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A hybrid statistical dynamical downscaling method intended to emulate regional climate models is described and applied to Western Europe. The method is based on a constructed analogues algorithm, already used for statistical downscaling. For emulation, the statistical downscaling relationship is not derived from observations but from climate projections at low and high resolution. The hybrid approach therefore does not rely on the stationarity assumption inherent to conventional statistical downscaling.

Within a perfect model framework, and using a large number of regional projections, the hybrid method is shown to reproduce climate change signals very well and to outperform a conventional statistical downscaling method also based on constructed analogues. The hybrid approach remains skillful even when applied to very low resolution climate data.

In practice, two emulation modes exist. In the GCM / RCM mode, the downscaling relationship is built between a RCM and its forcing GCM. In the RCM / RCM mode, the relationship is built between a RCM and the same RCM after aggregation of its results to a low resolution grid.

The large-scale climate change signal of the downscaled GCM is generally retained with the RCM / RCM mode, but not with the GCM /RCM mode. Additionally, the choice of the GCM / RCM pair used for learning leads to large differences in downscaling results at large scale (i.e. at low resolution) with the GCM /RCM mode, but not with the RCM / RCM mode. These results are explained by the differences that generally exist at large scale between projected changes by current RCMs and their forcing GCMs. Whether these differences are a testimony of a real added value of RCMs at large scale in the climate change context, or whether they have other causes, is therefore a crucial question.

Introduction

Even if deep mitigation measures could still limit 21 st century global warming to 1.5° or 2°C (IPCC 2021), important climate changes will occur, with impacts in many areas that need to be assessed for adaptation. To characterize the impacts of climate change, robust high-resolution climate change information is needed. The resolution of global climate models (GCMs) is currently too coarse to directly provide such information for most climate change impact studies.

To obtain the necessary high-resolution data, some impact studies still simply use GCM results interpolated at high resolution and then bias-corrected, but it is increasingly clear that for most applications this approach is not really satisfactory. Indeed, no information regarding unresolved scales is added, and some important small-scale mechanisms in the climate change context (e.g. snow-albedo feedback in mountains regions) may not be correctly captured. The spatial characteristics of meteorological events and in particular extreme events is also likely to be misrepresented with this approach (e.g. [START_REF] Maraun | Towards process-informed bias correction of climate change simulations[END_REF][START_REF] Doblas-Reyes | Linking Global to Regional Climate Change[END_REF].

A real specific spatial downscaling step (i.e. not the basic interpolation / bias correction approach mentioned above) is therefore generally needed, either (1) dynamical downscaling with regional climate models (RCM, e.g., [START_REF] Giorgi | Thirty years of regional climate modeling: Where are we and where are we going next?[END_REF] or now convective-permitting regional climate models (CP-RCM, e.g., [START_REF] Lucas-Picher | Convection-permitting modeling with regional climate models: Latest developments and next steps[END_REF] or (2) statistical downscaling (e.g. [START_REF] Lanzante | Some Pitfalls in Statistical Downscaling of Future Climate[END_REF]). Both approaches have strengths and weaknesses. The main strength of dynamical downscaling is that it relies as closely as possible on the fundamental laws of physics and takes into account (at least in theory) all the relevant physical processes that may play a role in regional climate change. Dynamical downscaling is therefore expected to provide robust high-resolution climate change information.

The main drawbacks of dynamical downscaling are its computational cost and its complexity of implementation. Ensembles of regional climate projections, such as the ones of the CORDEX project [START_REF] Jacob | EURO-CORDEX: new high-resolution climate change projections for European impact research[END_REF], are therefore limited in size: only a handful of GCMs are generally downscaled, and most of the time only a single member of these GCMs is dealt with. This is problematic for the correct assessment of all uncertainties involved in regional climate projections (i.e., due to emission scenarios, global climate models, regional climate models, and internal variability), which is often crucial for adaptation.

Even such relatively small ensembles of regional projections can only be achieved through large coordinated international projects, which are complex to implement. For example, the currently widely available regional climate projections over Europe (Euro-CORDEX project, [START_REF] Jacob | EURO-CORDEX: new high-resolution climate change projections for European impact research[END_REF]) are based on only a few previous generation climate models (from the Coupled Model Intercomparison Project phase 5, CMIP5, [START_REF] Taylor | An overview of CMIP5 and the experiment design[END_REF], while new generation GCMs from CMIP6 [START_REF] Eyring | Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization[END_REF], used in the latest IPCC report released in August 2021, have been widely available for more than two years.

