh :“ ph, xhq P IrrpFq.
By virtue of Lemma 2.1.2, there exist an irreducible representation z :“ pγ, xq P IrrpFq and an intertwiner
Φ PMorpz, yg j yhq such that Xg b

Φ
Xh ‰ 0.

Besides, the proof of Lemma 2.1.2 shows that z is an irreducible representation of the decomposition of
yg j yh in direct sum of irreducible representations. Thanks to the fusion rules of a quantum semi-direct
product we have that wyg j wyh “ vgh j pvαh´1 pxgq j vxhq. Next, consider the decomposition in direct sum
of irreducible representations of the tensor product αh´1pxgq j xh, say txkuk“1,...,r for some r P N. Hence

we write wygjyh “
r
À

k“1
vgh j xk. As a result, the irreducible representation z “ pγ, xq P IrrpFq found above

must be of the form pgh, xkq for some k “ 1, . . . , r. Recall that Xg b
Φ
Xh P Kz by definition. This shows that

gh “ γ P Λ as required. Moreover, Λ is finite because A is finite dimensional.
Thanks to the torsion-freeness of Γ, Λ is just the trivial subgroup teu. Hence, for every y P IrrpFq, Ky ‰ 0
implies y “ pe, xq for some x P IrrpGq. Consequently, the spectral decomposition for A “ AF becomes
A “

À

xPIrrpGq
Ape,xq “ AG and the action δ takes its values on Ab πpCmpGqq so that δ is actually an action of

G on A. Since pG is torsion-free by assumption, we achieve the conclusion. �

3.1.2 Note. The converse of the preceding statement would be true whenever the torsion-freeness is preserved
under divisible discrete quantum subgroups as conjectured in Section 2.2.

3.2. The Baum-Connes property

Let us adapt the notations from Section 2.3.7 for a quantum semi-direct product F “ Γ ˙
α
G. In order to

formulate the quantum Baum-Connes property we assume that pF, Γ and pG are all torsion-free.

Consider the equivariant Kasparov categories associated to pF and Γ, say K K
pF and K K Γ, respectively; with

canonical suspension functors denoted by Σ. Consider the usual complementary pair of localizing subcate-
gories in K K

pF and K K Γ, say pL
pF,NpFq and pLΓ,NΓq, respectively. The canonical triangulated functors

associated to these complementary pairs will be denoted by pL,Nq and pL1, N 1q, respectively. Next, consider
the homological functors defining the quantum Baum-Connes assembly maps for pF and Γ. Namely,

F : K K
pF ÝÑ A bZ{2 F 1 : K K Γ ÝÑ A bZ{2

pA, δq ÞÝÑ F pAq :“ K˚ppF ˙
δ,r
Aq pB, βq ÞÝÑ F 1pBq :“ K˚pΓ ˙

β,r
Bq

The quantum assembly maps for pF and for Γ are given by the following natural transformations ηpF : LF ÝÑ
F and ηΓ : LF 1 ÝÑ F 1 (where that LF “ F ˝ L and LF 1 “ F 1 ˝ L1).

Given a pF-C˚-algebra pA, δq P Obj.pK K
pFq, we regard it as an object in K K

pG by restricting the action as
explained in Remark 3.3, that is, we consider
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pA, δ
pGq P Obj.pK K

pGq. In this way, it is licit to consider the crossed product pG ˙
δ
pG,r

A. Observe by the

way that we have shown previously that pG ˙
δ
pG,r
A is naturally a Γ-C˚-algebra with action B. Consider now

pB, νq P Obj.pK K
pFq an other pF-C˚-algebra, let pB, ν

pGq P Obj.pK K
pGq be the corresponding restriction and

pG ˙
ν
pG,r
B the corresponding crossed product, which is again a Γ-C˚-algebra with action B1. If X P KK

pFpA,Bq

is a homomorphism in K K
pF between A and B, we regard it as a homomorphism between A and B in

K K
pG, that is, X is also a pG-equivariant triple. Then the functoriality of the crossed product assures that

there exists a Kasparov triple (via the descendent homomorphism) pG ˙
r

X P KKppG ˙
δ
pG,r
A, pG ˙

ν
pG,r
Bq which

is a homomorphism between pG ˙
δ
pG,r
A and pG ˙

ν
pG,r
B in K K . But pG ˙

δ
pG,r
A and pG ˙

ν
pG,r
B are actually Γ-C˚-

algebras and we can show that the descent homomorphism yields an equivariant Kasparov triple, that is,
pG˙

r
X P KKΓppG ˙

δ
pG,r
A, pG ˙

ν
pG,r
Bq. Namely, if X “ ppH, δHq, π, F q, the descent Kasparov triple is given by

pG˙
r

X :“ pH bπν pG ˙
ν
pG,r
B, id˙π, F b idq. Thanks again to Remark 3.3, A and B are also Γ-C˚-algebras with

actions δΓ and νΓ, respectively and so we can regard X as a homomorphism between A and B in K K Γ, that
is, X is also a Γ-equivariant triple with action δH,Γ :“ pidb ρΓq ˝ δH . Hence H bπν pG ˙

ν
pG,r
B is a Γ-equivariant

Hilbert pG ˙
ν
pG,r
B-module with the diagonal action τ :“ pδH,Γq b B1. Routine computations show that pG˙

r
X is

a Γ-equivariant triple. For more details about these functorial constructions we refer to [28] or [2].
In other words, it is licit to consider the following functor:

Z : K K
pF ÝÑ K K Γ

pA, δq ÞÝÑ ZpAq :“ pG ˙
δ
pG,r
A

3.2.1 Remark. Notice that the functor above is well defined at the level of equivariant Kasparov groups.
Indeed, let X :“ ppH, δHq, π, F q,X 1 :“ ppH 1, δH1q, π1, F 1q P E

pFpA,Bq two pF-equivariant Kasparov triple which
are homotopic by means of E :“ ppE , δEq, ρ, Lq P EpFpA,Cpr0, 1sq b Bq. Remark that X and X 1 will be also
homotopic with respect to the restriction actions to pG and Γ. By the well-known descent homomorphism,
ZpEq P E

`

pG ˙
δ
pG,r
A,Cpr0, 1sq b pG ˙

ν
pG,r
B
˘

yields a homotopy between ZpX q and ZpX 1q. If we equipped ZpX q,

ZpX 1q and ZpEq with the diagonal actions τ :“ pδH,Γq b B1, τ 1 :“ pδH1,Γq b B1 and rτ :“ pδE,Γq b B
1, then a

straightforward computation yields that ZpX q and ZpX 1q are equivariantly homotopic by means of ZpEq P
EΓ`

pG ˙
δ
pG,r
A,Cpr0, 1sq b pG˙ν

pG,r
B
˘

.
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3.2.2 Theorem. Let F “ Γ˙
α
G be a quantum semi-direct product.

i) (Associativity for the quantum semi-direct product) If pA, δq is a pF-C˚-algebra, then there exists a canon-
ical ˚-isomorphism pF ˙

δ,r
A – Γ ˙

B,r

´

pG ˙
δ
pG,r
A
¯

.

ii) The functor Z is triangulated such that ZpL
pFq Ă LΓ.

Proof. i) In order to prove the isomorphism pF ˙
δ,r
A – Γ ˙

B,r
C , we are going to apply the universal property

of the reduced crossed product pF ˙
δ,r
A. Thus we have to define a triple pρ, V ,Eq associated to Γ ˙

B,r
C

(in the sense of Theorem 2.3.1). Namely, let us put ρ : A ÝÑ Γ ˙
B,r

C as the composition πδ ˝ %;

V PMpc0ppFq b Γ ˙
B,r

C q as the unitary V itself and E : Γ ˙
B,r

C ÝÑ A as the composition E ˝ Eδ|.

