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In this paper, we analyze an eigenvalue problem for nonlinear elliptic operators involving homogeneous Dirichlet boundary conditions in an open smooth bounded domain. We prove bifurcation results from trivial solutions and from infinity for the considered nonlinear eigenvalue problem. We also show the existence of multiple solutions of the nonlinear problem using variational methods.

Assume Ω ⊂ R N (N ≥ 2) is an open bounded domain with smooth boundary ∂Ω. In [START_REF] Zongo | Nonlinear eigenvalue problems and bifurcation for quasi-linear elliptic operators[END_REF], the authors investigated the asymptotic behavior of the spectrum and the existence of multiple solutions of the following nonlinear eigenvalue problem -∆ p u -∆u = λu on Ω, u = 0 on ∂Ω, (1.1) where -∆ p denotes the p-Laplace operator. In [START_REF] Zongo | Nonlinear eigenvalue problems and bifurcation for quasi-linear elliptic operators[END_REF] it was shown that for p > 2 there exist eigenvalue branches emanating from (λ k , 0), and for 1 < p < 2 there exist eigenvalue branches emanating from (λ k , +∞), where λ k stands as the k-th Dirichlet eigenvalue of the Laplacian. In this paper, we consider the following q-homogenous eigenvalue problem with a perturbation by a p-Laplace term:

-∆ p u -∆ q u = λ|u| q-2 u in Ω u = 0 on ∂Ω.

(1.

2)

The operator ∆ s , formally defined as ∆ s u := div(|∇u| s-2 ∇u) for s = p, q ∈ (1, +∞) is the s-Laplacian, λ ∈ R is a parameter. The (p, q)-Laplace operator given by -∆ p -∆ q appears in a wide range of applications that include biophysics [START_REF] Fife | Mathematical aspects of reacting and diffusing systems[END_REF], plasma physics [START_REF] Wilhelmsson | Explosive instabilities of reaction-diffusion equations[END_REF] and reaction-diffusion equations [START_REF] Aris | Mathematical modelling techniques[END_REF][START_REF] Cherfils | On the stationary solutions of generalized reaction diffusion equations with (p, q)-Laplacian[END_REF]. The (p, q)-Laplace operator has been widely studied; for some results related to our studies, see e.g., [START_REF] Cingolani | Nontrivial solutions for p-Laplace equations with righthand side having p-linear growth at infinity[END_REF][START_REF] Marano | Some recent results on the Dirichlet problem for (p, q)-Laplace equations[END_REF][START_REF] Tanaka | Uniqueness of a positive solution and existence of a sign-changing solution for (p, q)-Laplace equation[END_REF] and the references therein. We say that λ is a "first eigenvalue", if the corresponding eigenfunction u is positive or negative.

Note that by taking q = 2 in equation (1.2), we recover the case of equation (1.1). We remark however that for q = 2 equation (1.2) describes bifurcation (caused by a p-Laplace operator) from the linear equation -∆uλu, while for q ̸ = 2 we prove for equation (1.2) the existence of bifurcation branches (again forced by a p-Laplace operator) from the eigenvalues of a nonlinear, but q-homogenous equation. Indeed, it was shown in [START_REF] Garcia Azorero | Existence and nonuniqueness for the p-Laplacian: nonlinear eigenvalues[END_REF] that there exists a nondecreasing sequence of variational positive eigenvalues {λ D k (q)} k tending to +∞ as k → +∞ for the following nonlinear and q-homogenous eigenvalue problem -∆ q u = λ|u| q-2 u in Ω, u = 0 on ∂Ω.

(1.3) Moreover, it is known that the first eigenvalue of problem (1.3) is characterized in the variational point of view by, λ D 1 (q) := inf u∈W 1,q 0 (Ω)\{0}

Ω |∇u| q dx Ω |u| q dx . We consider the sets

D 1 (q) = {u ∈ W 1,q 0 (Ω)\{0} : Ω |u| q dx = 1},
and Σ, the class of closed symmetric (with respect to the origin) subsets of W 1,q 0 (Ω)\{0}, i.e, Σ = {A ⊂ W 1,q 0 (Ω)\{0} : A closed, A = -A}. For A ∈ Σ, we define

γ(A) = inf{k ∈ N : ∃φ ∈ C(A, R k \{0}), φ(-x) = -φ(x)}.
If such γ(A) does not exist, we then define γ(A) = +∞. The number γ(A) ∈ N ∪ {+∞} is called the Krasnoselski genus of A. Let us consider the family of sets

Σ k = {A ⊂ Σ ∩ D 1 (q) : γ(A) ≥ k}.
Following the proof in [START_REF] Garcia Azorero | Existence and nonuniqueness for the p-Laplacian: nonlinear eigenvalues[END_REF], one shows that one has the following variational characterization of λ D k (q), for k ∈ N,

λ D k (q) = inf A∈Σ k sup u∈A Ω |∇u| q dx.
In this paper, we discuss the nonlinear variational eigenvalues of equation (1.2). Our main results are: 1) For every fixed ρ > 0 there exists a sequence of eigenvalues λ D k (p, q; ρ) k with corresponding eigenfunctions ±u k (p, q; ρ) satisfying Ω |u k (p, q; ρ)| q dx = ρ, with λ D k (p, q; ρ) → +∞ as k → +∞.

2) The variational eigenvalues λ D k (q) of equation (1.3) are bifurcation points from 0 if p > q, and from infinity if 1 < p < q, for the nonlinear eigenvalues λ k (p, q; ρ) of problem (1.2).

3) For fixed λ ∈ (λ D k (q), λ D k+1 (q)) there exist k eigenvalues of (1.2) with λ = λ D 1 (p, q; ρ 1 ) = • • • = λ D k (p, q; ρ k ), with corresponding eigenfunctions ±u k (p, q; ρ) such that Ω |u k | q = ρ k .

The paper is organized as follows. In section 2, we discuss the variational spectrum of the nonlinear problem (1.2) for u ∈ D ρ with fixed ρ > 0. In section 3 we give some auxiliary results, and in section 4 we discuss the first eigenvalues of equation (1.2). Then, in section 5 we discuss the bifurcation phenomena, and finally in section 6 we prove the multiplicity result.

The standard norm of the Lebesgue space L s (Ω) and the Sobolev space W 1,s 0 (Ω) will be denoted respectively by

∥ • ∥ s = ( Ω | • | s dx) 1/s and ∥ • ∥ 1,s = ( Ω |∇(•)| s dx) 1/s .
We also denote by ⟨•, •⟩, the dual pairing and (, •, ) 1,s the scalar product on W 1,s 0 (Ω).

THE SPECTRUM OF PROBLEM (1.2)

In this section we show that equation (1.2) has for every given ρ > 0 a sequence of eigenvalues λ D k (p, q; ρ), with associated eigenfunctions u k (p, q; ρ) and Ω |u k (p, q; ρ)| q dx = ρ. Definition 2.1. We say that u ∈ W

1,p 0 (Ω) (if p > q ) or u ∈ W 1,q 0 (Ω) (if p < q ) is a weak solution of problem (1.
2) if the following integral equality holds:

Ω |∇u| p-2 ∇u • ∇v dx + Ω |∇u| q-2 ∇u • ∇v dx = λ Ω |u| q-2 u v dx, (2.1 
)

for all v ∈ W 1,p 0 (Ω) ∩ W 1,q 0 (Ω).
We say that λ ∈ R is an eigenvalue of problem (1.2) if there exists an eigenfunction

u λ ∈ (W 1,p 0 (Ω) ∩ W 1,q 0 (Ω))\{0} associated to λ such that relation (2.1) holds.
We say that λ D 1 (p, q; ρ) is a first eigenvalue of equation (1.2) if the corresponding eigenfunction u 1 (p, q; ρ) is a minimizer of the following expression, for some ρ > 0,

c 1 (p, q; ρ) := inf {u∈W 1,p 0 (Ω)∩W 1,q 0 (Ω), Ω |u| q =ρ} 1 p Ω |∇u| p dx + 1 q Ω |∇u| q dx . (2.2) Note that λ D 1 (p, q; ρ) satisfies Ω |∇u 1 | p dx + Ω |∇u 1 | q dx = λ D 1 (p, q; ρ) Ω |u 1 | q dx = λ D 1 (p, q; ρ)ρ.
The proof of the following proposition is similar to the proof of Lemma 1 in [START_REF] Fǎrcǎseanu | On the set of eigenvalues of some PDEs with homogeneous Neumann boundary condition[END_REF].

