
HAL Id: hal-04033054
https://hal.science/hal-04033054v1

Submitted on 16 Mar 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Copyright

Taming internet of things application development with
the IoTvar middleware

Pedro Victor Borges Caldas da Silva, Chantal Taconet, Sophie Chabridon,
Denis Conan, Everton Cavalcante, Thais Batista

To cite this version:
Pedro Victor Borges Caldas da Silva, Chantal Taconet, Sophie Chabridon, Denis Conan, Everton
Cavalcante, et al.. Taming internet of things application development with the IoTvar middleware.
ACM Transactions on Internet Technology, 2023, 2, pp.1533-5399. �10.1145/3586010�. �hal-04033054�

https://hal.science/hal-04033054v1
https://hal.archives-ouvertes.fr

Taming Internet of Things Application Development with the IoTvar

Middleware

PEDRO VICTOR BORGES, CHANTAL TACONET, SOPHIE CHABRIDON, and DENIS CO-
NAN, SAMOVAR, Télécom SudParis, Institut Polytechnique de Paris, France

EVERTON CAVALCANTE and THAIS BATISTA, Federal University of Rio Grande do Norte, Brazil

In the last years, Internet of Things (IoT) platforms have been designed to provide IoT applications with various services
such as device discovery, context management, and data iltering. The lack of standardization has led each IoT platform to
propose its own abstractions, APIs, and data models. As a consequence, programming interactions between an IoT consuming
application and an IoT platform is time-consuming, error prone, and depends on the developers’ level of knowledge about
the IoT platform. To address these issues, this paper introduces IoTvar, a middleware library deployed on the IoT consumer
application that manages all its interactions with IoT platforms. IoTvar relies on declaring variables automatically mapped
to sensors whose values are transparently updated with sensor observations through proxies on the client side. This paper
presents the IoTvar architecture and shows how it has been integrated into the FIWARE, OM2M, and muDEBS platforms. We
also report the results of experiments performed to evaluate IoTvar, showing that it reduces the efort required to declare and
manage IoT variables and has no considerable impact on CPU, memory, and energy consumption.

CCS Concepts: · Computer systems organization → Distributed architectures; · Computing methodologies →

Distributed computing methodologies; · Software and its engineering→ Application speciic development environments.

Additional Key Words and Phrases: Middleware, Internet of Things, Software abstractions, IoT platforms

1 INTRODUCTION

The Internet of Things (IoT) envisions a network of pervasive smart objects able to interact with each other
through the Internet and perform several tasks, such as processing, capturing environmental variables, and
reacting to external stimuli through the Internet. Despite several research and development advances in the last
years, the IoT paradigm still presents many issues to address, in particular those related to application development
and the high heterogeneity resulting from the inherent diversity of hardware and software technologies.

Many research eforts have been invested in facilitating the integration of IoT resources and services to provide
software-deined distributed services [46]. One of these eforts culminated in developing IoT middleware to
improve the support for developing IoT applications. These proposals aim to abstract the speciicities of physical
devices from end-users/applications, promote interoperability, and ease application development [7, 24, 27, 36].

Designing and implementing IoT applications is complex as it addresses diferent concerns, such as adequately
identifying various stakeholders’ roles at the diferent application development phases, heterogeneity in IoT
systems, and handling a massive amount of heterogeneous data from disparate devices [33]. Furthermore, the
immaturity, lack of convergence, and signiicant fragmentation of the IoT scenario hinder the development

Authors’ addresses: Pedro Victor Borges, pedro.borges@telecom-sudparis.eu; Chantal Taconet, chantal.taconet@telecom-sudparis.eu; Sophie
Chabridon, sophie.chabridon@telecom-sudparis.eu; Denis Conan, denis.conan@telecom-sudparis.eu, SAMOVAR, Télécom SudParis, Institut
Polytechnique de Paris, Évry and Palaiseau, France; Everton Cavalcante, everton.cavalcante@ufrn.br; Thais Batista, thaisbatista@gmail.com,
Federal University of Rio Grande do Norte, Natal, Brazil.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that
copies are not made or distributed for proit or commercial advantage and that copies bear this notice and the full citation on the irst page.
Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists, requires prior speciic permission and/or a fee. Request permissions from
permissions@acm.org.

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
1533-5399/2023/2-ART $15.00
https://doi.org/10.1145/3586010

ACM Trans. Internet Technol.

HTTPS://ORCID.ORG/0000-0002-8812-7414
HTTPS://ORCID.ORG/0000-0002-7280-0782
HTTPS://ORCID.ORG/0000-0002-1591-6754
HTTPS://ORCID.ORG/0000-0002-1252-7374
HTTPS://ORCID.ORG/0000-0002-1252-7374
HTTPS://ORCID.ORG/0000-0002-2475-5075
HTTPS://ORCID.ORG/0000-0003-3558-1450
https://orcid.org/0000-0002-8812-7414
https://orcid.org/0000-0002-7280-0782
https://orcid.org/0000-0002-1591-6754
https://orcid.org/0000-0002-1591-6754
https://orcid.org/0000-0002-1252-7374
https://orcid.org/0000-0002-2475-5075
https://orcid.org/0000-0003-3558-1450
https://doi.org/10.1145/3586010
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3586010&domain=pdf&date_stamp=2023-02-28

2 • Borges et al.

of applications that work across diferent physical devices and platforms, thus leading them to largely be
vendor/platform- and hardware-speciic [43].

Developers can rely on IoT platforms that facilitate the communication and data low between IoT applications
and devices. These platforms provide interfaces, interaction patterns, communication protocols, and computational
capabilities to support application development. They also include services that provide functionalities such
as device discovery, context management, and data analysis [35]. However, developing an IoT application
remains challenging, even with the support of IoT platforms and middleware. For example, to display the current
temperature at a given location, application developers have to program the interactions with an IoT platform
that shows up several virtual entities providing updated temperature data around the area. Even if most of the
platforms provide similar features, developers need to learn, for each platform, speciic APIs, data models, and
communication protocols. Other development tasks include selecting and handling the appropriate interaction
pattern (e.g., request/reply or publish/subscribe), (un)marshalling data, and manipulating sensor identiiers
and metadata, such as quality attributes of sensor data. Furthermore, they may have to tune the frequency of
interactions to limit the usage of computational resources.

The Web of Things (WoT)1 approach has been used since the dawn of the IoT paradigm as means of (re)using
standardized Web technologies (such as the HTTP protocol and the REST architectural style), thing descriptions
describing metadata and interfaces of IoT objects, and binding components for interacting through diferent
protocols [34]. Nonetheless, the concepts ofWoT need to be further complemented to address software engineering
issues when developing IoT applications out of the Web.

Our previous work [4] introduced the IoTvar middleware, which abstracts the interaction with IoT platforms
and lower the development cost of IoT applications in terms of lines of code. This enables for an easier integration
of IoT applications and IoT devices. To provide this integration, the middleware introduces the concept of IoT
variables. An IoT variable is a variable that has an observation attribute representing a value measured by a
sensor in the environment. IoT variables are managed by IoTvar2, an IoT middleware library that transparently
updates the observation attribute. For this purpose, IoTvar provides proxies that manage all the interactions with
IoT platforms.
Our previous work [4] also reported a irst evaluation of IoTvar, with only one platform. This paper extends

such work with the following contributions. First, we analyze the features of three IoT platforms that allow
virtualizing sensors, discovering them, and providing context data to the applications. We analyzed FIWARE [13],
OM2M [1], andmuDEBS [23], and identiied the common features of these IoT platforms to provide an architecture
that can support multiple platforms and be easier to use from the perspective of application developers. Second,
we enhanced the architecture of IoTvar towards the easy integration of new IoT platforms and instantiated it
for those three platforms. In this architecture, we show how to integrate connectors to the three IoT platforms
previously mentioned. Finally, we report computational experiments to assess the impact of IoTvar on energy,
memory, and CPU consumption when integrating it with the analyzed platforms.