Routine computations show that the triple pρ, V ,Eq constructed in this way satisfies the appropriated
universal property.

ii) First of all, using Corollary 2.3.5 and Proposition 2.3.8 it is straightforward to see that Z is triangulated
and stable with respect to the canonical suspension functors of the corresponding Kasparov categories.
Let us show that ZpL

pFq Ă LΓ. Namely, since all our discrete quantum groups are supposed to be
torsion-free, then we know that L

pF is the localizing subcategory of K K
pF generated by the objects of the

form c0ppFqbC with C any C˚-algebra in the Kasparov category K K . Likewise, LΓ is by definition the
localizing subcategory of K K Γ generated by the objects of the form IndΓ

teupBq with B any C˚-algebra
in the Kasparov category K K . Recall as well that c0ppFq – c0pΓqb c0ppGq by virtue of the representation
theory of F “ Γ˙

α
G. Hence we write

Zpc0ppFq b Cq “ pG ˙
pΘ

pG,r

`

c0ppFq b C
˘

– pG ˙
pΘ

pG,r

`

c0pΓq b c0ppGq b C
˘

p1q
– pG ˙

pΘ
pG,r

`

c0pΓq b c0ppGq
˘

b C
p2q
– c0pΓq b C

where in p1q we use Proposition 2.3.5 and in p2q we use the Γ-equivariant Morita equivalence given by
Lemma 3.7. In other words, Zpc0ppFq b Cq is a Γ-C˚-algebra in K K Γ induced by the trivial subgroup
teu ă Γ, which yields the claim because Z is triangulated and compatible with countable direct sums.

�

3.2.3 Remark. Consider the following functors: K K
pF j

pF
ÝÑ K K and K K

pF Z
ÝÑ K K Γ jΓ

ÝÑ K K , where
j
pF is the descent functor with respect to pF and jΓ is the descent functor with respect to Γ.

The theorem above yields that for every pF-C˚-algebra pA, δq P Obj.pK K
pFq there exists an isomorphism

ηA : pF ˙
δ,r
A

„
ÝÑ Γ ˙

B,r

´

pG ˙
δ
pG,r
A
¯

in K K . Actually, we get a natural equivalence between the functors above.

For this, we have to show that given two pF-C˚-algebra pA, δq, pB, νq P Obj.pK K
pFq and a Kasparov triple

X P KK
pFpA,Bq, the following diagram in K K is commutative

pF ˙
δ,r
A

ηA

��

pF˙
r

X
// pF ˙

ν,r
B

ηB

��

Γ ˙
B,r

´

pG ˙
δ
pG,r
A
¯

Γ˙
r

´

pG˙
r

X
¯

// Γ ˙
B1,r

´

pG ˙
ν
pG,r
B
¯
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which is a routine computation. Hence, we have canonically F “ F 1 ˝ Z.

3.2.4 Lemma. Let pT ,Σq, pT 1,Σ1q be two triangulated categories. Let pLT ,NT q and pLT 1 ,NT 1q be two
complementary pairs of localizing subcategories in T and T 1, respectively. Denote by pL,Nq and by pL1, N 1q
respectively, the canonical triangulated functors associated the these complementary pairs. Let F : T ÝÑ Ab
and F 1 : T 1 ÝÑ Ab be two homological functors.
If Z : T ÝÑ T 1 is a triangulated functor such that F “ F 1 ˝ Z and ZpLT q Ă LT 1 , then for all object
X P Obj.pT q there exists a homomorphism

ψ P HomT 1pZpLpXqq, L1pZpXqqq

such that the following diagram is commutative

LF pXq

ηX

��

Ψ // LF 1pZpXqq

η1ZpXq

��
F pXq

– // F 1pZpXqq

where Ψ “ F 1pψq. If moreover ZpNT q Ă NT 1 , then ψ is an isomorphism.

Proof. Given an object X P Obj.pT q, consider the corresponding distinguished triangle with respect to the
complementary pair pLT ,NT q, say ΣpNpXqq ÝÑ LpXq

u
ÝÑ X ÝÑ NpXq. Consider the distinguished

pLT 1 ,NT 1q-triangle associated to the object ZpXq P Obj.pT 1q say

Σ1pN 1pZpXqqq ÝÑ L1pZpXqq u1
ÝÑ ZpXq ÝÑ N 1pZpXqq (3.1)

Let us fix the object ZpLpXqq “: T P Obj.pT 1q and take the long exact sequence associated to the above
triangle with respect to the object T . Namely,

. . .Ñ HomT 1pT,Σ1pN 1pZpXqqqq Ñ HomT 1pT, L
1pZpXqqq pu

1
q˚
Ñ

Ñ HomT 1pT,ZpXqq Ñ HomT 1pT,N
1pZpXqqq Ñ . . .

Since LpXq P LT and we have ZpLT q Ă LT 1 by assumption, then T P LT 1 . But, by definition of
complementary pair, we have LT 1 Ă N $

T 1 . In particular, we obtain HomT 1pT,Σ1pN 1pZpXqqqq “ p0q “

HomT 1pT,N
1pZpXqqq. Hence the above long exact sequence yields the isomorphismHomT 1pT, L

1pZpXqqq
pu1q˚
–

HomT 1pT,ZpXqq. Hence, just take ψ :“ pu1q´1
˚ pZpuqq.

Next, put Ψ :“ F 1pψq : F 1
`

ZpLpXqq
˘

ÝÑ F 1
`

L1pZpXqq
˘

. The functoriality of constructions and the definition
of the element ψ above yields straightforwardly the diagram of the statement.
If moreover we have ZpNT q Ă NT 1 , then the functor Z transforms a pLT ,NT q-triangle for X into a
pLT 1 ,NT 1q-triangle for ZpXq. Since the distinguished triangles associated to a complementary pair are
unique up to a isomorphism, we have an isomorphism of distinguished triangles between (3.1) and the image
of ΣpNpXqq ÝÑ LpXq

u
ÝÑ X ÝÑ NpXq by Z,

Σ1pZpNpXqqq

o

��

// ZpLpXqq
Zpuq

//

o ψ

��

ZpXq //

id

ZpNpXqq

o

��
Σ1pN 1pZpXqqq // L1pZpXqq

u1
// ZpXq // N 1pZpXqqq

�
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If we apply the preceding lemma to our particular situation, we get that for every pF-C˚-algebra pA, δq there
exists an element ψ P KKΓppG˙

r
LpAq, L1ppG ˙

δ
pG,r
Aqq such that the following diagram is commutative

LF pAq

η
pF
A

��

Ψ // LF 1ppG ˙
δ
pG,r
Aq

ηΓ
pG˙
r

A

��
F pAq

– // F 1ppG ˙
δ
pG,r
Aq

(3.2)

where Ψ :“ F 1pψq, ηpFA is the assembly map for pF with coefficients in A and ηΓ
pG˙rA

is the assembly map for Γ
with coefficients in pG ˙

δ
pG,r
A. Precisely, if ΣpNpAqq ÝÑ LpAq

u
ÝÑ A ÝÑ NpAq is a pL

pF,NpFq-triangle associated

to A and ΣpN 1ppG ˙
δ
pG,r
Aqq ÝÑ L1ppG ˙

δ
pG,r
Aq

u1
ÝÑ pG ˙

δ
pG,r
A ÝÑ N 1ppG ˙

δ
pG,r
Aq is a pLΓ,NΓq-triangle associated to

pG˙δ
pG,r
A, then ψ :“ pu1q´1

˚ pZpuqq.

We can now conclude our study with the following theorem, generalizing the result [5] of J. Chabert as we
have discussed in the introduction of this article.

3.2.5 Theorem. Let F “ Γ˙
α
G be a quantum semi-direct product. Assume that pF, Γ and pG are torsion-free

discrete quantum groups. Let pA, δq be a left pF-C˚-algebra. pF satisfies the quantum Baum-Connes property
with coefficients in A if and only if Γ satisfies the Baum-Connes property with coefficients in pG ˙

δ
pG,r
A and pG

satisfies the quantum Baum-Connes property with coefficients in A.