Proposition 2.2. If it holds λ ≤ λ D 1 (q) then problem (2.1) has no nontrivial solutions. Proof. Suppose by contradiction that there exists λ < λ D 1 (q) which is an eigenvalue of problem (1.2) with u λ ∈ (W

1,p 0 (Ω) ∩ W 1,q 0 (Ω))\{0} the corresponding eigenfunc- tion. Let v = u λ in relation (2.1), we then have Ω |∇u λ | p dx + Ω |∇u λ | q dx = λ Ω |u λ | q dx.
On the other hand, we have

λ D 1 (q) Ω |u λ | q dx ≤ Ω |∇u λ | q dx, (2.3) 
and subtracting by λ Ω |u λ | q dx from both sides of (2.3), it follows that

(λ D 1 (q) -λ) Ω |u λ | q dx ≤ Ω |∇u λ | q dx -λ Ω |u λ | q dx. This implies that 0 < (λ D 1 (q) -λ) Ω |u λ | q dx ≤ Ω |∇u λ | q dx + Ω |∇u λ | p dx -λ Ω |u λ | q dx = 0.
Hence λ < λ D 1 (q) is not an eigenvalue of problem (1.2) with u λ ̸ = 0. Now, assume that λ = λ D 1 (q) is an eigenvalue of equation (1.2), thus there exists an eigenfunction u λ D 1 (q) ∈ (W

1,p 0 (Ω) ∩ W 1,q 0 (Ω))\{0} associated to λ D 1 (q) such that relation (2.1) holds. Letting v = u λ D 1 (q) in (2.1), we obtain Ω |∇u λ D 1 (q) | p dx + Ω |∇u λ D 1 (q) | q dx = λ D 1 (q) Ω |u λ D 1 (q) | q dx. Since λ D 1 (q) Ω |u λ D 1 (q) | q dx ≤ Ω |∇u λ D 1 (q) | q dx, it follows that Ω |∇u λ D 1 (q) | p dx + Ω |∇u λ D 1 (q) | q dx ≤ Ω |∇u λ D 1 (q)
| q dx and then u λ D 1 (q) = 0 by the Poincaré inequality. This concludes the proof. □ Proposition 2.3. The first eigenfunctions u λ 1 associated to some λ ∈ (λ D 1 (q), +∞) are positive or negative in Ω.

Proof. Let u λ 1 ∈ (W 1,p 0 (Ω) ∩ W 1,q 0 (Ω)) \ {0} be a first eigenfunction associated to λ ∈ (λ D 1 (q), +∞), then Ω |∇u λ 1 | p dx + Ω |∇u λ 1 | q dx = λ Ω |u λ 1 | q dx,
which means that u λ 1 achieves the infimum in the definition of µ 1 (p, q; ρ), with ρ = 1

q Ω |u| q . On the other hand, we have ∇|u λ

1 | 1,s = ∥∇u λ 1 ∥ 1,s for s = p, q and |u λ 1 | q = ∥u λ 1 ∥ q since ∇|u λ 1 | = |∇u λ 1 | and |u λ 1 | = |u λ 1 | almost everywhere.
Then, it follows that |u λ 1 | achieves also the infimum in the definition of µ 1 (p, q; ρ). Therefore by the Harnack inequality, we have |u λ 1 | > 0 for all x ∈ Ω and consequently u λ 1 is either positive or negative in Ω. □

The Palais-Smale condition plays an important role in the minimax argument, and we recall here its definition. Definition 2.4. A C 1 functional I defined on a smooth submanifold M of a Banach space X is said to satisfy the Palais-Smale condition on M if any sequence {u n } ⊂ M satisfying that {I(u n )} n is bounded and I M ′ (u n ) → 0 as n → +∞ has a convergent subsequence.

Next, we start the discussion about the existence of eigenvalues for problem (1.2). We note that these eigenvalues depend on ρ(u) = Ω |u| q dx. The proofs of the following two theorems rely on [START_REF] Ambrosetti | Nonlinear analysis and semilinear elliptic problems[END_REF]Proposition 10.8].

Theorem 2.5. Let p > q. Then, for a given ρ > 0, there exists a nondecreasing sequence of critical values c k (p, q; ρ) with associated nonlinear eigenvalues λ D k (p, q; ρ) → +∞, as k → +∞ and with corresponding eigenfunctions u k (p, q; ρ) ∈ W

1,p 0 (Ω) for problem (1.2). Proof. Let D ρ (p, q) = {u ∈ W 1,p 0 (Ω) : Ω |u| q dx = ρ}, and Σ k (p, q) = {A ⊂ D ρ (p, q), A ∈ Σ and γ(A) ≥ k}, where Σ = {A ⊂ W 1,p 0 (Ω) : A closed, A = -A}. Set c k (p, q; ρ) = inf A∈Σ k (p,q) sup u∈A 1 p Ω |∇u| p dx + 1 q Ω |∇u| q dx > 0. (2.4)
Let us show that

I(u) = 1 p Ω |∇u| p dx + 1 q Ω |∇u| q dx satisfies the Palais-Smale (PS) condition on D ρ (p, q). Let {u n } ⊂ D ρ (p, q) a (PS) sequence, i.e, for all n, K > 0 |I(u n )| ≤ K and (I D ρ ) ′ (u n ) → 0 in W -1,p ′ (Ω) as n → +∞. We first show that {u n } ⊂ D ρ (p, q) is bounded in W 1,p 0 (Ω). Since u n ∈ W 1,q 0 (Ω)
, with the Poincaré inequality, we have Ω |u n | q dx ≤ K Ω |∇u n | q dx and it follows that

K ≥ |I(u n )| ≥ q p Ω |∇u n | p dx + 1 C Ω |u n | q dx = q p ∥u n ∥ p 1,p + ρ C . Then {u n } ⊂ D ρ (p, q) is bounded in W 1,p 0 (Ω).
We can assume that up to a subsequence, still denoted {u n }, there exists u ∈ W

1,p 0 (Ω) such that u n ⇀ u in W 1,p 0 (Ω) and u n → u in L q (Ω). Now, we show that u n converges strongly to u in W 1,p 0 (Ω). Since (I D ρ ) ′ (u n ) → 0 in W -1,p ′ (Ω) as n → +∞, there exists µ n ∈ R and ε n → 0 in W -1,p ′ 0 (Ω) such that I ′ (u n )v -µ n Ω |u n | q-2 u n v = ⟨ε n , v⟩. We have I ′ (u n )u n - µ n Ω |u n | q → 0, and since I ′ (u n )u n ≤ C 1 I(u n ) ≤ C 2 it follows that |µ n | ≤ C. From this we obtain that I ′ (u n )(u n -u) → 0 and I ′ (u)(u n -u) → 0 as n → +∞. There- fore, o(1) = ⟨I ′ (u n ) -I ′ (u), u n -u⟩ = Ω (|∇u n | p-2 ∇u n -|∇u| p-2 ∇u) • ∇(u n -u)dx + Ω (|∇u n | q-2 ∇u n -|∇u| q-2 ∇u) • ∇(u n -u)dx :=Q .
Using Lemma 3.3 below and the fact that the underbraced quantity Q is positive (see Remark 3.1), it follows that

⟨I ′ (u n ) -I ′ (u), u n -u⟩ ≥ c 2 ∥u n -u∥ p 1,p .
This shows that u n converges strongly to u in W

1,p 0 (Ω) as n → +∞ since ⟨I ′ (u n ) - I ′ (u), u n -u⟩ → 0 as n → +∞.
In order to end the proof, let us show that if c = c k (p, q; ρ) = • • • = c k+m-1 (p, q; ρ), then the set K c of critical points of I at the critical level c has a genus γ(K c ) ≥ m. We consider the level set at c,

K c := {u ∈ D ρ (p, q) : I(u) = c , I ′ (u) = 0}.
We have that K c is compact since the functional I satisfies the Palais-Smale condition and 0 / ∈ K c since c > 0 = I(0). In addition, we have I(u) = I(-u). Hence K c ∈ Σ. Assume by contradiction that γ(K c ) ≤ m -1. Take A ε ∈ Σ k+m-1 such that sup A ε I(u) ≤ c + ε. By the properties of the genus, there exists a δ-neighborhood

N δ of K c such that γ(N δ ) = γ(K c ), and γ(A ε \ N δ ) ≥ γ(A ε ) -γ(N δ ) ≥ k + m - 1 -(m -1) = k.
By the deformation theorem there exists a homeomorphism η(1, •)

such that I(u) ≤ c -ε, for u ∈ η(1, A ε \ N δ ). Then we arrive at the contradiction c = inf A∈Σ k sup u∈A I(u) ≤ sup η(1,A ε \N δ ) I(u) ≤ c -ε. Hence, γ(K c ) ≥ m.
With a compactness argument one shows that c k (p, q; ρ) → +∞ as k → +∞. For the corresponding eigenvalues λ D k (p, q; ρ) we then have