The remainder of this paper is organized as follows. In Section 2, we motivate our study by presenting works
related to IoTvar. Section 3 presents an analysis of the three IoT platforms currently connected with IoTvar. Next,
Sections 4 and 5 detail the IoTvar and evaluate it in terms of CPU, memory, and energy consumption. In Section 6,
we conclude and propose future works.

1https://www.w3.org/WoT/
2https://gitlabev.imtbs-tsp.eu/m4iot/iotvar

ACM Trans. Internet Technol.

https://www.w3.org/WoT/
https://gitlabev.imtbs-tsp.eu/m4iot/iotvar

Taming Internet of Things Application Development with the IoTvar Middleware • 3

2 RELATED WORK

The IoT research area comprises many protocols, standards, and platform speciications, and several works propose
generic abstractions to ease IoT application development. Existing proposals mainly focus on domain-speciic
languages (DSLs), application mashups, IoT middleware, and proxies.
Many domain-speciic dedicated programming languages are used to provide application abstractions for

inexperienced developers. More speciically, some middleware solutions provide their own DSL to provide
abstractions for building IoT applications. Boujbel et al. [5] presentMuScADeL (MultiScale Autonomic Deployment
Language), a DSL that enables designers to declare multiscale deployment properties without precise knowledge
of the deployment domain. Delicato et al. [8] propose a Web mashup DSL speciically tailored for wireless
sensor networks (WSNs). Web mashups allow ad-hoc Web applications to be built upon the combination of
real-time information (data, presentation, and functionality) through the composition of available services, such
as publishing and discovering the capacities of available WSNs. Instead of proposing a new DSL, IoTvar comes
up as a middleware library to be used by developers.

Webmashups foster easy, fast integration of data sources to produce augmented results that were not considered
when producing raw data [3, 32]. Wirecloud [45] is an end-user Web-centered application mashup platform
aimed at enabling end-users with no programming skills to create Web applications and dashboards/cockpits,
e.g., to visualize their data of interest or to control their smart home or environment. Node-RED [28] allows
wiring together hardware devices, APIs, and online services, and application elements can be saved or shared for
reuse. Application mashups have advantages over a user-friendly graphical development with a fast composition,
but they are limited to the graphical components and their conigurations through a Web browser. On the other
hand, IoTvar is a library that does not limit its usage and can be inserted in multiple application parts.
Eclipse Thingweb node-wot3 is an implementation of the Web of Things that provides a browser bundle to

visualize Things Descriptions (TDs), which are abstractions of physical or virtual entities, and to enable the
interaction with IoT objects through the Web browser. Protocol bindings exist there to enable a TD to be adapted
to a speciic protocol, data payload formats, or platforms that combine both in speciic ways. A scripting API
represents an interface for scripts to discover and operate IoT objects, and to expose locally deined things. While
Eclipse Thingweb is proposed to be a mediator between the application and the things, IoTvar is intended to be
deployed at the application side as a library providing abstractions to interactions with IoT platforms. IoTvar also
comes with the notion of IoT variables, in which sensors are be represented in the source code as a variable that
updates sensor information automatically through a proxy. On the other hand, the interface of Eclipse Thingweb
with IoT objects happens through protocol bindings such as HTTP and CoAP.

Most IoT middleware solutions work on the IoT device network side. We present here two of these middleware
solutions that aim to master application energy consumption. Jeon and Jung propose Mint [17], a middleware
that provides a high-level abstraction for IoT devices in the form of an API. Mint further provides integration
with three layers (sensor abstract layer, system layer, and interaction layer), and aims to enhance the energy
eiciency and performance of IoT devices through performance improvement ofered by leveraging resource
management and request processing. The main diference between Mint and IoTvar is that the former abstracts
communication directly with IoT devices, while IoTvar proposes to abstract communication with IoT platforms.
Kalbarczyk and Julien [18] propose Omni, a middleware ofering an abstraction for discovering neighboring
devices with their services, sharing proiles with nearby users, and interacting with beacons in a smart city. Omni
uses a mix of Bluetooth and Wi-Fi technologies to discover neighboring devices and transfer data. Omni is similar
to IoTvar as it is deployed on end-user appliances, but IoTvar is not limited to short-range networks and allow
communication with other devices outside of the neighborhood.

3https://www.thingweb.io/

ACM Trans. Internet Technol.

https://www.thingweb.io/

4 • Borges et al.

IoT applications require a signiicant number of protocols to meet users’ requirements and provide the required
features. One way to reduce the complexity of using these protocols on the client side is to use the Proxy
pattern [15]. Soundararajan and Robert [41] show how the Proxy pattern can help to implement a benchmarking
application. They provide a client-side Proxy pattern that hides the complexity of protocols and encapsulates
the knowledge of how to contact the servers. Similarly, Sutra et al. [42] build the CRESON system that creates a
proxy on the client side to contact databases over the Internet. It abstracts the communication protocols involved
while preparing to transfer and process data required by the application. The role played by the Proxy pattern in
application development inspired the approach followed by IoTvar to manage the interactions with several IoT
platforms deal with the choice of the interaction pattern,and the frequency of the updates, and abstract protocols
for (un)marshalling data.

3 IOT PLATFORMS: THEIR ROLE IN THE IOT ECOSYSTEM AND THEIR FEATURES

A new generation of applications such as smart buildings, smart cities, agriculture, logistics, and supply chain
manufacturing shares common requirements such as interacting with IoT devices according to various IoT
protocols [2]. In addition, they should all ofer extra-functional requirements such as fast response time, low energy
consumption, availability, reliability, security, and high throughput. In this context, IoT platforms supporting
their deployment is a recent trend: they provide services to deploy and run applications on the top of a hardware
or software suite [25].

IoT platforms have been deined as the łmiddleware and the infrastructure that enable the end-users to interact
with smart objectsž [24], besides providing services such as programming frameworks, machine-to-machine
(M2M) integration, data and device management, security and storage [40]. For this work, we consider context
management IoT platforms, which represent a subset of IoT platforms. Context management platforms provide
virtualization and abstraction of the sensors (a virtual, software-based representation of a sensor), sensor discovery,
and provision of context data to applications through APIs and diferent interaction patterns.
We have selected three IoT platforms available as open-source projects. FIWARE/Orion and OM2M are

widespread platforms used by the community and comply with IoT standards. muDEBS is a research platform
with some interesting characteristics: it is a distributed event-based system that combines a semi-structured data
model with content-based iltering. Although these platforms are diferent in many aspects, they share common
features. This section presents an analysis of those features aiming at identifying the components that should be
provided by an IoT middleware to interact with IoT platforms and which abstractions should be provided to IoT
client applications.

3.1 Overview of FIWARE, OM2M, and muDEBS

FIWARE4 is a generic, open-source platform supported by the European Community. It provides many extensible,
reusable, interoperable components to allow for easy system development in diferent application domains, the
so-called Generic Enablers (GEs). FIWARE encompasses GEs for context entity management, device management,
historical data storage, event processing, security, and the creation of dashboards. The main FIWARE GE is the
Orion Context Broker (or simply Orion), which is the context management IoT platform. As we focus on context
management IoT platforms, this paper will refer to it as FIWARE/Orion from now on.
OM2M is an open-source implementation of the oneM2M standard [31] adopted by the Eclipse IoT Working

Group. It provides an M2M service that can develop services independently of the underlying network. OM2M
provides a horizontal Service Common Entity (CSE) that can be deployed in an M2M server, a gateway, or a device.
Each CSE provides application enablement, security, triggering, notiication, persistence, device inter-working,

4https://www.iware.org

ACM Trans. Internet Technol.

https://www.fiware.org

Taming Internet of Things Application Development with the IoTvar Middleware • 5

and device management. The platform exposes an API providing many other services, such as resource discovery,
application registration, and context data management.

muDEBS (Multiscale Distributed Event-Based System) is a research IoT platform designed to disseminate data
in large-scale and heterogeneous systems involving clouds, cloudlets, desktops, laptops, mobile phones, and IoT
smart objects. muDEBS introduces multi-scoping for limiting the broadcasting of subscription ilters and enabling
to forward notiications only to relevant scopes of the overlay network of brokers. The platform brings into play
producer and consumer contracts. To implement localized scalability, broker nodes form an overlay that supports
cycles and delimits scopes. Therefore, ilters and data are tagged with scoping metadata that are speciied in the
producer and consumer contracts, and they are then broadcast only to relevant scopes, not to the entire system.