Proof. Assume that pF satisfies the quantum Baum-Connes property. Since Γ and pG are divisible torsion-
free discrete quantum subgroups of pF thanks to Remarks 3.3, then by Proposition 2.4.4 they satisfy the
Baum-Connes property.
Conversely, assume that pG satisfies the quantum Baum-Connes property with coefficients in A and Γ satisfies
the Baum-Connes property with coefficients in pG ˙

δ
pG,r
A. Since pF is supposed to be torsion-free, then Theorem

3.1.1 assures that Γ and pG are torsion-free. Consequently, the only finite subgroup of Γ is the trivial one,
teu ă Γ. It is obvious that the trivial group teu satisfies the Baum-Connes property.
Denote by pLteu,Nteuq the complementary pair of localizing subcategories in K K teu and by pL2, N2q the
associated functors. Consider the element ψ P KKΓppG ˙

r
LpAq, L1ppG ˙

δ
pG,r
Aqq constructed from Lemma 3.2.4

and denote by ψteu P KKppG ˙
r
LpAq, L1ppG ˙

δ
pG,r
Aqq the same element when the action of Γ is restricted to

the trivial subgroup. Precisely, the latter is defined in the following way. Given a pF-C˚-algebra A, let
ΣpNpAqq ÝÑ LpAq

u
ÝÑ A ÝÑ NpAq be a pL

pF,NpFq-triangle associated to A and let
ΣpN2

`

ResΓ
teu

`

pG ˙δ
pG,r

A
˘˘

ÝÑ L2
`

ResΓ
teu

`

pG ˙δ
pG,r

A
˘˘ u2
ÝÑ ResΓ

teu

`

pG ˙δ
pG,r

A
˘

ÝÑ N2
`

ResΓ
teu

`

pG ˙δ
pG,r

A
˘˘

be a pLteu,Nteuq-triangle associated to ResΓ
teu

`

pG ˙δ
pG,r

A
˘

. Then ψteu :“ pu2q´1
˚

`

ResΓ
teu

`

Zpuq
˘˘

, which
is well defined following the analogue proof of Lemma 3.2.4 together with Lemma 2.4.3. Observe that
ψteu P KK

´

ResΓ
teu

`

pG ˙
r
LpAq

˘

, L2
`

ResΓ
teu

`

pG ˙
r
A
˘˘

¯

, but by Lemma 2.4.3 we know that there exists a nat-

ural isomorphism ResΓ
teu ˝ L

1 – L2 ˝ ResΓ
teu so that we identify ψteu with ResΓ

teupψq P KK
´

ResΓ
teu

`

pG ˙
r

LpAq
˘

, ResΓ
teu

`

L1
`

pG ˙
r
A
˘˘

¯

. Thanks again to Lemma 2.4.3 we know that the restriction functor transforms
the assembly map for Γ into the assembly map for teu. In this way, the restriction of the action of Γ to the
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trivial subgroup transforms the commutative diagram (3.2) into the following commutative diagram (where
the notation ResΓ

teup¨q has been removed for simplicity),

LFteupAq

η
pFteu
A

��

Ψteu // LF 1
teup

pG ˙
δ
pG,r
Aq

η
teu
pG˙
r

A

��
FteupAq F 1

teup
pG ˙
δ
pG,r
Aq

where Fteu et F 1
teu are the analogous functors to F and F 1 defined with respect to Fteu :“ teu ˙

α|
G “ G

and teu, respectively and Ψteu :“ F 1
teupψteuq. In this situation we have η

pFteu
A “ η

pG
A. Since pG satisfies the

quantum Baum-Connes property by assumption, then η
pFteu
A “ η

pG
A is a natural isomorphism. Hence, Ψteu is a

natural isomorphism. This means in particular that the element ψ of Lemma 3.2.4 induces, by restriction, a
K-equivalence between pG ˙

r
LpAq and L1ppG ˙

δ
pG,r
Aq. Observe that teu ˙

r

´

pG ˙
r
LpAq

¯

– pG ˙
r
LpAq and that

teu ˙
r

´

L1ppG ˙
δ
pG,r
Aq

¯

– L1ppG ˙
δ
pG,r
Aq. Since teu is the only finite subgroup of Γ by our assumptions, Theorem

9.3 in [18] yields therefore that the same element induces a K-equivalence between Γ ˙
r
L1
´

pG ˙
r
LpAq

¯

and

Γ˙
r
L1ppG ˙

δ
pG,r
Aq.

Observe that LpAq P L
pF, so pG ˙

r
LpAq “ ZpLpAqq P LΓ thanks to Theorem 3.2.2 piiq. Hence we have

L1
´

pG ˙
r
LpAq

¯

– pG ˙
r
LpAq in K K Γ. In other words, Γ ˙

r

´

pG ˙
r
LpAq

¯

is K-equivalent to Γ ˙
r
L1ppG ˙

δ
pG,r
Aq

via the element ψ. That is, Ψ “ F 1pψq is an isomorphism.
To conclude, we use the commutative diagramme (3.2). Namely, since Γ satisfies the Baum-Connes property
with coefficients in pG ˙

δ
pG,r
A by assumption, then K˚pΓ˙

r
L1ppG ˙

δ
pG,r
Aqq – K˚pΓ ˙

B,r
ppG ˙

δ
pG,r
Aqq via ηΓ

pG˙
r

A
. By using

the associativity for quantum semi-direct products from Theorem 3.2.2 piq we getK˚ppF˙
r
LpAqq

„
ÝÑ K˚ppF˙

δ,r
Aq

via ηΓ
pG˙
r

A
˝Ψ. So LF pAq – F pAq through ηpFA thanks to the commutativity of diagram (3.2). That is, pF satisfies

the quantum Baum-Connes property with coefficients in A. �

3.2.6 Remark. The argument of the preceding theorem can be applied when Γ has more finite subgroups than
the trivial one. Indeed, we could do the argument with the quantum semi-direct products given by FΛ :“ Λ˙

α|
G

for every finite subgroup Λ ă Γ. In that case, the claim “Ψ “ F 1pψq is an isomorphism”, which is used in
order to conclude using the commutative diagram (3.2), can be achieved by applying Theorem 9.3 in [18].
The problem with this case is that the finite subgroups of Γ provide torsion of pF by virtue of Theorem 3.1.1.
Hence the theoretical framework for the quantum Baum-Connes property fails. It is reasonable to expect that
the same stabilization property holds for any quantum semi-direct product (not necessarily torsion-free) once
the Baum-Connes property can be formulated properly without the torsion-freeness assumption.

3.2.7 Theorem. Let F “ Γ ˙
α
G be a quantum semi-direct product such that pF, Γ and pG is a torsion-free

discrete quantum groups.
If pF satisfies the strong quantum Baum-Connes property, then Γ satisfies the strong Baum-Connes property
and pG satisfies the strong quantum Baum-Connes property.

Proof. Assume that pF satisfies the strong quantum Baum-Connes property. Since Γ and pG are divisible

27



torsion-free discrete quantum subgroups of pF thanks to Remark 3.3, then they satisfy the strong Baum-
Connes property by virtue of Remark 2.4.6. �

3.3. K-amenability property

To finish, we study an other property of own interest: the K-amenability. Namely, we get the following

3.3.1 Theorem. Let F “ Γ˙
α
G be a quantum semi-direct product. Then F is co-K-amenable if and only if

Γ is K-amenable and G is co-K-amenable.

Proof. Assume that F is co-K-amenable. This means that there exists an element αF P KKpCrpFq,Cq
such that rτFs b

CrpFq
α “ rεFs P KKpCmpFq,Cq, where τF : CmpFq � CrpFq is the canonical surjection and

εF : PolpFq ÝÑ C is the co-unit of F whose extension to CmpFq is still denoted by εF.