With dynamical downscaling, almost all impact studies have to rely on available regional climate projections as an "ensemble of opportunity" [START_REF] Tebaldi | The use of the multi-model ensemble in probabilistic climate projections[END_REF] and thus depend on choices made by regional climate modellers in large coordinated exercises, for example regarding the models, scenarios, members, or periods to downscale. This may be far from optimal for many impact studies. First, it is widely recognized that downscaled GCMs should be "fit for purpose" [START_REF] Parker | Confirmation and adequacy-for-Purpose in Climate Modelling[END_REF][START_REF] Doblas-Reyes | Linking Global to Regional Climate Change[END_REF], but as each impact study has its own particular purpose, it may not be adequately covered by available dynamically downscaled GCMs.

Additionally, new paradigms for impact studies are becoming increasingly important, such as storyline approaches, including worst-case scenarios, or the co-construction of impact studies with local stakeholders. These bottom-up approaches generally require a strong control by the impact study on the selection of the regional climate projections to use and therefore on the global climate projections to downscale. Such control is generally not possible within a dynamical downscaling framework, which favors top-down approaches for impact studies. An impact study has to deal with available RCM projections, produced thanks to large coordinated international exercises by many modelling groups, and these projections are not necessarily well adapted to its particular objectives and constraints.

The second approach, statistical downscaling [START_REF] Lanzante | Some Pitfalls in Statistical Downscaling of Future Climate[END_REF], consists of developing a statistical model based on present-day observations linking well-chosen large-scale climate variables (predictors) to the necessary local variable(s) of interest at high-resolution. This statistical model is then applied to the large-scale climate variables projected by GCMs, to derive the high-resolution climate variable(s) needed for the impact study. This low-computing cost approach is relatively simple to implement compared to dynamical downscaling, and allows for greater flexibility in the choice of climate projections for a particular impact study, as the downscaling step can be handled directly in the impact study. The main weakness of statistical downscaling is that it may be difficult to capture all the important physical mechanisms that shape regional climate change [START_REF] Dayon | Transferability in the future climate of a statistical downscaling method for precipitation in France[END_REF][START_REF] Lanzante | Some Pitfalls in Statistical Downscaling of Future Climate[END_REF]. In particular, a stationarity assumption needs to be made: the statistical relationship established in the present climate is assumed to remain valid in the future climate, strongly modified by anthropogenic forcings. The robustness of statistically downscaled projections is therefore not granted.

The objective of this work is to develop and evaluate a new downscaling method that belongs to a third family of downscaling approaches, i.e., an hybrid statistical-dynamical downscaling method that combines the respective strengths of statistical and dynamical downscaling, while aiming at overcoming their respective limitations.

Hybrid statistical-dynamical approaches for downscaling are not new (e.g., [START_REF] Najac | A multi-model ensemble approach for assessment of climate change impact on surface winds in France[END_REF][START_REF] Li | Quantification of Uncertainty in High-Resolution Temperature Scenarios for North America[END_REF][START_REF] Walton | A Hybrid Dynamical-Statistical Downscaling Technique. Part I: Development and Validation of the Technique[END_REF][START_REF] Erlandsen | A Hybrid Downscaling Approach for Future Temperature and Precipitation Change[END_REF] but have yet to be widely exploited.

The development of machine learning may open the way to the emulation of RCMs, as exemplified by the pioneering work of Doury et al. (2022). Here, we explore a simple way to emulate RCM results, based on the constructed analogues approach (van den Dool 1994), already used in other contexts [START_REF] Deser | Forced and internal components of winter air temperature trends over North America during the past 50 years: Mechanisms and implications[END_REF][START_REF] Terray | A dynamical adjustment perspective on extreme event attribution[END_REF], including statistical downscaling [START_REF] Maurer | Utility of daily vs. monthly large-scale climate data: an intercomparison of two statistical downscaling methods[END_REF][START_REF] Maurer | The utility of daily largescale climate data in the assessment of climate change impacts on daily streamflow in California[END_REF][START_REF] Werner | Hydrologic extremes -an intercomparison of multiple gridded statistical downscaling methods[END_REF]. This hybrid approach, computationally inexpensive and relatively easy to implement like a conventional statistical downscaling method, is intended to be as robust as dynamical downscaling regarding future climate changes. Indeed, it does not rely on the stationarity assumption of conventional statistical downscaling methods.

The main idea is to develop a statistical model between well-chosen large-scale climate variables and the high-resolution variables of interest (precipitation and temperature in this work), not based on observations, as in conventional statistical downscaling, but based on the results of regional climate projections, and therefore using information from both the past and future climate.

The hybrid downscaling method, the evaluation strategy and data used in this study are described in section 2. The results of the method evaluation in a perfect model framework are presented in section 3, where the sensitivity to the resolution of the model to be downscaled is also discussed, and the benefits of the approach compared to a conventional statistical downscaling method is demonstrated. In section 4, the hybrid downscaling approach in different configurations is applied to downscale GCMs, which leads to important differences. The cause and implications of this result for the emulation of RCMs are discussed in section 5. Finally, the conclusions of this work are drawn.