Ω |∇u k | p dx + Ω |∇u k | q dx = λ D k (p, q; ρ) Ω |u k | q dx = λ D k (p, q; ρ) ρ.
Thus λ D k (p, q; ρ) ρ > c k (p, q; ρ), for all k (and fixed ρ), and hence also λ D k (p, q; ρ) → +∞ as k → +∞. □

For p < q one has the analogous result:

Theorem 2.6. Let p < q be given.Then, for a given ρ > 0, there exists a nondecreasing sequence of critical values c k (p, q; ρ) with associated nonlinear eigenvalues λ D k (p, q; ρ) → +∞, as k → +∞ and with corresponding eigenfunctions u k (p, q; ρ) ∈ W

1,q 0 (Ω) for prob- lem (1.2). Proof. Let D ρ (p, q) = {u ∈ W 1,q 0 (Ω) : Ω |u| q dx = ρ}, and Σ k (p, q) = {A ⊂ Σ : γ(A ∩ D ρ (p, q)) ≥ k}, where Σ = {A ⊂ W 1,q 0 (Ω) : A closed, A = -A}. Set b k (p, q; ρ) = inf A∈Σ k (p,q) sup u∈A 1 p Ω |∇u| p dx + 1 q Ω |∇u| q dx > 0.
Similar to the proof of Theorem 2.5, one shows that:

(i) the functional I(u) = 1 p Ω |∇u| p dx + 1 q Ω |∇u| q dx satisfies the (PS) condi- tion on D ρ (p, q), and (ii) if b = b k (p, q; ρ) = • • • = b k+m-1 (p, q; ρ), then the set K b of critical points of I at the critical level b has a genus γ(K b ) ≥ m.

□

We note that the results of Theorem 2.5-2.6 are illustrated in figure 1 in section 6.

AUXILIARY RESULTS

In this section, we show some well-known results in the literature.

Remark 3.1. Let p > q. We recall that the nonlinear operator Θ : W

1,p 0 (Ω) → W -1,q ′ (Ω) ⊂ W -1,p ′ (Ω) defined by ⟨Θu, v⟩ = Ω |∇u| p-2 ∇u • ∇v dx + Ω |∇u| q-2 ∇u • ∇v dx is continuous and so it is demi-continuous. The operator Θ is said to be demi- continuous if Θ satisfies that whenever u n ∈ W 1,p 0 (Ω) converges to some u ∈ W 1,p 0 (Ω) then Θu n ⇀ Θu as n → +∞.
In addition, we claim that the operator Θ satisfies the following condition: for any

u n ∈ W 1,p 0 (Ω) satisfying u n ⇀ u in W 1,p 0 (Ω) and lim sup n→+∞ ⟨Θu n , u n -u⟩ ≤ 0, then u n → u in W 1,p 0 (Ω) as n → +∞.
The same result hold in the case where p < q.

Indeed, assume that

u n ⇀ u in W 1,p 0 (Ω) and lim sup n→+∞ ⟨Θu n , u n -u⟩ ≤ 0. Hence u n converges strongly to u in L p (Ω) and one has 0 ≥ lim sup n→+∞ ⟨Θu n -Θu, u n -u⟩ = lim sup n→+∞ Ω |∇u n | p-2 ∇u n -|∇u| p-2 ∇u + |∇u n | q-2 ∇u n -|∇u| q-2 ∇u) • ∇(u n -u)dx.
On the other hand, for any ∇u n , ∇u ∈ (L p (Ω)) N , one has,

Ω (|∇u n | p-2 ∇u n -|∇u| p-2 ∇u) • ∇(u n -u)dx = Ω (|∇u n | p + |∇u| p -|∇u n | p-2 ∇u n • ∇u -|∇u| p-2 ∇u • ∇u n )dx ≥ Ω (|∇u n | p + |∇u| p )dx - Ω |∇u n | p dx 1/p ′ × Ω |∇u| p dx 1/p - - Ω |∇u n | p dx 1/p × Ω |∇u| p dx 1/p ′ = Ω |∇u n | p dx p-1 p - Ω |∇u| p dx p-1 p × Ω |∇u n | p dx 1 p - Ω |∇u| p dx 1 p = ∥u n ∥ p-1 1,p -∥u∥ p-1 1,p ∥u n ∥ p 1,p -∥u∥ p 1,p ≥ 0. We then deduce from this inequality that Ω |∇u n | p dx → Ω |∇u| p dx as n → +∞ and similarly Ω |∇u n | q dx → Ω |∇u| q dx as n → +∞. Consequently u n converges strongly to u in W 1,p 0 (Ω) ⊂ W 1,q 0 (Ω). Proposition 3.2. Assume that p > q. If (λ, 0) is a bifurcation point of solutions of problem (1.2) then λ is an eigenvalue of problem (1.3).
Proof. Since (λ, 0) is a bifurcation point from zero of solutions of problem (1.2), there is a sequence of nontrivial solutions of problem (1.2) such that λ n → λ and ∥u n ∥ 1,p → 0 in W 1,p 0 (Ω). We then have

Ω |∇u n | p-2 ∇u n • ∇v dx + Ω |∇u n | q-2 ∇u n • ∇v dx = λ n Ω |u n | q-2 u n v dx. (3.1) Let w n = u n /∥u n ∥ 1,p . Plugging this change of variable into equation (3.1), we get ∥u n ∥ p-q 1,p Ω |∇w n | p-2 ∇w n • ∇v dx + Ω |∇w n | q-2 ∇w n • ∇v dx = λ n Ω |w n | q-2 w n v dx. (3.2) With Remark 3.1, it follows that ∥u n ∥ p-q 1,p Ω |∇w n | p-2 ∇w n • ∇v dx + Ω |∇w n | q-2 ∇w n • ∇v dx → Ω |∇w| q-2 ∇w • ∇v dx
as n → +∞ since ∥u n ∥ 1,p → 0 by assumption and λ n Ω |u n | q-2 u n v dx converges to λ Ω |u| q-2 uv dx as n → +∞. Thus, we obtain that

Ω |∇w| q-2 ∇w • ∇v dx = λ Ω |u| q-2 uv dx, for all v ∈ W 1,p 0 (Ω).

□

The following lemma will be used in some occasions.

Lemma 3.3 ( [11]

). There exist two positive constants c 1 , c 2 such that for all x 1 , x 2 ∈ R N , we have the following vector inequalities for 1 < s < 2

(|x 2 | s-2 x 2 -|x 1 | s-2 x 1 ) • (x 2 -x 1 ) ≥ c 1 (|x 2 | + |x 1 |) s-2 |x 2 -x 1 | 2 ,
and for s > 2 (|x 2 | s-2 x 2 -|x 1 | s-2 x 1 ) • (x 2 -x 1 ) ≥ c 2 |x 2 -x 1 | s .

FIRST EIGENVALUES

In this section we prove that every

λ > λ D 1 (q) is a first eigenvalue of problem (1.2).
We define the energy functional

E λ : W 1,p 0 (Ω) ∩ W 1,q 0 (Ω) → R associated to rela- tion (2.1) by E λ (u) = 1 p Ω |∇u| p dx + 1 q Ω |∇u| q dx - λ q Ω |u| q dx. (4.1)
Lemma 4.1. Suppose that p > q. Then for each λ > 0, the functional E λ defined in (4.1) is coercive.

Proof. If p > q, We have that W 1,p 0 (Ω) ⊂ W 1,q 0 (Ω) and the following inequalities hold true

(i) 1 p Ω |∇u| p dx + 1 q Ω |∇u| q dx ≥ 1 p Ω |∇u| p dx, (ii) 
Ω |∇u| q dx ≤ C∥u∥ q 1,p (using the H ölder inequality).