3.2 Context data model

IoT is characterized by a high degree of heterogeneity because of the many available technologies [21]. Devices
from diferent manufacturers expose their data in various data models and use diferent protocols. A challenge for
an IoT platform is to provide a uniied data model. The model must include location data and quality attributes
(e.g., freshness, resolution). Furthermore, a well-deined data model facilitates the development of wrappers and
adapters to parse the data in IoT applications. We present below the context data models used by the three studied
IoT platforms.

3.2.1 FIWARE/Orion data model. FIWARE/Orion follows the Next Generation Service Interface (NGSI) data
model [26] to standardize information exchange and allow for component interoperability. In NGSI, information
is structured in a generic way through entities that can represent physical and virtual elements such as a building,
a car, sensors, or actuators. An NGSI entity has an identiier, a type, and a list of attributes. Attributes have a
name, a type, a value, and a list of metadata, with the same data structure as the attributes. Figure 1 depicts all
these elements.

Fig. 1. Next Generation Service Interface (NGSI) entity model used by FIWARE/Orion.

3.2.2 OM2M data model. OM2M conforms to the data model of the oneM2M speciication. Figure 2 shows the
generic model used in the OM2M platform. The model contains a resource type that may include children resource
types and resource speciic attributes, each one with its own value. There is no limit to what data can be included
in the data model. For instance, quality attributes and location data can also be included as named attributes.

3.2.3 muDEBS data model. The muDEBS platform uses a semi-structured data model łà laž XML and allows
XPATH expressions in scripts written in JavaScript. Devices and clients can exchange any data. Clients publish
contracts to brokers connected through the IoT platform, and any device with data interesting for the IoT
application is forwarded to applications. Figure 3 shows the data model used by muDEBS to represent entities. A
context report aggregates a set of context observations, with a context observable deining what is observed, e.g., a
temperature sensor. The observable is linked to a context entity that can have a relation with other entities. The
model ofered by the muDEBS platform also makes it possible to provide localized data and quality attributes.
When the contract sent by the client contains the need for a device to send the location and a given quality of the
attributes, brokers can ilter out context reports that do not contain these data.

ACM Trans. Internet Technol.

6 • Borges et al.

Fig. 2. OM2M generic data model.

Fig. 3. muDEBS generic data model.

3.3 Interaction paterns, APIs, and protocols

The communication among themany components of an IoT system is crucial. IoT platforms commonly provide two
interaction patterns: synchronous requests or publish/subscribe. In the synchronous pattern, a client application
consumes IoT data by sending a request to the IoT platform, which replies to the request. In the publish/subscribe
pattern, a consumer application registers to the IoT platform and asynchronously receives publications when
they are available [37]. In addition, all the IoT platforms propose APIs with a set of functions used by client
applications and protocols for the exchanges. This section presents the interaction patterns, APIs, and protocols
provided by the three studied IoT platforms.

FIWARE/Orion provides both synchronous and publish/subscribe interaction patterns. The platform provides
RESTful APIs for interactions with context producers and IoT application consumers [12]. HTTP is used both for
synchronous and publish/subscribe interactions. When using the synchronous pattern, application developers
make HTTP requests to the API following a request/response behavior. On the other hand, for the publish/sub-
scribe interaction pattern, the consumer application uses the API to subscribe to content and waits for HTTP
requests from the broker to receive data.
OM2M also provides the two interaction patterns. The synchronous pattern uses a RESTful API so that

the client application makes HTTP requests and receives data [30]. The publish/subscribe pattern uses the
MQTT protocol [29]. A client application subscribes to topics using the MQTT protocol, and the platform
sends publications to the subscribed client applications. OM2M beneits from MQTT characteristics such as
diferent qualities of services (from łat least oncež to łexactly oncež), clear sessions, and retain lags for managing
disconnections.

ACM Trans. Internet Technol.

Taming Internet of Things Application Development with the IoTvar Middleware • 7

muDEBS provides only the publish/subscribe interaction pattern through an ad hoc API. The synchronous
mode is emulated by providing a client application with the data that producers have last produced. These data
are returned to the consumer when the subscription ilter of the consumer is installed onto access brokers. Such
brokers manage direct connections to producers.

3.4 Discovery facilities and filtering capabilities

IoT platforms include services to ind context producers and ilter the data these producers send. Filtering data
ensures better control over the quality and the amount of data received by applications, avoiding unnecessary
interactions with the IoT platform. This section presents the facilities provided by the three IoT platforms.
Using FIWARE/Orion, application developers make HTTP requests to the API by providing parameters such

as identiier, type, and attributes to select entities. The iltering capability can use both a Simple Query Lan-
guage or geographical queries. An easy-to-use query to ilter out based on values of attributes would be like
q=temperature>40;humidity>40. A geographical query to retrieve all the entities located closer than ive kilome-
ters from a given point can be expressed by georel=near;minDistance:5000&geometry=point&coords=-40.4,-3.5.

The discovery functionality in OM2M is implemented using an HTTP GET request passing parameters such as
fu, which stands for łilter usagež, and lbl, which stands for łlabelž. For instance, to get a temperature sensor, the
application would use fu=1&lbl=Type/sensor, where fu=1 indicates that it is a discovery request. The discovery
functionality also retrieves the set of resource URIs matching speciic ilter criteria. OM2M cannot ilter data
sent by sensors, thus leaving a gap for unneeded data to be sent to the application. Nonetheless, when using the
publish/subscribe pattern, the application can specify the maximum frequency of notiications.

muDEBS does not need any discovery functionality because context reports describing observable entities and
ilters are content-based, i.e., subscription ilters can select the entities from which data are to be received (e.g.,
temperature greater than 20 degrees Celsius). In addition, the muDEBS iltering functionality is extended into
producer and consumer contracts to include quality of data [23] and privacy concerns [9], e.g., good precision of
air quality data only, or only authorized end-users. Brokers ensure that only the relevant data are forwarded to
consumers.

3.5 Synthesis of the IoT platforms analysis

Table 1 summarizes important features that the FIWARE/Orion, OM2M and muDEBS platforms bring into play.
These features are: (i) interaction pattern, either synchronous or publish/subscribe; (ii) application protocols,
showing how many and what are the protocols supported by the platform for applications to communicate with;
(iii) data models, the standards used by the platforms to send/receive data from/to applications; (iv) discovery
service, the process of automatically inding appropriate services and their providers by taking into consideration
the context and Quality of Service (QoS) of requests; and (v) iltering capabilities, indicating how the platform can
reine data sent/received from sensors, devices, and applications.

In summary, the FIWARE/Orion, OM2M, andmuDEBS platforms provide diferent data models even though they
share a typical structure in some parts, i.e., attributes and their metadata. The IoTvar architecture hence provides
speciic data unmarshallers for each IoT platform. Furthermore, the IoT platforms each have their own way of
communicating. FIWARE/Orion relies on HTTP to do synchronous and publish/subscribe communication, OM2M
relies on HTTP for synchronous communication and MQTT for publish/subscribe communication, and muDEBS

uses its own protocol based on the AMQP speciication. With each IoT platform having its communication
protocol, the efort to develop IoT applications increases as it is more time-consuming to understand and adapt to
each protocol. An abstraction on the top of these diferent communication protocols like IoTvar could be provided
to reduce the efort from developers to implement the interaction with IoT platforms in their applications.