By virtue of Remark 3.3 we know that Γ and pG are discrete quantum subgroups of pF via the canonical injections
ιrΓ : C˚r pΓq ãÑ CrpFq and ιrG : CrpGq ãÑ CrpFq. In this situation it is straightforward to show that Γ and pG
are K-amenable with elements αΓ :“ rιrΓs b

CrpFq
αF P KKpC

˚
r pΓq,Cq and αG :“ rιrGs b

CrpFq
αF P KKpCrpGq,Cq.

Conversely, assume that Γ is K-amenable and that G is co-K-amenable. By virtue of the K-amenability
characterization of J. Cuntz (see Theorem 2.1 in [8]), the surjection Γ˙

m
A� Γ˙

r
A induces a KK-equivalence

for every Γ-C˚-algebra A. In particular, Γ ˙
m
CmpGq � Γ ˙

r
CmpGq induces a KK-equivalence. Since G is

co-K-amenable, then the canonical surjection τG : CmpGq � CrpGq, which is Γ-equivariant, induces a Γ-
equivariant KK-equivalence. If jΓ denotes the descent homomorphism with respect to Γ, which is compatible
with the Kasparov product, then it is clear that rid ˙ τGs “ jΓprτGsq P KKpΓ ˙

r
CmpGq,Γ ˙

r
CrpGqq is an

invertible element. In other words, the composition Γ ˙
m
CmpGq � Γ ˙

r
CmpGq

id˙τG
Ñ Γ ˙

r
CrpGqq, which is

precisely τF, induces a KK-equivalence. Hence F is co-K-amenable. �

4. Compact Bicrossed Product

In this section we observe that all preceding results can be established for a compact bricrossed product in
the sense of [10] under torsion-freeness assumption. Let G be a (classical) compact group and Γ be a discrete
group so that pΓ, Gq is a matched pair (see [2] or [10] for a precise definition). Then there exists a continuous
left action of Γ on the topological space G, α : Γ ˆ G ÝÑ G, and a continuous right action of G on the
topological space Γ, β : Gˆ Γ ÝÑ Γ. Both actions α and β are related in the following way: for every γ P Γ
and every g P G, we have γg “ αγpgqβgpγq. In particular, if e P Γ denotes the identity element of Γ, then
βgpeq “ e, for all g P G. Hence #res “ 1, where res P Γ{G is the corresponding class in the quotient space.
Observe that αe “ idG and βe “ idΓ, where e denotes either the identity element in Γ or in G, respectively.
Notice that, since β is continuous and G is compact, then every orbit rγs in Γ{G with γ P Γ is finite.
For every class rγs P Γ{G, we define the following clopen subsets of G (see [10] for more details) Ar,s :“ tg P
G : βgprq “ su, for every r, s P rγs. Consider as well its characteristic function, say 1Ar,s “: 1r,s, for all
r, s P rγs. We can show that

´

1r,s
¯

r,sPrγs
P M#rγspCqbCpGq is a magic unitary and a unitary representation

of G (see [10] for more details).
In this situation, we can construct the compact bicrossed product of the matched pair pΓ, Gq and it is denoted
by F “ Γα ’β G, where CpFq “ Γ ˙

α,m
CpGq (see [10] for more details). By definition of the crossed product by

a discrete group we have a unital faithful ˚-homomorphism π : CpGq ÝÑ CpFq and a group homomorphism
u : Γ ÝÑ UpCpFqq defined by uγ :“ λγ b idCpGq, for all γ P Γ such that CpFq ” Γ ˙

α,m
CpGq “ C˚xπpfquγ : f P

CpGq, γ P Γy. The co-multiplication Θ of F is such that Θ˝π “ pπbπq ˝∆G and Θpuγq “
ř

rPrγs

uγαp1γ,rqbur

for all γ P Γ.
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4.1 Remark. As in Remarks 3.3 we observe that Ĝ is a quantum subgroup of F̂ with canonical surjection given
by ρĜ :“ εΓ b idC˚r pGq, where εΓ is the co-unit of Γ. As a result, if pA, δq is any F̂-C˚-algebra, then pA, δĜq is
a Ĝ-C˚-algebra with δĜ “ pρĜ b idAq ˝ δ. Notice that Γ is not in general a quantum subgroup of pF. Indeed,
the canonical injection ιmΓ : C˚mpΓq ãÑ CmpFq does not intertwine the corresponding co-multiplications.

In order to legitimate the Baum-Connes property formulation for the dual of a compact bicrossed product
F “ Γα ’β G, we need pF to be torsion-free. In this way, we do the following crucial observation.

4.2 Proposition. Let F “ Γα ’β G be a compact bicrossed product of the matched pair pΓ, Gq. If pF is
torsion-free, then the action β is trivial. Consequently, F “ Γ ˙

α
G is a quantum semi-direct product with

G :“ pCpGq,∆q.

Proof. Let G0 be the connected component of the identity element e, which is always a closed normal subgroup
of G. Consequently, G{G0 is a finite group because G is supposed to be compact. Its dual is therefore a finite
discrete quantum subgroup of pG. The latter is a discrete quantum subgroup of pF as explained in Remark 4.1.
Since pF is torsion-free by assumption, then G{G0 must be the trivial group (recall Remark 2.2.2). Hence G
must be connected, which forces β to be the trivial action. �

As we have pointed out several times, the torsion-freeness assumption is needed whenever we work with
the (current) quantum Baum-Connes property for discrete quantum groups. So, this hypothesis forces the
compact bicrossed product case to became a quantum semi-direct product. Therefore, Theorem 3.2.5 and
Theorem 3.2.7 still hold. In this sense, the torsion case is the interesting one. The analogous strategy used
in Section 3.2 could be applied for a compact bicrossed product because its representation theory can be
described explicitly as in the quantum semi-direct product case. However, the presence of a non trivial action
β makes this task more involved. It is reasonable to expect that the same stabilization property holds for any
compact bicrossed product (not necessarily torsion-free) once the Baum-Connes property can be formulated
without the torsion-freeness assumption.
The K-amenability property can be established independently of this assumption. Notice here that G is
automatically amenable (so K-amenable) because it is a classical compact group.

4.3 Theorem. Let F “ Γα ’β G be a compact bicrossed product. Then F is co-K-amenable if and only if Γ
is K-amenable.

Proof. Assume that F is co-K-amenable. This means that the canonical surjection τF : CmpFq � CrpFq
induces a KK-equivalence, that is, the corresponding Kasparov triple rτFs P KKpCmpFq, CrpFqq is invertible.
Let X P KKpCrpFq, CmpFqq be its inverse, so that we have rτFs b

CrpFq
X “ 1CmpFq and X b

CmpFq
rτFs “ 1CrpFq.

Consider the canonical α-invariant character εG : CpGq ÝÑ C, f ÞÑ εpfq :“ fpeq. Consider then the unital
˚-homomorphisms εmΓ :“ Γ ˙

α,m
εG : CmpFq ÝÑ C˚mpΓq and εrΓ :“ Γ ˙

α,r
εG : CrpFq ÝÑ C˚r pΓq, which are such

that τΓ ˝ εmΓ “ εrΓ ˝ τF, where τΓ : C˚mpΓq ÝÑ C˚r pΓq denotes the canonical surjection.
Recall that CmpFq “ Γ ˙

α,m
CpGq “ C˚xπpfquγ : f P CpGq, γ P Γy. So, with the help of the α-invariant

character above, we identify C˚mpΓq with the subalgebra of CmpFq generated by tuγ : γ P Γu by universal
property (see Remark 3.6 in [10] for more details). Hence, we consider the canonical injection ιm : C˚mpΓq ãÑ

CmpFq, which is such that εmΓ ˝ ιm “ idC˚mpΓq.