With items (i) and (ii) we obtain E λ (u) ≥ 1 p ∥u∥ p 1,p -C∥u∥ q 1,p and consequently E λ (u) → +∞ as ∥u∥ 1,p → +∞. □ Remark 4.2. We notice that E λ is not bounded below if p < q and λ > λ D 1 (q) since for every u = u 1 , the first eigenfunction of (1.3) with Ω |u 1 | q dx = 1, we have

E λ (tu) = t p p ∥u 1 ∥ p 1,p + t q q (λ D 1 (q) -λ) → -∞ as t → +∞. Theorem 4.3. Let p > q. Then every λ ∈ (λ D 1 (q), +∞) is a first eigenvalue of problem (1.2). Proof. Standard arguments show that E λ ∈ C 1 (W 1,p 0 (Ω), R) with its derivative given by ⟨E ′ λ (u), v⟩ = Ω |∇u| p-2 ∇u • ∇v dx + Ω |∇u| q-2 ∇u • ∇v dx -λ Ω |u| q-2 u v dx, for all v ∈ W 1,p 0 (Ω) ⊂ W 1,q 0 (Ω).
On the other hand E λ is weakly lower semicontinuous on W 1,p 0 (Ω) ⊂ W 1,q 0 (Ω) since E λ is a continuous convex functional. This fact and Lemma 4.1 allow one to apply a direct calculus of variations result in order to obtain the existence of global minimum point of E λ . We denote by u 0 such a global minimum point, i.e, E λ (u 0 ) = min u∈W 1,p 0 (Ω) E λ (u). We observe that for u 0 = sw 1 (where w 1 stands for the corresponding eigenfunction of λ D 1 (q)), we have □

E λ (u 0 ) = s p p Ω |∇w 1 | p dx + s q q (λ D 1 (q) -λ) < 0 for s small enough. So there exists u λ ∈ W 1,p 0 (Ω) such that E λ (u λ ) < 0. But E λ (u 0 ) ≤ E λ (u λ ) < 0, which implies that u 0 ∈ W 1,p 0 (Ω)\{0}. We also have that ⟨E ′ λ (u 0 ), v⟩ = 0, ∀ v ∈ W
To treat the case where p < q, we constrain E λ on the Nehari set

N λ = {u ∈ W 1,q 0 (Ω)/ u ̸ = 0, ⟨E ′ λ (u), u⟩ = 0} = {u ∈ W 1,q 0 (Ω)/ u ̸ = 0, Ω |∇u| p dx + Ω |∇u| q dx = λ Ω |u| q dx}. On N λ , the functional E λ reads as E λ (u) = ( 1 p -1 q ) Ω |∇u| p dx > 0.
This shows at once that E λ is coercive in the sense that if u ∈ N λ satisfies ∥u∥ 1,p → +∞, then E λ (u) → +∞.

We define m = inf u∈N λ E λ (u), and we show through a series of propositions that m is attained by some u ∈ N λ which is a critical point of E λ considered on the whole space W

1,q 0 (Ω) ⊂ W 1,p 0 (Ω) and therefore a solution to equation (1.2). Proposition 4.4. The set N λ is not empty for λ > λ D 1 (q).

Proof. Since λ > λ D 1 (q) there exists u ∈ W 1,q 0 (Ω) not identically zero such that Ω |∇u| q dx < λ Ω |u| q dx. We then see that tu ∈ N λ for some t > 0. Indeed, tu ∈ N λ is equivalent to

t p Ω |∇u| p dx + t q Ω |∇u| q dx = t q λ Ω |u| q dx, which is solved by t = Ω |∇u| p dx λ Ω |u| q dx-Ω |∇u| q dx 1 q-p > 0. □ Proposition 4.5. Every minimizing sequence for E λ on N λ is bounded in W 1,q 0 (Ω). Proof. Let {u n } n≥0 ⊂ N λ be a minimizing sequence of E λ | N λ , i.e. E λ (u n ) → m = inf v∈N λ E λ (v). Then λ Ω |u n | q dx - Ω |∇u n | q dx = Ω |∇u n | p dx → 1 p - 1 q -1 m, as n → +∞. (4.2)
Suppose on the contrary that {u n } n≥0 is not bounded i.e.

Ω

|∇u n | q dx → +∞ as n → +∞. Then we have Ω |u n | q dx → +∞ as n → +∞, using relation (4.2). We set

w n = u n ∥u n ∥ q . Since Ω |∇u n | q dx < λ Ω |u n | q dx, we deduce that Ω |∇w n | q dx < λ,
for each n and ∥w n ∥ 1,q < λ 1/q . Hence {w n } ⊂ W

1,q 0 (Ω) is bounded in W 1,q 0 (Ω). Therefore there exists w 0 ∈ W 1,q 0 (Ω) such that w n ⇀ w 0 in W 1,q 0 (Ω) ⊂ W 1,p 0 (Ω) and w n → w 0 in L q (Ω). Dividing relation (4.2) by ∥u n ∥ p q , we get Ω |∇w n | p dx = λ Ω |u n | q dx - Ω |∇u n | q dx ∥u n ∥ p q → 0 as n → +∞, since λ Ω |u n | q dx -Ω |∇u n | q dx → 1 p -1 q -1
m < +∞ as n → +∞ and ∥u n ∥ p q → +∞ as n → +∞. On the other hand, since w n ⇀ w 0 in W 

w n → 0 in L q (Ω), which is a contradiction since ∥w n ∥ q = 1. Hence, {u n } n≥0 is bounded in W 1,q 0 (Ω). □ Proposition 4.6. We have m = inf u∈N λ E λ (u) > 0.
Proof. Assume by contradiction that m = 0. Then, for {u n } n≥0 as in Proposition 4.5, we have

0 < λ Ω |u n | q dx - Ω |∇u n | q dx = Ω |∇u n | p dx → 0, as n → +∞. (4.3) 
By Proposition 4.5, we deduce that {u n } n≥0 is bounded in W 1,q 0 (Ω). Therefore there exists

u 0 ∈ W 1,q 0 (Ω) such that u n ⇀ u 0 in W 1,q 0 (Ω) ⊂ W 1,p 0 (Ω) and u n → u 0 in L q (Ω). Thus Ω |∇u 0 | p ≤ lim n→+∞ inf Ω |∇u n | p dx = 0. Consequently u 0 = 0, u n ⇀ 0 in W 1,q 0 (Ω) ⊂ W 1,p 0 (Ω) and u n → 0 in L q (Ω). Writing again w n = u n ∥u n ∥ q we have 0 < λ Ω |u n | q dx - Ω |∇u n | q dx ∥u n ∥ q q = ∥u n ∥ p-q q Ω |∇w n | p dx,
and

Ω |∇w n | p dx = ∥u n ∥ q-p q λ - Ω |∇w n | 2 dx → 0 as n → +∞,
since ∥u n ∥ q → 0 and p < q, {w n } n≥0 is bounded in W 1,q 0 (Ω). Next since w n ⇀ w 0 , we deduce that

Ω |∇w 0 | p dx ≤ lim n→+∞ inf Ω |∇w n | p dx = 0 and we have w 0 = 0.
This is a contradiction since ∥w n ∥ q = 1 for each n. Thus m > 0. □ Proposition 4.7. There exists u ∈ N λ such that E λ (u) = m.

Proof. Let {u n } n≥0 ⊂ N λ be a minimizing sequence, i.e., E λ (u n ) → m as n → +∞. Thanks to Proposition 4.5, we have that

{u n } is bounded in W 1,q 0 (Ω). It fol- lows that there exists u 0 ∈ W 1,q 0 (Ω) such that u n ⇀ u 0 in W 1,q 0 (Ω) ⊂ W 1,p 0 (Ω)
and strongly in L q (Ω). The results in the two propositions above guarantee that

E λ (u 0 ) ≤ lim n→+∞ inf E λ (u n ) = m. Since for each n we have u n ∈ N λ , then Ω |∇u n | q dx + Ω |∇u n | p dx = λ Ω |u n | q dx for all n. (4.4) 
Assuming u 0 ≡ 0 on Ω implies that Ω |u n | q dx → 0 as n → +∞, and by relation (4.4) we obtain that Ω |∇u n | q dx → 0 as n → +∞. Combining this with the fact that u n converges weakly to 0 in W 1,q 0 (Ω), we deduce that u n converges strongly to 0 in W 1,q 0 (Ω) and consequently in W 1,p 0 (Ω). Hence we infer that

λ Ω |u n | q dx - Ω |∇u n | q dx = Ω |∇u n | p dx → 0, as n → +∞.
Next, using similar argument as the one used in the proof of Proposition 4.6, we will reach to a contradiction, which shows that u 0 ̸ ≡ 0. Letting n → +∞ in relation (4.4), we deduce that

Ω |∇u 0 | q dx + Ω |∇u 0 | p dx ≤ λ Ω |u 0 | q dx.
If there is equality in the above relation then u 0 ∈ N λ and m ≤ E λ (u 0 ). Assume by contradiction that

Ω |∇u| q dx + Ω |∇u| p dx < λ Ω |u| q dx. (4.5) Let t > 0 be such that tu 0 ∈ N λ , i.e., t = λ Ω |u 0 | q dx - Ω |∇u 0 | q dx Ω |∇u 0 | p dx 1 p-q .
We note that t ∈ (0, 1) since 1 < t p-q (using (4.5)). Finally, since tu 0 ∈ N λ with t ∈ (0, 1) we have

0 < m ≤ E λ (tu 0 ) = 1 p - 1 q Ω |∇(tu 0 )| p dx = t p 1 p - 1 q Ω |∇u 0 | p dx = t p E λ (u 0 ) ≤ t p lim k→+∞ inf E λ (u k ) = t p m < m for t ∈ (0, 1),
and this is a contradiction which assures that relation (4.5) cannot hold and consequently we have u 0 ∈ N λ . Hence m ≤ E λ (u 0 ) and m = E λ (u 0 ). □ Theorem 4.8. Let p < q. Then every λ ∈ (λ D 1 (q), +∞) is a first eigenvalue of problem (1.2).