ACM Trans. Internet Technol.

8 • Borges et al.

Table 1. Comparison between FIWARE/Orion, OM2M, and muDEBS

Characteristics
Platforms

FIWARE/Orion OM2M muDEBS

Interaction patterns Synchronous, publish-subscribe Synchronous, publish/subscribe Publish/subscribe
Application protocols HTTP HTTP, MQTT Ad-hoc
Data models NGSI oneM2M Ad-hoc, semi-structured
Discovery service Yes Yes Yes
Filtering capabilities Yes No Yes

4 IOTVAR

IoTvar is an IoT middleware library designed to abstract the interactions of client IoT applications with context
management IoT platforms. The main concern is ofering an abstraction level that enables developers to reduce
the number of lines of code required to discover and interact with virtualized sensors.

With IoTvar, application developers deine IoT variables in their source code, i.e., a variable with an observation
attribute representing sensor data [4]. To transparently update data from IoT platforms, IoTvar provides proxies
that handle the interactions between IoT variables and IoT platforms. Figure 4 illustrates the integration of IoTvar
with IoT platforms.

Fig. 4. Integration of IoTvar in an IoT system distributed architecture.

This section is structured as follows. In Section 4.1, we describe how IoTvar is used by IoT consumer application
developers. In Sections 4.2 and 4.3, we detail the architecture of IoTvar and how to integrate a new IoT platform
to it.

4.1 Using IoTvar

IoTvar relies on IoT variables to enable the interaction with IoT platforms, so that speciic IoT variable is declared
in the source code for each supported platform. Figure 5 shows a class diagram of IoTvar with its main classes
and interfaces. The IoTVariableCommon class contains common attributes to be shared by all the IoT variables
corresponding to the supported platforms. IoTVariableFiware, IoTVariableMuDEBS, and IoTVariableOM2M

are classes that specialize the IoTVariableCommon class for each platform, thus inheriting the common attributes
and implementing those that are speciic for each platform. Moreover, data exchanged between the components
and coming from the platforms are generically represented by the Observation class.

ACM Trans. Internet Technol.

Taming Internet of Things Application Development with the IoTvar Middleware • 9

Fig. 5. IoTvar implementation elements

Listing 1 shows an excerpt of code in Java programming language using IoTvar. This code declares an IoT
variable to display the up-to-date temperature gathered from a sensor in the vicinity of the Eifel Tower in Paris,
France. To declare an IoT variable, the developer provides IoTvar with: the identiier (line 2) and type (line 3) of
the searched-for sensor (Temperature in line 4); the location of the Eifel Tower with latitude, longitude, and
radius in meters (line 5); the required refresh time as a quality parameter (line 6); the size of the local history of
values (line 7); additional ilters to be provided to the platform (e.g., temperature>10;humidity>10 in line 7);
the coniguration parameter of the IoT platform (line 7); the interaction strategy with the IoT platform (line 8),
and the class to be used for unmarshalling purposes (line 9).

Listing 1. Declaring a variable using IoTvar.

1 IoTVariableFiware <Integer > temperatureEiffelTower = new IoTVariableFiware <>(

2 "temperature_eiffel_tower_310", // ID

3 "LM35", // Type

4 "Temperature", // Attribute

5 new Location("location", 48.8582602 , 2.29449905431968 , 100.0) ,

6 new RefreshTime (10, TimeUnit.SECONDS),

7 10, null , orionConfiguration , // History size , filters , and

platform config.

8 HandlerStrategy.SYNC // or PubSub

9 Integer.class);

10 temperatureEiffelTower.registerIoTListenerP(display);

The use of an IoT variable requires registering a listener to it (see line 10 in Listing 1), which is automatically
activated when the observation is updated, i.e., either when a refresh has been requested (in the synchronous
interaction pattern) or when a notiication has been received (in the publish/subscribe interaction pattern). In
IoTvar, an IoTVarObserver object represents a generic listener to be registered to an IoT variable. Therefore,
a speciic listener is codiied by implementing this interface and the methods it deines. Listing 2 displays the
basic interface for an observer with the onUpdate} and updateIssue methods: the former is called each time a
new observation is provided by IoTvar and the latter is called when the update cannot comply with the speciied
refresh time constraint. The updateIssue method enables the developer to handle an error when no update is
received, e.g., if the IoT platform is unreachable.

ACM Trans. Internet Technol.

10 • Borges et al.

Listing 2. Interface of a listener.

1 public interface IoTVarObserver {

2 void onUpdate(Observation newObservation);

3 void updateIssue(String issue);

4 }

Listing 3 presents the code of TextDisplay, a simple observer class which implements the IoTVarObserver
interface and displays the temperature around the Eifel Tower. In this example, the observer logs the observation
with the received temperature (line 4) and then logs any error, e.g., networking error, data error, etc. (line 7).

Listing 3. Declaration of a listener.

1 public class TemperatureDisplay <Meteo > implements IoTVarObserver {

2 private static final Logger logger = LogManager.getLogger(TextDisplay.class);

3 public void onUpdate(Observation newObservation) {

4 logger.info("Current temperature around the Eiffel Tower: " +

newObservation);

5 }

6 public void updateIssue(String issue) {

7 logger.info("There was an error updating the sensor: " + issue);

8 }

9 }

Table 2 shows the diferences regarding the number of lines of code that application developers need to write
to directly use the APIs of FIWARE/Orion, OM2M, or muDEBS in comparison to using IoTvar. These amounts of
code refer to implementing a behavior similar to the one presented in Listing 1, i.e., to gather information from a
sensor close in a given location.

Table 2. Number of lines of code when developing with and without IoTvar

Platform Interaction pattern
Lines of code

with IoTvar without IoTvar

FIWARE/Orion
Synchronous 15 450
Publish/subscribe 15 600

OM2M
Synchronous 15 400
Publish/subscribe 15 200

muDEBS Publish/subscribe 15 450

4.2 IoTvar Architecture

IoTvar is architected to ease the integration of new IoT platforms by exposing an interface implemented for the
three currently supported platforms. It also proposes IoT variables that are a proxy [38] representing an entity of
an IoT platform. The proxy activates the handler in charge of communicating with the IoT platform. When the
proxy receives an updated observation, it unmarshalls the received data and updates the observation attribute of
the corresponding IoT variable.

ACM Trans. Internet Technol.

Taming Internet of Things Application Development with the IoTvar Middleware • 11

Figure 6 shows the main components of IoTvar, with several components organized in layers to manage the
interactions between client applications and IoT platforms. The Protocol Layer is shared by all the platforms
and deines components implementing the respective platform protocols to interact with the client applications,
such as HTTP and MQTT. The Interaction Pattern Layer provides components to manage connections with IoT
platforms and enables IoTvar to handle the interactions depending on the patterns supported by the platform. The
upper layers are platform-speciic. The API Layer and the Unmarshaller Layer work as a glue that maps the API
calls and data structures to the IoT platforms. The Discovery Layer provides functionalities for IoT applications to
discover devices and manage iltering mechanisms, such as device discovery and data gathering.

Fig. 6. IoTvar generic architecture.

4.3 Extending IoTvar

The current version of IoTvar supports only the HTTP, MQTT, and muDEBS protocols, which are the ones used
by the IoT platforms integrated with it so far. To support a new platform with a diferent protocol, the Protocol
Layer of IoTvar can be extended to provide such support. Figure 7 depicts the steps to integrate a new platform

ACM Trans. Internet Technol.

12 • Borges et al.