Likewise, recall that CrpFq “ Γ ˙
α,r

CpGq “ C˚xπpfquγ : f P CpGq, γ P Γy is equipped with a conditional

expectation E : Γ ˙
α,r

CpGq ÝÑ CpGq, which restricted to the subalgebra generated by tuγ : γ P Γu is just

Epuγq “ δγ,e P C. Remember as well that uγ “ λγ b idCpGq in Γ ˙α,r CpGq Ă LCpGqpl2pΓq b CpGqq. Hence
this subalgebra is identified canonically to C˚r pΓq “ Γ ˙

tr,r
C by universal property. Hence, we consider the

canonical injection ιr : C˚r pΓq ãÑ CrpFq, which is such that εrΓ ˝ ιr “ idC˚r pΓq
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By construction we observe that τF ˝ ιm “ ιr ˝ τΓ. Define the element Y :“ rιrs b
CrpFq

X b
CmpFq

rεmΓ s P

KKpC˚r pΓq, C˚mpΓqq. A straightforward computation, using all the preceding relations, yields that Y is the
inverse of the induced element rτΓs P KKpC˚mpΓq, C˚r pΓqq. Hence Γ is K-amenable.
Conversely, assume that Γ is K-amenable. By virtue of the K-amenability characterization of J. Cuntz (see
Theorem 2.1 in [8]), the surjection τF : Γ ˙

α,m
CpGq � Γ ˙

α,r
CpGq induces a KK-equivalence. Hence pF is

co-K-amenabble. �

4.4 Remark. It is important to notice that the preceding proof can be simplified by using the same argument
as in Theorem 3.3.1 together with Remark 4.1.

5. Quantum Direct Product

Let G “ pCpGq,∆Gq and H “ pCpHq,∆Hq be two compact quantum groups. We construct the quantum direct
product of G and H and it is denoted by F :“ G ˆ H, where CpFq “ CmpGq b

max
CmpHq (see [32] for more

details). The co-multiplication Θ of F is such that Θpab bq “ ∆Gpaqp1q b∆Hpbqp1q b∆Gpaqp2q b∆Hpbqp2q, for
all a P CmpGq and all b P CmpHq.
We have IrrpFq “

“

IrrpGq
‰

13

“

IrrpHq
‰

24, which means precisely that if y P IrrpFq, then there exist unique
x P IrrpGq and z P IrrpHq such that wy :“ wpx,zq “

“

wx
‰

13

“

wz
‰

24 P BpHx bHzq b CpFq, where
“

wx
‰

13 and
“

wz
‰

24 are the corresponding legs of wx and wz, respectively inside BpHxq b BpHzq bCmpGq b
max

CmpHq. As

a result, we obtain the following decomposition c0ppFq – c0pΓq b c0ppGq.
The fusion rules for a quantum direct product can be easily established. More precisely, let x, x1 P IrrpGq
and z, z1 P IrrpHq be irreducible representations of G and H and consider the corresponding irreducible
representations of F, say y :“ px, zq, y1 :“ px1, z1q P IrrpFq. Thanks to the description of IrrpFq we know
that wy “

“

wx
‰

13

“

wz
‰

24 and wy1 “
“

wx
1‰

13

“

wz
1‰

24, where the legs are considered inside BpHxq b BpHzq b

CmpGq b
max

CmpHq and BpHx1qbBpHz1qbCmpGq b
max

CmpHq, respectively. The flip map HzbHx1 ÝÑ Hx1bHz

yields the following obvious identification wyjy1 :“ wy j wy
1

“
“

wx j wx
1‰

13

“

wz j wz
1‰

24.

5.1 Remarks. 1. It is important to observe that pG and pH are quantum subgroups of pF. Indeed, the canonical
injections ιrG : CrpGq ãÑ CrpFq and ιrH : CrpHq ãÑ CrpFq intertwine the corresponding co-multiplications
by construction.

2. Moreover, the representation theory of F yields that pG and pH are divisible in pF. Namely, given an
irreducible representation y :“ px, zq P IrrpFq with x P IrrpGq and z P IrrpHq, then x “ px, εq, z “
pε, zq P rys in „ zIrrpFq. For all s P IrrpGq we have that s j pε, zq “ ps, εq j pε, zq “ ps, zq P IrrpFq,
which shows that pG is divisible in pF. For all s P IrrpHq we have that px, εq j s “ px, εq j pε, sq “ px, sq,
which shows that pH is divisible in pF.

5.1. Torsion phenomena

The description of the irreducible representations of F :“ GˆH allows to obtain the following decomposition
of its fusion ring: FusppFq “ FusppGq b FusppHq. Namely, we have IrrpFq “

“

IrrpGq
‰

13

“

IrrpHq
‰

24, so that
IrrpFq can be regarded as the tensor product of IrrpGq and IrrpHq as based rings (recall Section 2.2).
Indeed, given y P IrrpFq, take x P IrrpGq and z P IrrpHq such that y “

“

x
‰

13

“

z
‰

24. If wy, wx and wz are
representatives of y, x and z, respectively; then we have εF “ εGjεH, wy “

“

wx
‰

13

“

wz
‰

24 “
“

wx
‰

13

“

wz
‰

24 and
dpwy “

“

wx
‰

13

“

wz
‰

24q “ dpwxqdpwzq. In conclusion, the decomposition FusppFq “ FusppGq b FusppHq holds.
Accordingly, we have the following result.

5.1.1 Proposition. Let F :“ G ˆ H be the quantum direct product of G and H. pF is strong torsion-free if
and only if pG and pH are strong torsion-free.
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Proof. Assume that pG and pH are strong torsion-free. Then they are in particular torsion-free. By Remark
2.2.2, pG and pH can not contain finite discrete quantum subgroups. Hence, FusppGq and FusppHq can not
contain finite fusion subrings. Theorem 2.2.5 assures thus that FusppGq b FusppHq “ FusppFq is torsion-free.
In other words, pF is strong torsion-free. The converse is a consequence of [1] as explained in Remark 2.2.4
because pG and pH are divisible in pF. �

It is interesting to study directly the torsion-freeness in the sense of Meyer-Nest, which has already been done
in [1].

5.1.2 Theorem (Y. Arano and K. De Commer, [1]). Let F :“ G ˆ H be the quantum direct product. If pG
and pH are torsion-free, then pF is torsion-free.

5.1.3 Note. The converse of the preceding statement would be true whenever the torsion-freeness is preserved
under divisible discrete quantum subgroups as conjectured in Section 2.2.

5.2. The Baum-Connes property

Let us adapt the notations from Section 2.3.7 for a quantum direct product F :“ GˆH. In order to formulate
the quantum Baum-Connes property we assume that pF, pG and pH are all torsion-free.

Consider the equivariant Kasparov categories associated to pF, pG and pH, say K K
pF, K K

pG and K K
pH,

respectively; with canonical suspension functors denoted by Σ. Consider the usual complementary pair of
localizing subcategories in K K

pF, K K
pG and K K

pH, say pL
pF,NpFq, pLpG,NpGq and pLpH,NpHq, respectively.

The canonical triangulated functors associated to these complementary pairs will be denoted by pL,Nq,
pL1, N 1q and pL2, N2q, respectively. Next, consider the homological functors defining the quantum Baum-
Connes assembly maps for pF, pG and pH. Namely,

F : K K
pF ÝÑ A bZ{2

pC, δq ÞÝÑ F pCq :“ K˚ppF˙δ,r Cq

F 1 : K K
pG ÝÑ A bZ{2 F 2 : K K

pH ÝÑ A bZ{2

pA,αq ÞÝÑ F 1pAq :“ K˚ppG ˙
α,r

Aq pB, βq ÞÝÑ F 2pBq :“ K˚ppH ˙
β,r

Bq

The quantum assembly maps for pF, pG and pH are given by the following natural transformations ηpF : LF ÝÑ F ,
η
pG : LF 1 ÝÑ F 1 and ηpH : LF 2 ÝÑ F 2 (where that LF “ F ˝ L, LF 1 “ F 1 ˝ L1 and LF 2 “ F 2 ˝ L2).