Proof. Let u ∈ N λ be such that E λ (u) = m (thanks to Proposition 4.7). We show that ⟨E ′ λ (u), v⟩ = 0 for all v ∈ W 1,q 0 (Ω). We recall that for u ∈ N λ , we have

Ω |∇u| q dx + Ω |∇u| p dx = λ Ω |u| q dx.
Let v ∈ W 1,q 0 (Ω). For every δ in some small interval (-ε, ε) certainly the function u + δv does not vanish identically.

Let t(δ) > 0 be a function such that t(δ)(u + δv) ∈ N λ , namely

t(δ) = λ Ω |u + δv| q dx - Ω |∇(u + δv)| q dx Ω |∇(u + δv)| p dx 1 p-q .
The function t(δ) is a composition of differentiable functions, so it is differentiable. The precise expression of t ′ does not matter here. Observe that t(0) = 1. The map δ → t(δ)(u + δv) defines a curve on N λ along which we evaluate E λ . Hence we define γ :

(-ε, ε) → R as γ(δ) = E λ (t(δ)(u + δv)). By construction, δ = 0 is a minimum point for γ. Consequently 0 = γ ′ (0) = ⟨E ′ λ (t(0)u), t ′ (0)u + t(0)v⟩ = t ′ (0)⟨E ′ λ (u), u⟩ + ⟨E ′ λ (u), v⟩ = ⟨E ′ λ (u)
, v⟩ using the fact that ⟨E ′ λ (u), u⟩ = 0 because u ∈ N λ . We then obtained that ⟨E ′ λ (u), v⟩ = 0 for all v ∈ W 1,q 0 (Ω). □

BIFURCATION

In this section we discuss bifurcation phenomena for problem (1.2). We begin with the following. Definition 5.1. A real number µ is called a bifurcation point of (1.2) if and only if there is a sequence (u n , µ n ) of solutions of (1.2) such that u n ̸ ≡ 0 and

µ n → µ, ∥u n ∥ 1,s → 0, as n → +∞, s = p (if p > q), or s = q (if p < q).

Observations: Define

F : W 1,p 0 (Ω) ∩ W 1,q 0 (Ω) → R by F(u) = 1 p Ω |∇u| p dx + 1 q Ω |∇u| q dx 1 q Ω |u| q dx , for all u ∈ W 1,p 0 (Ω) ∩ W 1,q 0 (Ω).
By setting u = re 1 , where e 1 stands as the normalized eigenfunction associated to the eigenvalue λ D 1 (q) of the q-homogenous equation (1.3), we then have

F(re 1 ) = r p-q p Ω |∇e 1 | p dx + 1 q Ω |∇e 1 | q dx 1 q Ω |e 1 | q dx .
We distinguish two cases:

(i) Assume that p > q. Thus we find that F(re 1 ) → λ D 1 (q) as r → 0, which indicates bifurcation in 0 from λ D 1 (q). (ii) Assume that p < q. We find that F(re 1 ) → +∞ as r → 0, which indicates there is no bifurcation in 0 from λ D 1 (q). One is lead to look for bifurcation at infinity.

Our aim is to show that the variational q-homogenous eigenvalues λ D k (q) of equation (1.3) are bifurcation points for the nonlinear eigenvalues λ D k (p, q; ρ) of equation (1.2). More precisely, we will show that λ D k (p, q; ρ) → λ D k (q) as ρ → 0 (see Theorem 5.3 in section 5.1).

As in section 2, let

D ρ (p, q) = {u ∈ W 1,p 0 (Ω) \ {0} ⊂ W 1,q 0 (Ω) \ {0} : Ω |u| q dx = ρ} and Γ k,ρ = {A ⊂ D ρ (p, q) : A symmetric, A compact, γ(A) ≥ k}.
By the definition of λ D k (q) we know that for ε > 0 small there is

A ε ∈ Γ k,1 such that sup {u∈A ε , Ω |u| q dx=1} Ω |∇u| q dx ≤ λ D k (q) + ε .
We want to approximate A ε by a finite-dimensional set. Since A ε is compact, for every δ > 0 there exist a finite number of points x 1 , . . . , x n(δ) such that

A ε ⊂ n(δ) i=1 B δ (x i ). (5.1) 
Let E n = span{x 1 , . . . , x n(δ) }, and set

P n A ε := {P n x, x ∈ A ε }, (5.2) 
where P n x ∈ E n is such that ∥x -P n x∥ 1,q = inf{∥x -z∥ 1,q , z ∈ E n }.

We claim that γ(P n A ε ) ≥ k. Clearly, P n A ε is symmetric and compact. Furthermore, 0 ̸ ∈ P n A ε ; indeed since A ε is compact, and 0 ̸ ∈ A ε , there is small ball B τ (0) such that

A ε ∩ B τ (0) = ∅. Now, choose δ > 0 in (5.1) such that δ < τ/2. Then, for x ∈ A ε there is x i ∈ E n , for some i ∈ {1, . . . , n(δ)}, such that ∥x -x i ∥ 1,q < δ, and hence ∥x -P n x∥ 1,q = inf{∥x -z∥ 1,q , z ∈ E n } ≤ ∥x -x i ∥ 1,q < τ/2
and thus

P n A ε ∩ B τ/2 (0) = ∅.
Finally, we have to show that γ(P n A ε ) ≥ k. This is again by approximation: since γ(A ε ) ≥ k, there exist a continuous and odd map g :

A ε → R k \ {0}.
Then by Tietze extension theorem there exist a continuous and odd map g : W 1,q 0 (Ω) → R such that g|A ε = g. By continuity and compactness of A ε we can conclude that g|P n A ε : W 1,q 0 (Ω) → R k \ {0}. Now, again by approximation, we conclude that there is a n = n(ε) such that sup

{u∈P n A ε } Ω |∇u| q dx ≤ λ D k (q) + 2ε .
Finally, note that by homogeneity inf

A∈Γ k,ρ sup u∈A Ω |∇u| q dx = λ D k (q) ρ
and hence also sup

{u∈(ρ P n A ε )} Ω |∇u| q dx ≤ λ D k (q) + 2ε ρ. (5.3)
Recall that by (2.4) we have, for each integer k > 0,

c k (p, q; ρ) = inf A∈Γ k,ρ sup u∈A 1 p Ω |∇u| p dx + 1 q Ω |∇u| q dx .
We first prove the following lemma which is useful for the bifurcation result from zero.

Lemma 5.2. Let p > q. For any integer k > 0 and ρ > 0, ε > 0, there exists a positive constant C(ε) such that the following estimate holds:

|c k (p, q; ρ) - 1 q λ D k (q) ρ| ≤ C(ε)ρ p/q + 2ε ρ.
Proof. For any k > 0, we clearly have c k (p, q; ρ) ≥ 1 q λ D k (q) ρ. By (5.3) we can estimate

c k (p, q, ρ) = inf A∈Γ k,ρ sup u∈A 1 p Ω |∇u| p dx + 1 q Ω |∇u| q dx ≤ sup u∈(ρP n A ε ) 1 p Ω |∇u| p dx + 1 q Ω |∇u| q dx ≤ sup u∈(ρP n A ε ) 1 p Ω |∇u| p dx + sup u∈(ρ P n A ε ) 1 q Ω |∇u| q dx ≤ 1 p Ω |∇v| p dx + 1 q (λ D k (q) + 2ε)ρ for some v ∈ (ρP n A ε ) with Ω |v| q dx = ρ. Since P n A ε is finite-dimensional, there exists a positive constant C(ε) such that Ω |∇v| p dx 1/p ≤ C(ε) Ω |v| q dx 1/q and hence Ω |∇v| p dx ≤ C(ε) Ω |v| q dx p/q = C(ε) ρ p/q .
Finally, we get

0 ≤ c k (p, q; ρ) - 1 q λ D k (q) ρ ≤ C(ε)ρ p/q + 2ερ. □ 5.1. Bifurcation from zero.
Here, we show that for equation (1.2), for p > q, there is a branch of first eigenvalues bifurcating from (λ D k (q), 0) ∈ R + × W 1,p 0 (Ω). Theorem 5.3. Let 1 < q < p < +∞. Then for each integer k > 0 the pair (λ D k (q), 0) is a bifurcation point of problem (1.2).