Fig. 7. Steps to extend IoTvar towards supporting new IoT platforms.

with IoTvar. If there is no support for a protocol in use by the platform, the developer must provide a generic
implementation for it. As each IoT platform may have its own data model and API, a speciic data unmarshaller
and an API adapter are required to translate the protocol and communication of the IoT platform to Java objects
within IoTvar. This Java object is then used by a speciic platform discovery component to provide information
for the application via the IoTVarObserver common interface.
Table 3 details the number of lines of code per component of IoTvar. The number of lines needed to add

an extension varies from one platform to another. IoTvar’s muDEBS components were implemented with 199
lines of code while the ones for OM2M and FIWARE/Orion were implemented using 346 and 744 lines of code,
respectively. The implementation of the muDEBS’ data model along with its processing mainly comes from a
library external to IoTvar, leaving most of the implementation in IoTvar mainly for communicating with the
platform and hence reducing the number of lines of code required to integrate it with IoTvar. On the other hand,
FIWARE/Orion and OM2M needed to implement the data model and interactions, thereby being more costly
in terms of lines of code. Furthermore, the generic parts of IoTvar needed to provide the foundation for the
platform-speciic components, such as the Synchronous HTTP and the Synchronous Handler, with 154 and 139
lines of code. This is similar to the PubSub components of the Interaction Pattern Layer and the Protocol Layer,
which respectively required 238 and 202 lines of code.

The generic solution IoTvar provides, across its architectural layers, is mainly possible thanks to the proxy
pattern. Security in IoTvar relies on the availability of security mechanisms in the supported IoT platforms. For
example, FIWARE/Orion provides a suite of GEs for this purpose, oneM2M deines security Common Service
Functions, andmuDEBS uses privacy contracts to control the dissemination of information according to application
requirements. A new vertical layer encompassing the layers already present in IoTvar needs to be implemented
to integrate these security mechanisms.

ACM Trans. Internet Technol.

Taming Internet of Things Application Development with the IoTvar Middleware • 13

Table 3. Number of lines of code to implement each IoTvar component.

Layer Component
Lines of code

Generic muDEBS OM2M Orion

Discovery Layer Platform-speciic discovery - 97 98 406
API Layer Platform-speciic API adapter - 102 198 185
Unmarshaller Layer Platform-speciic unmarshaler - - 50 153

Interaction Pattern Layer
Synchronous Handler 235 - - -
Pub/Sub Handler 154 - - -

Protocol Layer

Synchronous HTTP 139 - - -
Pub/Sub HTTP 238 - - -
Pub/Sub MQTT 202 - - -
Ad Hoc Protocol - 50 - -

Total 917 249 346 744

5 EVALUATION

This section reports a quantitative evaluation of IoTvar and its integration within the FIWARE/Orion, OM2M,
and muDEBS platforms. This evaluation comprises a performance assessment that considers the same application
written with and without IoTvar (i.e., directly accessing the IoT platform), aiming at measuring the overhead in
terms of CPU, memory, and energy consumption. The application goal is to receive and display in the standard
output the data returned from a temperature sensor in the vicinity of the Eifel Tower. The tests done with this
application varied the number of sensors (one sensor is one variable declared in the code) from 25 to 200 in a 25
sensors step, with a refresh time of one second for each sensor, and having a small local history of the ten latest
values for each sensor.

Section 5.1 describes data collection and analysis procedures. Section 5.2 describes the computational infras-
tructure used for the experiments. Section 5.3 presents the results for the synchronous and publish/subscribe
interaction patterns. Section 5.4 provides an overview of the results and conclusions upon the statistical analysis.
Section 5.5 discusses a validity analysis of the performed evaluation.

5.1 Data Collection and Analysis Procedures

In the experiments, we collected performance measurements (CPU, memory, and energy consumption) by
wrapping both the method called by the synchronous handler and the method to handle notiications sent
by FIWARE/Orion, OM2M, and muDEBS. This has been implemented using AspectJ [20], which provides an
encapsulation around the main methods of the IoTvar structure and is woven into the IoTvar code.

Data for each metric (CPU, memory, and energy) were collected during 30 executions of a ive-minute test. We
did not record the irst minute of the test for warm-up purposes, ensuring that class loading is complete in the
Java Virtual Machine (JVM) to avoid any interference in the results [14]. The last four minutes corresponded to
the efective run phase. Afterwards, data were gathered into a single ile composed of (i) the sum of the CPU used
by the methods that process data in microseconds, (ii) the average memory used by the application in megabytes,
and (iii) the energy consumed in Joules.

We used hypothesis testing to assess if the overhead caused by IoTvar is statistically signiicant. First, we used
the Shapiro-Wilk test [39] to verify normality in data. Next, we used the Student’s � and Mann-Whitney tests as
alternatives for hypothesis testing depending on whether data follow a normal distribution or not [11]. A �-value

ACM Trans. Internet Technol.

14 • Borges et al.

smaller than a signiicance level � indicates that IoTvar indeed causes a statistically signiicant overhead. We
adopted � = 0.05 as signiicance level for all these tests.
A �-value returned by a hypothesis test can indicate statistically signiicant diferences, but it does not say

how much, albeit minimal [10, 19]. Therefore, we calculated the efect size as means of strengthening the claims
from the previous statistical tests and easing interpretation of results. The efect size was measured by the
Vargha-Delaney’s � measure [44] and interpreted according to the following levels of magnitude deined by Hess
and Kromrey [16]: negligible, small, medium, and large.

5.2 Experimental Setup

Figure 8 illustrates the setup of the tests. The computer executing the client application consuming IoT data
had an Intel® Core™ i7-8665U processor, 32 GB of RAM, and Debian 9 as the operating system. The server
computer executing the IoT platform and the data producers, which simulated IoT sensors sending data to the
platform, had an Intel® Core™ i7-4770K processor, 16 GB of RAM, and Linux Ubuntu 16.04 as the operating
system. YoctoPuce Yocto-Watt wattmeter was plugged into the client computer to collect energy-related measures.
The client application communicated with the server through a locally isolated Wi-Fi network.

Fig. 8. IoTvar experimental setup.

The diferent versions of the IoT application (with or without IoTvar) get sensor data through synchronous
calls or publish/subscribe notiications. When using IoTvar and synchronous calls, the application creates an IoT
variable for each sensor, and IoTvar sends one request per second to get data for each declared sensor. When
using publish/subscribe notiications, the application creates an IoT variable for each sensor, IoTvar registers to
the corresponding entity, and the IoT platform notiies IoTvar about all the updates.

5.3 Results

5.3.1 Synchronous interaction patern. Figure 9 shows the CPU, memory, and energy performance of synchronous
calls for the FIWARE/Orion and OM2M platforms, which support the synchronous interaction pattern. IoTvar
increases the demand for CPU and memory because more processing is necessary to handle the threads pool and
maintain the collection of IoT variables (search, update, history). Consequently, the energy consumption with

ACM Trans. Internet Technol.

Taming Internet of Things Application Development with the IoTvar Middleware • 15

IoTvar is greater than without IoTvar due to the overall CPU and memory usage to provide a useful abstraction
to application developers. Table 4 shows the diference (in percentages) between using or not IoTvar.

(a) CPU consumption

(b) Memory consumption (c) Energy consumption

Fig. 9. CPU, memory, and energy consumption of IoT platforms with and without IoTvar under synchronous interactions.

Table 4. Diferences between using and not using IoTvar for the synchronous interaction patern.