Consider an object in K K
pGˆK K

pH, say pA,αqˆpB, βq P Obj.pK K
pGqˆObj.pK K

pHq. The tensor product
A b B is a pF-C˚-algebra with action α b β. Let pA1, α1q ˆ pB1, β1q P Obj.pK K

pGq ˆ Obj.pK K
pHq an other

object in K K
pGˆK K

pH. Let X :“ ppH, δHq, π, F q P KK
pGpA,A1q and Y :“ ppH 1, δH1q, π1, F 1q P KK

pHpB,B1q

be two Kasparov triples so that X ˆY P KK pGpA,A1qˆKK
pHpB,B1q is a homomorphism between pA,Bq and

pA1, B1q in K K
pG ˆK K

pH. Define the tensor product of these Kasparov triples in the following way

ZpX ,Yq :“ τBR pX q bA1bB τA
1

L pYq “: X b Y P KKpAbB,A1 bB1q,

where τBR pX q :“ X bB and τA1L pYq :“ A1bY are the corresponding exterior tensor product Kasparov triples
(see [3] for more details). Moreover, since τBR pX q P KK

pFpAbB,A1bBq and τA1L pYq P KK
pFpA1bB,A1bB1q,

then X b Y is also equipped with an action of pF given by Kasparov product.
In other words, it is licit to consider the following functor:

Z : K K
pG ˆK K

pH ÝÑ K K
pF

pA,αq ˆ pB, βq ÞÝÑ ZpA,Bq :“ pC :“ AbB, δ :“ αb βq
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5.2.1 Lemma. The functor Z is such that ZpL
pG ˆL

pHq Ă L
pF and ZpN

pG ˆN
pHq Ă N

pF.

If pA0, α0q P ObjpK K
pGq is a given pG-C˚-algebra, the functor

A0Z : K K
pH ÝÑ K K

pF

pB, βq ÞÝÑ A0ZpBq :“ ZpA0, Bq

is triangulated such that A0ZpN
pHq Ă N

pF.

Proof. Firstly, let us show that ZpL
pG ˆ L

pHq Ă L
pF. Namely, since all our discrete quantum groups are

supposed to be torsion-free, then we know that L
pG, L

pH and L
pF are the localizing subcategories generated

by the objects of the form c0ppGq bC1, c0ppHq bC2 and c0ppFq bC3 in K K
pG, K K

pH and K K
pF, respectively

where C1, C2, C3 P ObjpK K q. Recall as well that c0ppFq “ c0ppGq b c0ppHq by virtue of the representation
theory of F “ GˆH (see Section 5). Hence we write

Z
`

c0ppGq b C1, c0ppHq b C2
˘

“ c0ppGq b C1 b c0ppHq b C2

– c0ppGq b c0ppHq b C1 b C2 “ c0ppFq b C3 P ObjpLpFq,

where C3 :“ C1 b C2 P ObjpK K q. This shows that Z sends generators of L
pG ˆ L

pH to generators of
L

pF, so Z sends generators of L
pG ˆ L

pH to L
pF. Denote by S the class of objects in K K

pF of the form
Zp“generator of L

pG ˆL
pH”q. It is clear that S Ă ZpL

pG ˆ L
pHq. Consider xSy the localising subcategory

generated by S, that is, the smallest triangulated subcategory containing the objects of S and stable with
respect to countable direct sums. L

pF is a triangulated subcategory containing the objects of S by the discussion
above and stable with respect to countable direct sums by definition. Hence, by minimality, we have that
xSy Ă L

pF. Finally, since Z sends generators of L
pGˆL

pH to generators of L
pF, Z is compatible with countable

direct sums and ZpL
pGˆL

pHq is a subcategory in K K
pF containing S but not triangulated (because Z is not

a triangulated functor), it must be ZpL
pG ˆL

pHq Ă xSy, which yields the claim.
Secondly, let us show that ZpN

pG ˆ N
pHq Ă N

pF. For this we have to notice that the restriction functor is
obviously compatible with the tensor functor Z. Given A P ObjpN

pGq and B P ObjpN
pHq, we can write

Res
pF
E
`

ZpA,Bq
˘

“ Res
pF
EpAbBq “ Res

pG
E pAq bRes

pH
E pBq – 0, so that ZpA,Bq P ObjpN

pFq.

Next, fix a pG-C˚-algebra pA0, α0q P ObjpK K
pGq and consider the functor A0Z of the statement (which is

well defined on homomorphisms in an analogous way as Z by using the exterior tensor product of Kasparov
triples). In order to show that A0Z is triangulated, we are going to show that A0Z is compatible with the
suspension functors of the corresponding Kasparov categories and that A0Z preserves mapping cone triangles.

For the first claim, given pB, βq P ObjpK K
pHq we have

A0ZpΣpBqq “ A0Z
`

C0pRq bB
˘

“ A0 b C0pRq bB

– C0pRq bA0 bB
p1q
– ΣpA0 bBq “ ΣpA0ZpBqq,

where the identification p1q is simply induced by the canonical identification A0bC0
`

r0, 1s, B
˘

– C0
`

r0, 1s, A0b

B
˘

. Let us show that A0Z preserves mapping cone triangles. Consider a mapping cone triangle in K K
pH,

say ΣpB1q ÝÑ Cφ ÝÑ B
φ
ÝÑ B1, where φ : B ÝÑ B1 is a pH-equivariant ˚-homomorphism. Apply the functor

A0Z so that we obtain the following diagram ΣpA0 b B1q ÝÑ A0 b Cφ ÝÑ A0 b B
idbφ
ÝÑ A0 b B1, where

A0 b Cφ – Cidbφ by virtue of Proposition 2.3.7. Hence the above diagram is again a mapping cone triangle
in K K

pF. Moreover, if now B P ObjpN
pHq, then Res

pF
E
`

A0ZpBq
˘

“ Res
pG
E pA0q b Res

pH
E pBq – 0, which implies

that A0ZpBq P N
pH. �

5.2.2 Lemma. Let F “ GˆH be a quantum direct product of compact quantum groups such that pF, pG and
pH are a torsion-free discrete quantum groups.
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i) For all pG-C˚-algebra pA,αq and all pH-C˚-algebra pB, βq there exists a Kasparov triple

ψ P KK
pF`L1pAq b L2pBq, LpAbBq

˘

such that the following diagram is commutative

pG˙
r
L1pAq b pH˙

r
L2pBq

pG˙
r
u1 b pH˙

r
u2

��

Ψ // pF˙
r
LpAbBq

pF˙
r
u

��
pG˙

r
Ab pH˙

r
B

– // pF˙
r
pAbBq

(5.1)

where Ψ :“ pF˙
r
ψ and u1, u2, u are the Dirac homomorphisms for A, B, AbB, respectively.

ii) For all pG-C˚-algebra pA0, α0q P L
pG and all pH-C˚-algebra pB, βq there exists an invertible Kasparov triple

A0ψ P KK
pF`A0 b L

2pBq, LpA0 bBq
˘

such that the following diagram is commutative

pG˙
r
A0 b pH˙

r
L2pBq

pF˙
r
A0Zpu2q

��

A0Ψ
„ // pF˙

r
LpA0 bBq

pF˙
r
u

��
pG˙

r
A0 b pH˙

r
B

– // pF˙
r
pA0 bBq

(5.2)

where A0Ψ :“ pF˙
r
A0ψ and u2, u are the Dirac homomorphism for B, A0 bB, respectively.