An illustration of the bifurcation results obtained in Theorem 5.3 is given by the figure 1 below.

Proof. We aim to show that λ D k (p, q; ρ) → λ D k (q) and ∥u k ∥ 1,p → 0, as ρ → 0 + . Thanks to Lemma 5.2 we have

1 p Ω |∇u k | p dx ≤ C n (ε)ρ p/q + 2ε ρ. Furthermore 0 ≤ λ D k (p, q; ρ) ρ -λ D k (q)ρ = Ω |∇u k | p dx + Ω |∇u k | q dx -λ D k (q)ρ = q p Ω |∇u k | p dx + Ω |∇u k | q dx -λ D k (q)ρ + (1 - q p ) Ω |∇u k | p dx = q c k (p, q; ρ) -λ D k (q)ρ + (1 - q p ) Ω |∇u k | p dx ≤ C C n (ε)ρ p/q + 2ε ρ .
Since ε > 0 is arbitrary we get the first claim. Let us prove that ∥u k ∥ 1,p → 0 as ρ → 0 + . Letting v = u k in relation (2.1), we have

Ω |∇u k | p dx + Ω |∇u k | q dx = λ D k (p, q; ρ) Ω |u k | q dx.
Therefore

Ω |∇u k | p dx ≤ λ D k (p, q; ρ) Ω |u k | q dx ≤ C k ρ.
Hence Ω |∇u k | p dx → 0 as ρ → 0 and this completes the proof. □

Bifurcation from infinity.

The goal is to prove that if p < q, there is a branch of first eigenvalues bifurcating from (λ D k (q), +∞). For u ∈ W 1,q 0 (Ω), u ̸ = 0, we set w = u/∥u∥ 2 1,q . We have ∥w∥ 1,q = 1 ∥u∥ 1,q and |∇w| s-2 ∇w =

1 ∥u∥ 2(p-1) 1,q |∇u| s-2 ∇u, for s = p, q = 1 ∥u∥ 2(q-1) 1,q |∇u| s-2 ∇u and |w| q-2 w = 1 ∥u∥ 2(p-1) 1,q |u| q-2 u.
Introducing this change of variable in (2.1), we find that, ∥u∥

2(p-q) 1,q Ω |∇w| p-2 ∇w • ∇v dx + Ω |∇w| q-2 ∇w • ∇v dx = λ Ω |w| q-2 w v dx
for every v ∈ W 1,q 0 (Ω). This leads to the following nonlinear eigenvalue problem (for 1

< p < q < +∞)    -∥w∥ 2(q-p) 1,q ∆ p w -∆ q w = λ|w| q-2 w in Ω w = 0 on ∂Ω.
(5.4) Proposition 5.4. Assume that p < q. If (λ, 0) is a bifurcation point of solutions of problem (5.4) then λ is an eigenvalue of problem (1.3).

Proof. Since (λ, 0) is a bifurcation point from zero of solutions of problem (5.4), there is a sequence of nontrivial solutions of problem (5.4) such that λ n → λ and ∥w n ∥ 1,q → 0 in W 1,q 0 (Ω). We then have

∥w n ∥ 2(q-p) 1,q Ω |∇w n | p-2 ∇w n • ∇v dx + Ω |∇w n | q-2 ∇w n • ∇v dx = λ n Ω |w n | q-2 w n v dx.
(5.5) By using the argument in Remark 3.1 and then passing to limit, we complete the proof. □

Let us consider a small ball B r (0) := { w ∈ W 1,q 0 (Ω) \ {0}/ ∥w∥ 1,q < r }, and the operator

T := -∥ • ∥ 2(q-p) 1,q ∆ p -∆ q : W 1,q 0 (Ω) ⊂ W 1,p 0 (Ω) → W -1,p ′ (Ω) ⊂ W -1,q ′ (Ω). Proposition 5.5. Let 1 < p < q. The mapping T : B r (0) ⊂ W 1,q 0 (Ω) → W -1,q ′ (Ω) is strongly monotone, i.e., there exists C > 0 such that ⟨T(u) -T(v), u -v⟩ ≥ C∥u -v∥ q 1,q , for u, v ∈ B r (0) ⊂ W 1,q 0 (Ω) with r > 0 sufficiently small.
Proof. Using that -∆ p is strongly monotone on W 1,p 0 (Ω) on the one hand and the H ölder inequality on the other hand, we have

⟨T(u) -T(v), u -v⟩ = ∥∇u -∇v∥ q + ∥u∥ 2(q-p) 1,q (-∆ p u) -∥v∥ 2(q-p) 1,q (-∆ p v), u -v = ∥∇u -∇v∥ q + ∥u∥ 2(q-p) 1,q (-∆ p u) -(-∆ p v), u -v + ∥u∥ 2(q-p) 1,q -∥v∥ 2(q-p) 1,q -∆ p v, u -v ≥ ∥∇u -∇v∥ q -∥u∥ 2(q-p) 1,q -∥v∥ 2(q-p) 1,q ∥∇v∥ p-1 p ∥∇(u -v)∥ p ≥ ∥∇u -∇v∥ q -∥u∥ 2(q-p) 1,q -∥v∥ 2(q-p) 1,q C∥v∥ p-1 1,q ∥u -v∥ 1,q . (5.6)
By the Mean Value Theorem, we obtain that there exists θ ∈ [0, 1] such that ∥u∥

2(q-p) 1,q -∥v∥ 2(q-p) 1,q = d dt ∥u + t(v -u)∥ 2 1,q q-p | t=θ (v -u) = (q -p) ∥u + θ(v -u)∥ 2 1,q q-p-1 2 (u + θ(v -u), v -u) 1,q ≤ 2(q -p)∥u + θ(v -u)∥ 2q-2p-2 1,q ∥u + θ(v -u)∥ 1,q ∥u -v∥ 1,q = 2(q -p)∥u + θ(v -u)∥ 2q-2p-1 1,q ∥u -v∥ 1,q ≤ 2(q -p)∥u + θ(v -u)∥ 2q-p 1,q ∥u -v∥ 1,q ≤ 2(q -p) (1 -θ)∥u∥ 1,q + θ∥v∥ 1,q 2q-p ∥u -v∥ 1,q ≤ 2(q -p)r 2q-p ∥u -v∥ 1,q .
Thus, continuing with the estimate of equation (5.6), we get

⟨T(u) -T(v), u -v⟩ ≥ ∥u -v∥ q 1,q -2(q -p)r 2q-1 C∥u -v∥ 2 1,q ,
and hence, for r → 0 we end the proof. □

We first show the existence of variational eigenvalues of the nonlinear equation (5.4). Theorem 5.6. Let 1 < p < q be given. Then, for a fixed ρ > 0, there exists a non-decreasing sequence of eigenvalues λD k (p, q; ρ), with corresponding eigenfunctions w k (p, q; ρ) ∈ W 1,q 0 (Ω) for the nonlinear eigenvalue problem (5.4).

We again rely on [START_REF] Ambrosetti | Nonlinear analysis and semilinear elliptic problems[END_REF]Proposition 10.8] for the proof of Theorem 5.6.

Proof. Let O ρ (p, q) = {w ∈ W 1,q 0 (Ω) : Ω |w| q dx = ρ}, and Σ k,ρ (p, q) = {A ⊂ Σ : γ(A ∩ O ρ (p, q)) ≥ k}, where Σ = {A ⊂ W 1,q 0 (Ω) : A closed, A = -A}. Set d k (p, q; ρ) = inf A∈Σ k,ρ (p,q) sup u∈A q p ∥w∥ 2(q-p) 1,q Ω |∇w| p dx + Ω |∇w| q dx > 0. (5.7)
We show that:

(i) the functional F(w) = q p ∥w∥ 2(q-p) 1,q Ω |∇w| p dx + Ω |∇w| q dx satisfies the (PS) condition on O ρ (p, q), and

(ii) if d = d k (p, q; ρ) = • • • = d k+m-1 (p, q; ρ), then the set K d of critical points of I at the critical level d has a genus γ(K d ) ≥ m.
We prove (i). Let {w j } ⊂ O ρ (p, q) a (PS) sequence, i.e, for all j, M > 0 |F(w j )| ≤ M and F ′ (w j ) → 0 in W -1,q ′ (Ω) as j → +∞. We first show that {w j } is bounded in O ρ (p, q) ⊂ W 1,p 0 (Ω). Since w j ∈ W 1,q 0 (Ω), with the Poincaré inequality, we have Ω |w j | q dx ≤ C Ω |∇w j | q dx and it follows that