Platform Metric
Number of IoTvar variables

25 50 75 100 125 150 175 200

FIWARE/Orion
CPU 12.38% 7.29% 5.07% 3.79% 3.68% 2.15% 2.94% 6.29%
Memory 6.22% 3.97% 3.6% 4.85% 5.81% 3.57% 4.55% 3.23%
Energy 1.79% 4.08% 5.53% 4.98% 4.92% 8.67% 4.13% 4.9%

OM2M
CPU 16.21% 13.92% 13.8% 11.59% 35.14% 34.02% 33.16% 26.86%
Memory 4.01% 5.61% 5.62% 4.71% 1.41% 3.05% 6.09% 1.78%
Energy 5.7% 4.91% 2.45% 4.59% 7.27% 5.23% 5.39% 4.39%

The results of the Shapiro-Wilk test pointed out that data were found not to follow a normal distribution
(�-value < � = 0.05), leading us to adopt the Mann-Whitney test in the subsequent analysis step [22]. The

ACM Trans. Internet Technol.

16 • Borges et al.

diferences between using or not IoTvar were signiicant (�-value < � = 0.05) for most cases regarding CPU,
memory, and energy for FIWARE/Orion and OM2M.

Table 5 shows the evaluation of Vargha and Delaney’s � for the magnitude of the overhead caused by IoTvar
when using the synchronous interaction pattern with the FIWARE/Orion and OM2M platforms. The impact was
medium for ten cases (41.67%) and large for nine cases (37.5%) when using FIWARE/Orion. The impact was also
medium or large for most cases when using OM2M, speciically medium in three cases (12.5%) and large in 18
cases (75%).

Table 5. Magnitude of the overhead caused by IoTvar in the synchronous interaction patern.

Platform Metric
Number of IoTvar variables

25 50 75 100 125 150 175 200

FIWARE/Orion
CPU M L S S M S S M
Memory L M M M M M M S
Energy M L L L L L L L

OM2M
CPU L M L L L L L L
Memory M L L M N S L N
Energy L L L L L L L L

Levels of magnitude of the efect size: N = negligible, S = small, M = medium, L = large

5.3.2 Publish/subscribe interaction patern. Figure 10 shows the CPU, memory, and energy performance of
publish/subscribe notiications for all the three IoT platforms. It is possible to notice that that the CPU usage
with IoTvar is higher than without using it. The overhead induced by IoTvar comes from the validations done
inside the source code to ensure the correct update of variables, as well as handling multiple potential error cases.
In addition, due to the number of proxy and error objects created when using IoTvar, memory consumption also
increases. As a consequence, there is also an overhead in energy consumption for all the three IoT platforms.
Table 6 shows the diferences (in percentages) between using and not using IoTvar.

Table 6. Diferences between using and not using IoTvar for the publish/subscribe interaction patern.

Platform Metric
Number of IoTvar variables

25 50 75 100 125 150 175 200

FIWARE/Orion
CPU 4.39% 8.19% 4.94% 7.23% 9.55% 13.99% 10.93% 13.45%
Memory 0.68% 2.13% 2.1% 1.52% 3.12% 3.08% 2.43% 4.41%
Energy 1.15% 1.36% 2.82% 4.5% 12.81% 7.65% 5.23% 11.51%

OM2M
CPU 10.96% 10.72% 16.4% 12.73% 8.37% 4.11% 9.87% 5.92%
Memory 16.54% 10.56% 9.76% 8.82% 7.92% 8.86% 9.18% 8.91%
Energy 4.89% 4.46% 4.64% 4.53% 4.61% 4.86% 4.89% 4.65%

muDEBS

CPU 7.42% 6.99% 9.28% 4.29% 4.16% 3.56% 3.95% 2.66%
Memory 2.86% 5.61% 3.22% 3.7% 5.44% 3.85% 4.18% 3.31%
Energy 7.46% 8.21% 5.18% 2.88% 4.93% 3.74% 1.87% 3.86%

ACM Trans. Internet Technol.

Taming Internet of Things Application Development with the IoTvar Middleware • 17

(a) CPU consumption (b) Memory consumption

(c) Energy consumption with FIWARE/Orion and OM2M (d) Energy consumption with muDEBS

Fig. 10. CPU,memory, and energy consumption of IoT platformswith andwithout IoTvar under publish/subscribe interactions.

The results of the Shapiro-Wilk test pointed out that data were found not to follow a normal distribution
(�-value < � = 0.05), leading us to adopt the Mann-Whitney test in the subsequent analysis step [22]. As for
the synchronous interaction pattern, the diferences between using or not IoTvar were signiicant (�-value <
� = 0.05) for most cases regarding CPU, memory, and energy for all the IoT platforms.

Table 5 shows the evaluation of Vargha and Delaney’s � for the magnitude of the overhead caused by IoTvar
when using the publish/subscribe interaction pattern with the IoT platforms. The impact was small for ive cases
(20.8%), medium for ive cases (20.8%), and large for 12 cases (50%) when using FIWARE/Orion. The impact was
large in almost all cases when using OM2M (23/24 ≈ 95.8%) and muDEBS (21/24 = 87.5%).

5.4 Remarks on the results

The performed experiments and the analysis of their results showed how IoTvar behaves in some scenarios
over diferent interaction patterns. The results presented in Section 5.3 point out that IoTvar brings a signiicant
overhead when abstracting the IoT platform regarding CPU, memory, and energy consumption.
For applications that are required to use as low energy as possible, the slight increase in any resource con-

sumption could be a problem. On the other hand, applications with the leeway to use more resources can beneit
from using IoTvar to abstract interactions with IoT platforms and thus lowering development efort.

ACM Trans. Internet Technol.

18 • Borges et al.

Table 7. Magnitude of the overhead caused by IoTvar in the publish/subscribe interaction patern.

Platform Metric
Number of IoTvar variables

25 50 75 100 125 150 175 200

FIWARE/Orion
CPU M L L M L L L L
Memory N M S N S M S M
Energy S S L L L L L L

OM2M
CPU L L L L L S L L
Memory L L L L L L L L
Energy L L L L L L L L

muDEBS

CPU M L L L L L L L
Memory L L M M L L L L
Energy L L L L L L L L

5.5 Threats to validity

Any empirical study has limitations that may constitute threats to the validity of observed results and outlined
conclusions. This section reports the study’s validity by describing the main identiied threats and the adopted
strategies to mitigate them.

External validity. External validity concerns the ability to generalize the obtained results to other contexts.
The most signiicant threat to the external validity of this work are if the results would be similar for diferent
IoT platforms. We presented here an evaluation of IoTvar with three platforms adopting synchronous and
publish/subscribe interaction patterns, which are commonly observed in IoT. Nevertheless, we still need to
carryout further experiments to assess the behavior of IoTvar considering diferent request payloads.

Internal validity. Internal validity concerns the conduction of the study, more speciically focusing on data
collection procedures, which may afect the cause-efect relationships to reach the obtained conclusions. The main
factors that could negatively afect the internal validity of this study are possible inaccuracies in data collection.
The activity of the computational infrastructure used in the experiments can not be totally controlled, but we
have striven to reduce discrepancies in data by shutting down or disabling operating system processes and device
interactions that could interfere in the execution. As we mentioned in Section 5.1, considering the JVM warm-up
and disregarding the irst run minute were actions taken to ensure no interferences on the collected metrics.

Conclusion validity. Conclusion validity mainly concerns the analysis of obtained results, being related to the
extent to which they can be regarded as correct and how rigorous the process to establish conclusions from
those results was. To minimize possible threats to the conclusion validity of this study, the obtained results were
analyzed by using robust statistic techniques. Each execution scenario was performed 30 times (see Section 5.2),
thus ensuring an afordable statistical signiicance for the results when performing the statistical tests.

6 CONCLUSION

The heterogeneity in the overabundance of IoT platforms presents a signiicant challenge to inding, selecting,
and using IoT resources, e.g., devices, sensors, services, and context data. Therefore, it is important to provide

ACM Trans. Internet Technol.