Proof. First of all, we recall that for all pG-C˚-algebra pA,αq and all pH-C˚-algebra pB, βq we have a canonical
˚-isomorphism pF ˙

δ,r
pAbBq – pG ˙

α,r
Ab pH ˙

β,r
B by Proposition 2.3.3.

i) Given a pG-C˚-algebra pA,αq, consider the corresponding pL
pG,NpGq-triangle, say ΣpN 1pAqq ÝÑ L1pAq

u1
ÝÑ

A ÝÑ N 1pAq. Given a pH-C˚-algebra pB, βq, consider the corresponding pL
pH,NpHq-triangle, say ΣpN2pBqq ÝÑ

L2pBq
u2
ÝÑ B ÝÑ N2pBq. Consider the pL

pF,NpFq-triangle of the pF-C˚-algebra ZpA b Bq “ A b B, say
ΣpNpAbBqq ÝÑ LpAbBq

u
ÝÑ AbB ÝÑ NpAbBq.

Let us fix the object ZpL1pAq, L2pBqq “ L1pAq b L2pBq “: T P ObjpK K
pFq and take the long exact

sequence associated to the above triangle with respect to the object T . Namely,

. . .Ñ KK
pFpT,ΣpNpAbBqqq Ñ KK

pFpT, LpAbBqq
puq˚
Ñ

Ñ KK
pFpT,AbBq Ñ KK

pFpT,NpAbBqq Ñ . . .

Since pL1pAq, L2pBqq P L
pG ˆL

pH, then T P L
pF by Lemma 5.2.1. But, by definition of complementary

pair, we have L
pF Ă N $

pF
. In particular, we obtain KKpFpT,ΣpNpAb Bqqq “ p0q “ KK

pFpT,NpAb Bqq.

Hence the above long exact sequence yields the isomorphism KK
pFpT, LpA b Bqq

puq˚
– KK

pFpT,A b Bq.
Take ψ :“ puq´1

˚ pZpu1, u2qq. Consequently, we have u ˝ ψ “ Zpu1, u2q “ u1 b u2, by definition.
If we put Ψ :“ pF ˙

r
ψ : pF ˙

r
pL1pAq b L2pBqq ÝÑ pF ˙

r
LpA b Bq, then the functoriality of constructions

and the definition of the element ψ yields straightforwardly the diagram p5.1q of the statement.
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ii) Given a pG-C˚-algebra pA0, α0q P L
pG and a pH-C˚-algebra pB, βq, consider the corresponding pL ,N q-

triangles as above.
The same argument as in piq by replacing L1pAq by A0 yields the existence of a Kasparov triple A0ψ P

KK
pF`A0 b L2pBq, LpA0 b Bq

˘

such that diagram p5.2q of the statement is commutative. Namely, put
A0ψ :“ puq´1

˚ pA0Zpu2qq.
Let us show that the Kasparov triple A0ψ is invertible. If we apply the triangulated (by Lemma 5.2.1)
functor A0Z to the pL

pH,NpHq-triangle of B, we get the following distinguished triangle in K K
pF ΣpA0b

N2pBqq ÝÑ A0bL
2pBq

A0 Zpu2q
ÝÑ A0bB ÝÑ A0bN

2pBq, where A0bL
2pBq “ ZpA0, L

2pBqq P L
pF because

A0 P L
pG, L

2pBq P L
pH and we apply Lemma 5.2.1 and A0 b N2pBq P N

pF because A0ZpN
pHq Ă N

pF by
Lemma 5.2.1. In other words, the above is a pL

pF,NpFq-triangle for A0 bB. Hence, by uniqueness of this
kind of distinguished triangles, we have the following isomorphism of distinguished triangles in K K

pF,

ΣpA0 b L
2pBqq

o

��

// A0 b L
2pBq

A0Zpu2q
//

o A0ψ

��

A0 bB //

id

A0 bN
2pBqq

o

��
Σ1pNpA0 bBq // LpA0 bBq u

// A0 bB // NpA0 bBq

which yields in particular the invertibility of A0ψ as claimed.

�

5.2.3 Theorem. Let F “ GˆH be a quantum direct product of compact quantum groups such that pF, pG and
pH are a torsion-free discrete quantum groups.

i) If pG and pH satisfy the strong quantum Baum-Connes property, then pF satisfies the quantum Baum-Connes
property with coefficients in AbB, for every A P ObjpK K

pGq and B P ObjpK K
pHq.

ii) If pF satisfies the strong quantum Baum-Connes property, then pG and pH satisfy the strong quantum
Baum-Connes property.

iii) If pF satisfies the quantum Baum-Connes property, then pG and pH satisfy the quantum Baum-Connes
property with coefficients.

Proof. i) Given A P ObjpK K
pGq and B P ObjpK K

pHq consider the commutative diagram p5.1q of the
preceding lemma,

pG˙
r
L1pAq b pH˙

r
L2pBq

pG˙
r
u1 b pH˙

r
u2

��

Ψ // pF˙
r
LpAbBq

pF˙
r
u

��
pG˙

r
Ab pH˙

r
B

– // pF˙
r
pAbBq

(5.3)

where Ψ “ pF˙
r
ψ with ψ “ puq´1

˚ pZpu1, u2qq.

Since pG satisfies the strong quantum Baum-Connes property by assumption, then any Dirac homomor-
phism for A is an isomorphism, that is, L1pAq

u1

– A P L
pG. In other words, u1 P KK pGpL1pAq, Aq is an

invertible Kasparov triple. Accordingly, τL
2
pBq

R pu1q P KK
pFpL1pAqbL2pBq, AbL2pBqq is also an invertible

Kasparov triple.
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Recall that by definition we have Zpu1, u2q “ u1 b u2 “ τ
L2pBq
R pu1q b

A0bL2pBq
τAL pu

2q P KK
pFpL1pAq b

L2pBq, AbBq and AZpu2q “ τAL pu
2q P KK

pFpAb L2pBq, AbBq.

These two elements can be identified via the Kasparov multiplication τL
2
pBq

R pu1q b
AbL2pBq

p ¨ q. In other

words, the element ψ can be identified to the element Aψ via this Kasparov multiplication. The latter is
invertible by piiq of Lemma 5.2.2, which yields that Ψ in diagram p5.3q is invertible as well.

Next, since pH satisfies the strong quantum Baum-Connes property by assumption, then any Dirac ho-
momorphism for B is an isomorphism, that is, L2pBq

u2

– B P L
pH. Hence, the element pG ˙

r
u1 b pH ˙

r
u2

of diagram p5.3q is invertible. The commutativity of p5.3q yields that pF˙
r
u is an isomorphism in K K

pF,

which implies that the assembly map ηpFAbB is invertible, that is, pF satisfies the quantum Baum-Connes
property with coefficients in AbB.

ii) We have just to recall that pG and pH are divisible torsion-free discrete quantum subgroups of pF as explained
in Remark 5.1. Therefore, Remark 2.4.6 yields the assertion.

iii) In this case we apply Proposition 2.4.4.
�

5.2.4 Remark. It is worth mentioning the following. The element ψ constructed in piq of Lemma 5.2.2 is such
that

L1pAq b L2pBq

u1 b u2

��

ψ // LpAbBq

u

��
AbB AbB

The argument followed in piq of the preceding theorem yields actually that both ψ and u1bu2 are isomorphisms,
which implies that u is also an isomorphism by the commutativity of the above diagram. In other words, we
have proved that the pF-C˚-algebras of the form AbB, where A is a pG-C˚-algebra and B is a pH-C˚-algebra,
are actually in the subcategory L

pF, which yields of course the conclusion given in piq of the preceding theorem.
Taking crossed products in the preceding arguments has been done just for convenience of the presentation
in order to make appear more clearly the corresponding assembly maps.