M ≥ |F(w j )| ≥ q p ∥w j ∥ 2(q-p) 1,q Ω |∇w j | p dx + 1 C Ω |w j | q dx ≥ ∥w j ∥ 2q-p 1,q + ρ C , since W 1,q 0 (Ω) ⊂ W 1,p 0 (Ω).
Then {w j } is bounded in O ρ (p, q) ⊂ W 1,q 0 (Ω). We can assume that up to a subsequence still denoted {w j }, there exists w ∈ O ρ (p, q) ⊂ W 1,q 0 (Ω) such that w j ⇀ w in O ρ (p, q) ⊂ W 1,q 0 (Ω). Now, we show that w j converges strongly to w in O ρ (p, q) ⊂ W 1,q 0 (Ω). Since F ′ (w j ) → 0 in W -1,q ′ (Ω) as j → +∞, we have F ′ (w j )(w jw) → 0 and F ′ (w)(w jw) → 0 as j → +∞. We have

⟨F ′ (w j )-F ′ (w), w j -w⟩ = q Ω ∥w j ∥ 2(q-p) 1,q |∇w j | p-2 ∇w j -∥w∥ 2(q-p) 1,q |∇w| p-2 ∇w • ∇(w j -w)dx + q Ω |∇w j | q-2 ∇w j -|∇w| q-2 ∇w • ∇(w j -w) dx.
Thanks to Proposition 5.5, it follows that ⟨F ′ (w j ) -F ′ (w), w j -w⟩ ≥ C∥w j -w∥ q 1,q .

Therefore ∥w j -w∥ 1,q → 0 as j → +∞ and w j converges strongly to w in W 1,q 0 (Ω). The proof of (ii) is similar to the last part of the proof of Theorem 2.5. □ Theorem 5.7. Let p < q. Then for each integer k > 0 the pair (λ D k (q, ρ), +∞) is a bifurcation point of problem (1.2).

The proof of Theorem 5.7 will follow immediately from the following remark, and the proof that (λ D k (q, ρ), 0) is a bifurcation point of (5.4), which will be shown in Theorem 5.11 below.

Remark 5.8. With the change of variable u/∥u∥ 2 1,q , we have that the pair (λ D k (q, ρ), +∞) is a bifurcation point for the problem (1.2) if and only if the pair (λ D k (q, ρ), 0) is a bifurcation point for the problem (5.4).

Before we proceed to the proof of Theorem 5.11 below, we show the following lemma.

Lemma 5.9. Let 1 < p < q < +∞. For any integer k > 0 and ρ > 0, ε > 0, there exists a positive constant D(ε) such that the following estimate holds:

|d k (p, q; ρ) -λ D k (q, ρ)| ≤ (D(ε) + ε)ρ 2q-p p
where d k (p, q; ρ) is given by (5.7), and

λ D k (q, ρ) = inf A∈Γ k,ρ sup u∈A Ω |∇u| q dx = λ D k (q)ρ .
Proof. For any k > 0, we clearly have d k (p, q; ρ) ≥ λ D k (p, ρ). As in (5.2), we choose

P n A ε such that sup {w∈P n A ε , Ω |w| q dx=1} Ω |∇w| q dx ≤ λ D k (q, ρ) + ε
and so sup

{w∈P n A ε,ρ , Ω |w| q dx=ρ} Ω |∇w| q dx ≤ (λ D k (q, ρ) + ε)ρ,
where

P n A ε,ρ = {w ∈ P n A ε : Ω |w| q dx = ρ}. Then d k (p, q; ρ) = inf A∈Γ k,ρ sup u∈A q p ∥w∥ 2(q-p) 1,q Ω |∇w| p dx + Ω |∇w| q dx ≤ sup u∈P n A ε,ρ q p ∥w∥ 2(q-p) 1,q Ω |∇w| p dx + Ω |∇w| q dx ≤ sup u∈P n A ε,ρ q p ∥w∥ 2(q-p) 1,q Ω |∇w| p dx + sup w∈P n A ε,ρ Ω |∇w| q dx ≤ q p ∥v∥ 2(q-p) 1,q Ω |∇v| q dx + (λ D k (q) + ε)ρ since p < q, ≤ q p ∥v∥ 2q-p 1,q + (λ D k (q) + ε)ρ
for some v ∈ P n A ε,ρ with Ω |v| q dx = ρ. Since P n A ε is finite-dimensional, there exists a positive constant D n (ε) such that Ω |∇v| q dx ≤ D n (ε)( Ω |v| q dx) p/q = D n (ε)ρ q/p and ∥v∥ 2q-p 1,q

≤ D n (ε)ρ 2q-p p .
Finally, we get

0 ≤ d k (p, q; ρ) -λ D k (q, ρ) ≤ D n (ε)ρ 2q-p p + ερ ≤ (D n (ε) + ε)ρ 2q-p p since 2q-p p > 1.
□ Remark 5.10. We recall that the k-th eigenvalue of equation (5.4) satisfies

λD k (p, q; ρ)ρ = ∥w∥ 2(q-p) 1,p Ω |∇w| p dx + Ω |∇w| q dx, with ρ = Ω |w| q dx.
So, proceding as in Theorem 5.3 one obtains that λD k (p, q; ρ) → λ D k (q) as ρ → 0 + .

Theorem 5.11. The pair (λ D k (q), 0) is a bifurcation point of problem (5.4) for any k > 0 and p < q < +∞.

Proof. In order to prove Theorem 5.11, it suffices to prove that λD k (p, q; ρ) → λ D k (q, ρ) and ∥w k ∥ 1,q → 0 as ρ → 0 + . The fact that λD k (p, q; ρ) → λ D k (q) as ρ → 0 + follows from Lemma 5.9 and Remark 5.10.

It remains to prove that ∥w k ∥ 1,q → 0 as ρ → 0 + . For any k > 0, we have

∥w k ∥ 2(q-p) 1,q Ω |∇w k | p dx + Ω |∇w k | q dx = λD k (p, q; ρ) Ω |w k | q dx ≤ C k Ω |w k | q dx = C k ρ → 0 , as ρ → 0.
Therefore ∥w k ∥ 1,q → 0, and since p < q, by the H ölder inequality there exists a positive constant

C 1 such that Ω |∇w k | p dx ≤ C 1 ∥w k ∥ p 1,q
, and so also ∥w k ∥ 1,p → 0. This completes the proof. □

MULTIPLICITY RESULTS

In this section we prove a multiplicity result: we show that for fixed λ ∈ (λ D k (q), λ D k+1 (q)) there exist at least k pairs of eigenfunctions ±u λ i (p, q), i = 1, . . . , k, such that (λ, ±u λ i (p, q)) solve equation (2.1), i.e.

λ = λ D 1 (p, q; ρ 1 ) = • • • = λ D k (p, q; ρ k ) , with ρ i = Ω |u λ i (p, q)| q dx.
We distinguish again the two cases p < q and p > q. The proofs rely on variational methods. Theorem 6.1. Let 1 < q < p < +∞ or 1 < p < q < +∞, and suppose that λ ∈ (λ D k (q), λ D k+1 (q)). Then equation (1.2) has at least k pairs of nontrivial solutions. Proof. We split the proof into two parts. Part 1: p < q. In this case we will make use of [START_REF] Ambrosetti | Nonlinear analysis and semilinear elliptic problems[END_REF]Proposition 10.8]. We consider the functional

J λ : W 1,q 0 (Ω)\{0} → R associated to the problem (1.2) defined by J λ (u) = q p Ω |∇u| p dx + Ω |∇u| q dx -λ Ω |u| q dx.
The functional J λ is not bounded from below on W 1,q 0 (Ω), so we consider again the constraint set N λ , on which we minimize the functional J λ . We recall that the constraint set is given by

N λ := {u ∈ W 1,q 0 (Ω)\{0} : ⟨J ′ λ (u), u⟩ = 0}. On N λ , we have J λ (u) = ( 1 p -1 q )
Ω |∇u| p dx > 0. We clearly have that J λ is even and bounded from below on N λ . Next we show that every Palais-Smale (PS) sequence for J λ has a converging subsequence on N λ . Let (u n ) n≥0 be a (PS) sequence, i.e, |J λ (u n )| ≤ C, for all n, for some C > 0 and J ′ λ (u n ) → 0 in W -1,q ′ (Ω) as n → +∞, with 1 q + 1 q ′ = 1. We first show that the sequence (u n ) n≥0 is bounded on N λ . Suppose that (u n ) n≥0 is not bounded, so