Taming Internet of Things Application Development with the IoTvar Middleware • 19

techniques that enable clients to discover, retrieve and use data produced by them. Due to the diferent types of
data provided by IoT platforms and the various ways to interact with them, it is valuable to gather this data at a
low development cost.
This paper has presented IoTvar, a middleware library that provides application developers with a way

of interacting with an IoT platform using a few lines of code. For this purpose, IoTvar encompasses proxies
representing IoT platform virtual entities. These proxies handle the complexity of interacting with the IoT
platform in synchronous and publish/subscribe interaction patterns. Additionally, IoTvar ofers a bypass for
understanding the IoT platform-speciic API and data model. We have described the integration of IoTvar with
the FIWARE, OM2M and muDEBS IoT platforms and detailed its architecture and how it can be extended for
other platforms. Extending IoTvar to support a new IoT platform relies on generic components and new ones for
new APIs, unmarshalers, and, if necessary, interaction patterns and protocols.
We have also performed a quantitative evaluation of IoTvar with all the three currently supported platforms

addressing the balance between the relative cost of IoTvar for both synchronous and publish/subscribe handling
of information and the beneits for developers. The statistical analysis results revealed an impact in most cases
regarding CPU, memory, and energy consumption. Despite being signiicant from the statistical point of view,
such an impact could be acceptable depending on the application characteristics and objectives.

The current analysis of the IoTvar also led us to two open issues. The irst one is a work in progress regarding
the security and privacy of IoT data, which are important issues to be considered for the successful deployment of
IoT applications. In the case of IoTvar, these features depend on what the supported IoT platforms provide through
their APIs, which would then be implemented in the middleware and provided to the IoT application. Another
open issue is on-demand resource utilization. IoT applications may be unpredictable concerning resource (e.g.,
memory and CPU) utilization. For example, the number of requests made by an IoT application to an IoT platform
may increase suddenly, or sensor devices could get disconnected from the network. IoTvar currently provides an
API that returns errors when searching for unavailable sensor data. Developers can add error handling to react
to these errors and better control what the application does, thus controlling resource utilization. Nonetheless,
developing IoT middleware design patterns for better control of resource usage is a challenging task that requires
further studies.
In future work, we intend to integrate IoTvar with other platforms to bring more options for application

developers. This also includes increasing the discoverability proposed by IoTvar, extending it to provide support
for direct communication with IoT devices. We also plan to go further on the tests by having diferent types of
payloads to ensure the behavior of IoTvar over diferent scenarios that require low or high amounts of data to be
transferred from the IoT platform to the client. Furthermore, concerning security, we plan to integrate the security
features from the IoT platforms currently supported in IoTvar and provide additional features to complement
what other platforms ofer. Finally, we will implement energy-eicient strategies at the middleware level, such as
message grouping, QoS management (when supported by the IoT platform), and favoring the publish-subscribe
pattern over the synchronous pattern when available [6]. This will also possibly improve the performance of
IoTvar and further validate its use by IoT applications.

REFERENCES

[1] M. Ben Alaya, Y. Banouar, T. Monteil, C. Chassot, and K. Drira. 2014. OM2M: Extensible ETSI-compliant M2M Service Platform with
Self-coniguration Capability. Procedia Computer Science 32 (2014), 1079ś1086. The 5th International Conference on Ambient Systems,
Networks and Technologies (ANT-2014), the 4th International Conference on Sustainable Energy Information Technology (SEIT-2014).

[2] Parvaneh Asghari, Amir Rahmani, and Hamid Haj Seyyed Javadi. 2018. Internet of Things applications: A Systematic Review. Computer

Networks 148 (12 2018), 241ś261.
[3] Djamal Benslimane, Schahram Dustdar, and Amit Sheth. 2008. Services Mashups: The New Generation of Web Applications. Internet

Computing, IEEE 12 (10 2008), 13ś15. https://doi.org/10.1109/MIC.2008.110

ACM Trans. Internet Technol.

https://doi.org/10.1109/MIC.2008.110

20 • Borges et al.

[4] Pedro Victor Borges, Chantal Taconet, Sophie Chabridon, Denis Conan, Thais Batista, Everton Cavalcante, and Cesar Batista. 2019.

Mastering Interactions with Internet of Things Platforms through the IoTVar Middleware. Proceedings of the 13th International Conference
on Ubiquitous Computing and Ambient Intelligence(UCAmI) 31, 1 (Nov 2019), 78.

[5] Raja Boujbel, Sam Rottenberg, Sébastien Leriche, Chantal Taconet, Jean-Paul Arcangeli, and Claire Lecocq. 2014. MuScADeL: A
Deployment DSL Based on a Multiscale Characterization Framework. In 2014 IEEE 38th International Computer Software and Applications

Conference Workshops. 708ś715. https://doi.org/10.1109/COMPSACW.2014.120
[6] Rodrigo Canek, Pedro Borges, and Chantal Taconet. 2022. Analysis of the Impact of Interaction Patterns and IoT Protocols on Energy

Consumption of IoT Consumer Applications. In Distributed Applications and Interoperable Systems, David Eyers and Spyros Voulgaris
(Eds.). Springer International Publishing, Cham, 131ś147.

[7] M. A. Chaqfeh and N. Mohamed. 2012. Challenges in middleware solutions for the internet of things. In 2012 International Conference on

Collaboration Technologies and Systems (CTS). 21ś26.
[8] Flávia C. Delicato, Paulo F. Pires, and Thais Batista. 2013. The Programming and Execution Module (PEM). Springer London, London,

45ś55. https://doi.org/10.1007/978-1-4471-5481-5_5
[9] N. Denis, P. Chafardon, D. Conan, M. Laurent, S. Chabridon, and J. Leneutre. 2020. Privacy-preserving Content-based Publish/Subscribe

with Encrypted Matching and Data Splitting. In Proc. of the 17th International Joint Conference on e-Business and Telecommunications.
INSTICC, SciTePress, Paris, France, 405ś414.

[10] Paul D. Ellis. 2010. The essential guide to efect sizes: Statistical power, meta-analysis, and the interpretation of research results. Cambridge
University Press, United Kingdom. https://doi.org/10.1017/CBO9780511761676

[11] Michael P. Fay and Michael A. Proschan. 2010. Wilcoxon-Mann-Whitney or t-test? On assumptions for hypothesis tests and multiple
interpretations of decision rules. Statistics Surveys 4 (2010), 1ś39. https://doi.org/10.1214/09-SS051

[12] FIWARE. 2021. FIWARE-NGSI v2 Speciication. http://telefonicaid.github.io/iware-orion/api/v2/stable/
[13] FIWARE consortium. 2022. FIWARE Platform. https://www.iware.org
[14] Andy Georges, Dries Buytaert, and Lieven Eeckhout. 2007. Statistically Rigorous Java Performance Evaluation. SIGPLAN Not. 42, 10 (oct

2007), 57ś76. https://doi.org/10.1145/1297105.1297033
[15] Ross Harmes and Dustin Diaz. 2008. The Proxy Pattern. In Pro JavaScript Design Patterns. Apress, Berkeley, CA, 197ś214.
[16] Melinda Hess and Jefrey Kromrey. 2004. Robust Conidence Intervals for Efect Sizes: A Comparative Study of Cohen’s d and Clif’s

Delta Under Non-normality and Heterogeneous Variances. Paper Presented at the Annual Meeting of the American Educational Research

Association (01 2004).
[17] Soobin Jeon and Inbum Jung. 2017. MinT: Middleware for Cooperative Interaction of Things. Sensors 17, 6 (2017). https://doi.org/10.

3390/s17061452
[18] Tomasz Kalbarczyk and Christine Julien. 2018. Omni: An Application Framework for Seamless Device-to-Device Interaction in the Wild.