The above theorem yields immediately the connexion of the usual quantum Baum-Connes property for pF “
{GˆH with the Künneth formula as announced in the introduction. Let A be a C˚-algebra, we say that
A satisfies the Künneth formula if for every C˚-algebra B with free abelian K-group K˚pBq, the canonical
homomorphism K˚pAq b K˚pBq ÝÑ K˚pA b Bq is an isomorphism. Observe that this homomorphism is
natural in A and B and it can be described in terms of the Kasparov product. We refer to Section 23 of [3]
for more details.

5.2.5 Corollary. Let F “ GˆH be a quantum direct product of compact quantum groups such that pF, pG and
pH are torsion-free discrete quantum groups.
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For all pG-C˚-algebra pA,αq and all pH-C˚-algebra pB, βq the following diagram is commutative

K˚
`

pG˙
r
L1pAq b pH˙

r
L2pBq

˘

K˚
`

pG˙
r
u1 b pH˙

r
u2
˘

��

K˚pΨq // LF pAbBq

η
pF
AbB

��
K˚

`

pG ˙
α,r

Ab pH ˙
β,r

B
˘ – // F pAbBq

Denote by N the class of C˚-algebras satisfying the Künneth formula.

i) If either pG satisfies the strong Baum-Connes property, pH satisfies the Baum-Connes property with coeffi-
cients in B or pH satisfies the strong Baum-Connes property, pG satisfies the Baum-Connes property with
coefficients in A; either pG ˙

α,r
A or pH˙

β,r
B belong to the class N and either pG ˙

α,r
L1pAq (and K˚ppH˙

β,r
L2pBqq

is free abelian) or pH ˙
β,r
L2pBq (and K˚ppG ˙

α,r
L1pAqq is free abelian) belong to the class N , then pF satisfies

the Baum-Connes property with coefficients in AbB.

ii) If pG satisfies the strong Baum-Connes property, pH satisfies the Baum-Connes property with coefficients
in C, either CrpGq or CrpHq belong to the class N and either pG ˙

r
L1pCq (and K˚ppH ˙

β,r
L2pCqq is free

abelian) or pH ˙
r
L2pCq (and K˚ppG ˙

β,r
L1pCqq is free abelian) belong to the class N , then pF satisfies the

Baum-Connes property with coefficients in C.

Proof. The commutative diagram of the statement is obtained by simply applying the functorK˚p¨q to diagram
(5.1) from Lemma 5.2.2.

i) Let A be a pG-C˚-algebra and B a pH-C˚-algebra. Assume that pG satisfies the strong Baum-Connes
property, pH satisfies the Baum-Connes property with coefficients in B, pG ˙

α,r
A P N , pG ˙

α,r
L1pAq P N and

K˚ppH ˙
β,r

L2pBqq is free abelian.

The last condition guarantees that K˚ppH ˙
β,r

Bq is free abelian too because the Dirac homomorphism for

B, L2pBq u2
ÝÑ B, induces a group homomorphism K˚ppH ˙

β,r
L2pBqq ÝÑ K˚ppH ˙

β,r
Bq by functoriality.

Hence, by Künneth formula we have natural isomorphisms K˚
`

pG ˙
r
L1pAq b pH ˙

r
L2pBq

˘

– K˚
`

pG ˙
r

L1pAqq bK˚ppH ˙
r
L2pBq

˘

and K˚
`

pG ˙
r
A b pH ˙

r
B
˘

– K˚
`

pG ˙
r
Aq bK˚ppH ˙

r
B
˘

, which allows to write
the commutative diagram of the statement as follows

K˚
`

pG˙
r
L1pAqq bK˚ppH˙

r
L2pBq

˘

η
pG
A b η

pH
B

��

K˚pΨq // LF pAbBq

η
pF
AbB

��
K˚

`

pG ˙
α,r

Aq bK˚ppH ˙
β,r

B
˘ – // F pAbBq
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Since pG satisfies the strong Baum-Connes property, it satisfies the Baum-Connes property with coefficients
in A. pH satisfies the Baum-Connes property with coefficients in B by assumption. Hence ηpGA and ηpHB are
isomorphisms. Since pG satisfies the strong Baum-Connes property, the same argument as in Theorem
5.2.3 shows that Ψ is invertible, so K˚pΨq of the above diagram is an isomorphism. We conclude that
η
pF
AbB is an isomorphism by commutativity of the above diagram, which yields the claim.

ii) This is a particular case of piq.

�

5.2.6 Note. In order to obtain a more optimal result concerning the Baum-Connes property for a quantum
direct product, we would have to carry out a detailed study about the Künneth formula in the equivariant
quantum setting (following and inspired by [7]). In particular, we would like to find sufficient conditions to a
crossed product to belong to the class N .

5.3. K-amenablity property

As in the quantum semi-direct product case, we study the K-amenability of pF in terms of the K-amenability
of pG and pH. Namely, we get the following

5.3.1 Theorem. Let F “ GˆH be a quantum direct product of compact quantum groups. Then F is co-K-
amenable if and only if G and H are co-K-amenable.

Proof. Assume that F is co-K-amenable. This means that there exists an element αF P KKpCrpFq,Cq such
that rτFs b

CrpFq
αF “ rεFs P KKpCmpFq,Cq, where τF : CmpFq � CrpFq is the canonical surjection and

εF : PolpFq ÝÑ C is the co-unit of F whose extension to CmpFq is still denoted by εF.

By virtue of Remark 5.1 we know that pG and pH are discrete quantum subgroups of pF via the canonical
injections ιrG : CrpGq ãÑ CrpFq and ιrH : CrpHq ãÑ CrpFq. In this situation it is well known that G and H are
co-K-amenable with elements αG :“ rιrGs b

CrpFq
αF P KKpCrpGq,Cq and αH :“ rιrHs b

CrpFq
αF P KKpCrpHq,Cq.

Conversely, assume that both G and H are co-K-amenable. This means that there exist elements αG P

KKpCrpGq,Cq and αH P KKpCrpHq,Cq such that rτGs b
CrpGq

αG “ rεGs and rτHs b
CrpHq

αH “ rεHs, where

τG : CmpGq � CrpGq, τH : CmpHq � CrpHq are the canonical surjections and εG : PolpGq ÝÑ C, εH :
PolpHq ÝÑ C are the co-units of G and H, respectively whose extensions to CmpGq and CmpHq are still
denoted by εG and εH, respectively.
By using the canonical injections ιrG : CrpGq ãÑ CrpFq and ιrH : CrpHq ãÑ CrpFq, we observe that τF “
τG ˆ τH by universal property of the maximal tensor product. We have as well that εF “ εG ˆ εH. If
π : CmpGq b

max
CmpHq� CmpGq bCmpHq denotes the canonical surjection, then by universal property of the

maximal tensor product we have the following commutative diagrams

CmpFq
τF // //

π
����

CrpFq CmpFq

π
����

εF // C

CmpGq b CmpHq

τG b τH

88

CmpGq b CmpHq

εG b εH

88

where τG b τH : CmpGq b CmpHq� CrpGq b CrpHq is the tensor product of the canonical surjections τG and
τH and εG b εH : CmpGq b CmpHq ÝÑ C is the tensor product of the co-units εG and εH.
In this way, the canonical surjection τF : CmpFq � CrpFq and the co-unit εF : CmpFq ÝÑ C can be written,
as Kasparov bimodules, under the following form rτFs “ rπs b

CmpGqbCmpHq
rτG b τHs “ π˚

`

rτG b τHs
˘

, rεFs “
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rπs b
CmpGqbCmpHq

rεG b εHs “ π˚
`

rεG b εHs
˘

. Define the element αF :“ αG b αH :“ τ
CrpHq
R pαGq b

CrpHq
τCL pαHq P

KKpCrpFq,Cq. Using elementary properties of the Kasparov product and the exterior tensor product of
Kasparov triples (see [3] for more details), a straightforward computation yields that rτFs b

CrpFq
αF “ rεFs P

KKpCmpFq,Cq. �
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