Ω |∇u n | q dx → +∞ as n → +∞. Since J λ (u n ) = ( 1 p -1 q ) Ω |∇u n | p dx, we have Ω |∇u n | p dx ≤ c. On N λ , we have 0 < Ω |∇u n | p dx = λ Ω |u n | q dx - Ω |∇u n | q dx, (6.1) 
and hence

Ω |u n | q dx → +∞. Let v n = u n ∥u n ∥ q then Ω |∇v n | q dx < λ (using (6.1))
and hence v n is bounded in W 1,q 0 (Ω). Therefore there exists v

0 ∈ W 1,q 0 (Ω) such that v n ⇀ v 0 in W 1,q 0 (Ω) and v n → v 0 in L q (Ω). Dividing (6.1) by ∥u n ∥ p q , we have λ Ω |u n | q dx - Ω |∇u n | q dx ∥u n ∥ p q = Ω |∇v n | p dx → 0, since λ Ω |u n | q dx - Ω |∇u n | q dx = ( 1 p - 1 q ) -1 J λ (u n ), |J λ (u n )| ≤ C and ∥u n ∥ p q → +∞. Now, since v n ⇀ v 0 in W 1,q 0 (Ω) ⊂ W 1,p 0 (Ω), we infer that Ω |∇v 0 | p dx ≤ lim inf n→+∞ Ω |∇v n | p dx = 0,
and consequently v 0 = 0. So v n → 0 in L q (Ω) ⊂ L p (Ω) and this is a contradiction since ∥v n ∥ q = 1. Thus (u n ) n≥0 is bounded on N λ . Now, we show that u n converges strongly to u in W 1,q 0 (Ω). We have

Ω |u n | q-2 u n dx → Ω |u| q-2 u dx as n → +∞ and since J ′ λ (u n ) → 0 in W -1,q ′ (Ω), u n ⇀ u in W 1,q 0 (Ω), we also have J ′ λ (u n )(u n -u) → 0 and J ′ λ (u)(u n - u) → 0 as n → +∞.
We recall that with the computations made in Remark 3.1, we have for 1

< p < +∞ Ω |∇u n | p-2 ∇u n -|∇u| p-2 ∇u • ∇(u n -u) dx ≥ (∥u n ∥ p-1 1,p -∥u∥ p-1 1,p )(∥u n ∥ p 1,p -∥u∥ p 1,p ) ≥ 0. Then, ⟨J ′ λ (u n ) -J ′ λ (u), u n -u⟩ = q Ω |∇u n | p-2 ∇u n -|∇u| p-2 ∇u • ∇(u n -u) dx + q Ω |∇u n | q-2 ∇u n -|∇u| q-2 ∇u • ∇(u n -u) dx -λq Ω |u n | q-2 u n -|u| q-2 u • (u n -u) dx ≥ q Ω |∇u n | q-2 ∇u n -|∇u| q-2 ∇u • ∇(u n -u) dx -λq Ω |u n | q-2 u n -|u| q-2 u • (u n -u) dx .
Using Lemma 3.3, it follows that

⟨J ′ λ (u n ) -J ′ λ (u), u n -u⟩ ≥ C∥u n -u∥ q 1,q -λq Ω |u n | q-2 u n -|u| q-2 u • (u n -u) dx .
Therefore ∥u n -u∥ 1,q → 0 as n → +∞ and u n converges strongly to u in W 1,q 0 (Ω).

Let Σ = {A ⊂ N λ : A closed and -A = A} and Γ j = {A ∈ Σ : γ(A) ≥ j}, where γ(A) denotes the Krasnoselski's genus. We show that Γ j ̸ = ∅, for j ∈ {1, . . . , k}.

Let λ ∈ (λ D j (q), λ D j+1 (q)) and choose S ε j ∈ Σ ∩ { Ω |u| q dx = 1} such that sup v∈S ε j Ω |∇v| q dx ≤ λ D j (q) + ε, ε := λλ D j (q) 2 .

Then, for v ∈ S ε j we set

ρ(v) = Ω |∇v| p dx λ Ω |v| q dx -Ω |∇v| q dx 1 q-p , with λ Ω |v| q dx - Ω |∇v| q dx ≥ λ Ω |v| q dx -(λ D j (q) + ε) Ω |v| q dx = (λ -λ D j (q) -ε) Ω |v| q dx = [λ -λ D j (q) -( λ -λ D j (q) 2 )]
Ω |v| q dx = λλ D j (q) 2 Ω |v| q dx > 0, for all v ∈ S ε j .

Hence, ρ(v)v ∈ N λ , and then ρ(S ε j ) ∈ Σ, and γ(ρ(S ε j )) = γ(S ε j ) = j for 1 ≤ j ≤ k.

It is then standard [START_REF] Ambrosetti | Nonlinear analysis and semilinear elliptic problems[END_REF]Proposition 10.8] to conclude that σ λ,j = inf A∈Γ j sup u∈A J λ (u), 1 ≤ j ≤ k, for any k ∈ N * yields k pairs of nontrivial critical points for J λ , which gives rise to k nontrivial solutions of problem (1.2).

Part 2: p > q.

In this case, we will rely on the following theorem.

Theorem (Clark,[START_REF] Clark | A variant of the Lusternik-Schnirelman theory[END_REF]) .

Let X be a Banach space and G ∈ C We consider the C 1 functional J λ : W

1,p 0 (Ω) ⊂ W 1,q 0 (Ω) → R J λ (u) = q p Ω |∇u| p dx + Ω |∇u| q dx -λ Ω |u| q dx.
Let Γ k = {A ⊂ W 1,q 0 (Ω)\{0}, A compact, A = -A, γ(A) ≥ k}, and for ε > 0 small let A ε ∈ Γ k such that sup {u∈A ε , Ω |u| q dx=1} Ω |∇u| q dx ≤ λ D k (q) + ε.

We would like to show that

-∞ < α λ,k = inf A∈Γ k sup u∈A J λ (u) (6.2) 
are critical values for J λ . We clearly have that J λ (u) is an even functional for all u ∈ W 1,p 0 (Ω), and also J λ is bounded from below on W 1,p 0 (Ω) since J λ is coercive on W 1,p 0 (Ω).

We show that J λ (u) satisfies the (PS) condition. Let {u n } be a Palais-Smale sequence, i.e., |J λ (u n )| ≤ M for all n, M > 0 and J ′ λ (u n ) → 0 in W -1,p ′ (Ω) as n → +∞. We first show that {u n } is bounded in W 1,p 0 (Ω). We have

M ≥ |C∥u n ∥ p 1,p -C ′ ∥u n ∥ q 1,p | ≥ |C∥u n ∥ p-q 1,p -C ′ |∥u n ∥ q 1,p ,
and so {u n } is bounded in W 1,p 0 (Ω). Therefore, u ∈ W 1,p 0 (Ω) exists such that, up to subsequences that we will denote by (u n ) n we have u n ⇀ u in W 1,p 0 (Ω) and u n → u in L q (Ω). Arguing as in Part 1, we obtain that ∥u n -u∥ 1,p → 0 as n → +∞, and so u n converges to u in W 1,p 0 (Ω) ⊂ W 1,q 0 (Ω).

As in section 5, we approximate A ε by a finite-dimensional set. Next, we show that there exists sets D ε of genus greater of equal to k such that sup u∈D ε J λ (u) < 0. For any s ∈ (0, 1), we define the set D ε (s) := s • (P n A ε ) and so γ(D ε (s)) = γ(P n A ε ) ≥ k. We have, for any s ∈ (0, 1)

sup u∈D ε J λ (u) = sup u∈P n A ε J λ (su) ≤ sup u∈P n A ε qs p p Ω
|∇u| p dx + s q Ω |∇u| q dxλs q Ω |u| q dx ≤ sup u∈P n A ε qs p p c(n) p ∥u∥ p 1,q + s q (λ D k (q) + ελ) < 0 for s > 0 sufficiently small. Finally, we conclude that α λ,k are critical values for J λ thanks to Clark's Theorem. □

The contents of Theorems 2.5-2.6, Theorem 5. 

  ), and this concludes the proof.

  ), we infer that Ω |∇w 0 | p dx ≤ lim n→+∞ inf Ω |∇w n | p dx = 0 and consequently w 0 = 0. Therefore

  1 (X, R) satisfying the Palais-Smale condition withG(0) = 0. Let Γ k = { A ∈ Σ : γ(A) ≥ k } with Σ = { A ⊂ X ; A = -A and A closed }. If c k = inf A∈Γ k sup u∈A G(u) ∈ (-∞, 0), then c k is a critical value.

  3 and Theorem 6.1 are illustrated in the following figure.
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 1 FIGURE 1. Illustration of the results of Theorem 2.5-2.6, Theorem 5.3 and Theorem 6.1.