In Proceedings of the 19th International Middleware Conference (Rennes, France) (Middleware ’18). Association for Computing Machinery,
New York, NY, USA, 161ś173. https://doi.org/10.1145/3274808.3274821

[19] Ken Kelley and Kristopher J. Preacher. 2012. On efect size. Psychological Methods 17, 2 (2012), 137ś152. https://doi.org/10.1037/a0028086
[20] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jefrey Palm, and William G. Griswold. 2001. An Overview of AspectJ. In

Proceedings of the 15th European Conference on Object-Oriented Programming (ECOOP ’01). Springer-Verlag, Berlin, Heidelberg, 327ś353.
[21] Shancang Li, Li Da Xu, and Shanshan Zhao. 2015. The internet of things: a survey. Information Systems Frontiers 17, 2 (April 2015),

243ś259.
[22] H. B. Mann and D. R. Whitney. 1947. On a Test of Whether one of Two Random Variables is Stochastically Larger than the Other. The

Annals of Mathematical Statistics 18, 1 (1947), 50 ś 60. https://doi.org/10.1214/aoms/1177730491
[23] Pierrick Marie, Léon Lim, Atif Manzoor, Sophie Chabridon, Denis Conan, and Thierry Desprats. 2014. QoC-Aware Context Data

Distribution in the Internet of Things (M4IOT ’14). Association for Computing Machinery, New York, NY, USA, 13ś18.
[24] Julien Mineraud, Oleksiy Mazhelis, Xiang Su, and Sasu Tarkoma. 2016. A gap analysis of Internet-of-Things platforms. Computer

Communications 89-90 (Sept. 2016), 5ś16.
[25] Bhumi Nakhuva and Tushar Champaneria. 2015. Study of various internet of things platforms. International Journal of Computer Science

& Engineering Survey 6, 6 (2015), 61ś74.
[26] NGSI 2021. FIWARE-NGSI v2 Speciication. https://iware.github.io/speciications/ngsiv2/stable/
[27] Anne H. Ngu, Mario Gutierrez, Vangelis Metsis, Surya Nepal, and Quan Z. Sheng. 2017. IoT Middleware: A Survey on Issues and

Enabling Technologies. IEEE Internet of Things Journal 4, 1 (2017), 1ś20. https://doi.org/10.1109/JIOT.2016.2615180
[28] NODE-RED 2021. Node-Red. https://nodered.org/
[29] OASIS. 2015. MQTT Version 3.1.1 Plus Errata 01. https://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.pdf. Accessed on 21-05-2021.
[30] OM2M API 2021. the oneM2M REST APIs. https://www.onem2m.org/getting-started/onem2m-overview/application-program-

interfaces-api
[31] oneM2M Partners 2019. oneM2M Services Platform. oneM2M Partners. Release 3.
[32] Open mashup alliance [n.d.]. Enterprise Mashup Markup Language. http://www.openmashup.org/.

ACM Trans. Internet Technol.

https://doi.org/10.1109/COMPSACW.2014.120
https://doi.org/10.1007/978-1-4471-5481-5_5
https://doi.org/10.1017/CBO9780511761676
https://doi.org/10.1214/09-SS051
http://telefonicaid.github.io/fiware-orion/api/v2/stable/
https://www.fiware.org
https://doi.org/10.1145/1297105.1297033
https://doi.org/10.3390/s17061452
https://doi.org/10.3390/s17061452
https://doi.org/10.1145/3274808.3274821
https://doi.org/10.1037/a0028086
https://doi.org/10.1214/aoms/1177730491
https://fiware.github.io/specifications/ngsiv2/stable/
https://doi.org/10.1109/JIOT.2016.2615180
https://nodered.org/
https://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.pdf
https://www.onem2m.org/getting-started/onem2m-overview/application-program-interfaces-api
https://www.onem2m.org/getting-started/onem2m-overview/application-program-interfaces-api
http://www.openmashup.org/

Taming Internet of Things Application Development with the IoTvar Middleware • 21

[33] Pankesh Patel and Damien Cassou. 2015. Enabling high-level application development for the Internet of Things. Journal of Systems and

Software 103 (2015), 62ś84.
[34] Dave Raggett. 2015. The web of things: Challenges and opportunities. Computer 48, 5 (2015), 26ś32.
[35] Partha Pratim Ray. 2016. A survey of IoT cloud platforms. Future Computing and Informatics Journal 1, 1 (2016), 35ś46.
[36] M. A. Razzaque, M. Milojevic-Jevric, A. Palade, and S. Clarke. 2016. Middleware for Internet of Things: A Survey. IEEE Internet of Things

Journal 3, 1 (2016), 70ś95.
[37] April Reeve. 2013. Chapter 12 - Data Integration Patterns. In Managing Data in Motion, April Reeve (Ed.). Morgan Kaufmann, Boston,

79ś85.
[38] Marc Shapiro. 1986. Structure and Encapsulation in Distributed Systems: the Proxy Principle. In Int. Conf. on Distr. Comp. Sys. (ICDCS)

(Int. Conf. on Distr. Comp. Sys. (ICDCS)). IEEE, Cambridge, MA, USA, United States, 198ś204. https://hal.inria.fr/inria-00444651
[39] Samuel Sanford Shapiro and Martin Wilk. 1965. An analysis of variance test for normality (complete samples). Biometrika 52, 3-4 (1965),

591ś611.
[40] K. J. Singh and D. S. Kapoor. 2017. Create Your Own Internet of Things: A survey of IoT platforms. IEEE Consumer Electronics Magazine

6, 2 (2017), 57ś68.
[41] Karthik Soundararajan and Robert Brennan. 2008. Design patterns for real-time distributed control system benchmarking. Robotics and

Computer-integrated Manufacturing - ROBOT COMPUT-INTEGR MANUF 24 (10 2008), 606ś615.
[42] Pierre Sutra, Etienne Rivière, Cristian Cotes, Marc Sánchez Artigas, Pedro Garcia Lopez, Emmanuel Bernard, William Burns, and Galder

Zamarreño. 2017. CRESON: Callable and Replicated Shared Objects over NoSQL. In 2017 IEEE 37th International Conference on Distributed

Computing Systems (ICDCS). 115ś128.
[43] Antero Taivalsaari and Tommi Mikkonen. 2017. A roadmap to the Programmable World: Software challenges in the IoT Era. IEEE

Software 34, 1 (Jan.-Feb. 2017), 72ś80. https://doi.org/10.1109/MS.2017.26
[44] András Vargha and Harold D. Delaney. 2000. A Critique and Improvement of the CL Common Language Efect Size Statistics of McGraw

and Wong. Journal of Educational and Behavioral Statistics 25, 2 (2000), 101ś132.
[45] WIRECLOUD 2021. Wirecloud. https://wirecloud.readthedocs.io/en/stable/
[46] Franco Zambonelli. 2017. Key abstractions for IoT-oriented Software Engineering. IEEE Software 34, 1 (Jan.-Feb. 2017), 38ś45.

https://doi.org/10.1109/MS.2017.3

ACM Trans. Internet Technol.

https://hal.inria.fr/inria-00444651
https://doi.org/10.1109/MS.2017.26
https://wirecloud.readthedocs.io/en/stable/
https://doi.org/10.1109/MS.2017.3

	Abstract
	1 Introduction
	2 Related Work
	3 IoT platforms: their role in the IoT ecosystem and their features
	3.1 Overview of FIWARE, OM2M, and muDEBS
	3.2 Context data model
	3.3 Interaction patterns, APIs, and protocols
	3.4 Discovery facilities and filtering capabilities
	3.5 Synthesis of the IoT platforms analysis

	4 IoTvar
	4.1 Using IoTvar
	4.2 IoTvar Architecture
	4.3 Extending IoTvar

	5 Evaluation
	5.1 Data Collection and Analysis Procedures
	5.2 Experimental Setup
	5.3 Results
	5.4 Remarks on the results
	5.5 Threats to validity

	6 Conclusion
	References