Data and method

Method: general principles

The emulation method developed in this study is based on constructed analogues (van den Dool 1994, Maurer and[START_REF] Maurer | Utility of daily vs. monthly large-scale climate data: an intercomparison of two statistical downscaling methods[END_REF]. The constructed analogues approach is derived from the concept of analogues [START_REF] Lorenz | Atmospheric predictability as revealed by naturally occurring analogues[END_REF], which has been used for many years, including for statistical downscaling (e.g. [START_REF] Martin | Downscaling of general circulation models outputs: simulation of the snow climatology of the French Alps. Sensitivity to climate changes[END_REF][START_REF] Dayon | Transferability in the future climate of a statistical downscaling method for precipitation in France[END_REF].

The analogues method (here at the daily time step) relies on the idea that if the large-scale meteorological fields (or predictors, large-scale atmospheric circulation for example) of a day d1 are close to those of a day d2 (d2 is then said to be an analogue of d1, and conversely), then the regional climate variable of interest at high resolution (or predictand, e.g. precipitation over France) on day d1 is similar to that on day d2. Based on this paradigm, for statistical downscaling, the analogues of large-scale predictors from a low-resolution climate projection are searched in an observed database, and the observed local variable of interest at high resolution on the analogue days are selected.

The conventional analogues method for statistical downscaling raises three main difficulties.

The first two are in fact common to all statistical downscaling methods, and probably the main weakness of this type of approach.

(i) The relationship between predictor(s) and predictand is assumed not to evolve with climate change. This assumption of stationarity is problematic, as noted in the introduction.

(ii) The adequate predictor(s) must be selected, not only to capture correctly present-day variability but also to capture future climate changes. It is clear, for example, that as precipitation is not entirely determined by large-scale atmospheric circulation, using large-scale atmospheric circulation as single predictor would not allow one to capture all the variations and changes in precipitation (e.g., [START_REF] Boé | Uncertainties in European summer precipitation changes: role of large scale circulation[END_REF]. The choice of predictors in statistical downscaling is therefore crucial with respect to the stationarity assumption, as shown in [START_REF] Dayon | Transferability in the future climate of a statistical downscaling method for precipitation in France[END_REF] (iii) The third issue is specific to the standard analogues method: the observed database is not infinite and with a finite sample of data, it may be difficult to always find good analogues, i.e. analogues sufficiently close of the target (van den Dool 1994).

In this study, a hybrid statistical-dynamical downscaling method, based on analogues, but intended to solve these three difficulties is developed. Instead of searching for the best existing analogue, which may in fact be a poor analogue, a method of analogue construction, by linear combination of the best existing analogues, is used as in [START_REF] Maurer | Utility of daily vs. monthly large-scale climate data: an intercomparison of two statistical downscaling methods[END_REF], [START_REF] Maurer | The utility of daily largescale climate data in the assessment of climate change impacts on daily streamflow in California[END_REF] and [START_REF] Werner | Hydrologic extremes -an intercomparison of multiple gridded statistical downscaling methods[END_REF]. We use the same variable as predictor and predictand, as in these papers: for high-resolution precipitation (temperature), the chosen predictor is low-resolution precipitation (temperature). This choice is expected to lead to a good reproduction of predictands properties. Additionally, from a practical point of view, the method will be relatively easy to apply, as a single predictor per predictand is needed. This may be of great practical importance when dealing with large ensembles of climate models in impact studies.

The major novelty of the method developed in this study compared to conventional statistical downscaling methods, is that the analogues are not searched in an observed database, and thus necessarily in the past climate, but within a regional climate projection, and therefore both in the past and future climate. This hybrid statistical-dynamical approach thus aims to emulate regional climate models. It allows to take into account the potential evolution of the links between coarse-scale predictors and fine-scale predictand with climate change (as captured by the regional climate model) and does not suffer from the stationarity assumption on which conventional statistical downscaling methods are based. It should lead to more robust highresolution regional projections compared to conventional statistical downscaling methods, while keeping a low-computation cost.

Method: detailed description

The emulation method is derived from the bias correction constructed analogues downscaling method of [START_REF] Maurer | The utility of daily largescale climate data in the assessment of climate change impacts on daily streamflow in California[END_REF] or [START_REF] Werner | Hydrologic extremes -an intercomparison of multiple gridded statistical downscaling methods[END_REF]. How the emulation method works in practice is summarized in Fig. 1. The red area corresponds to low-resolution data. The blue area corresponds to high-resolution data. "Mod" is the low-resolution GCM to be downscaled. "Coarse-Scale Ref" is a reference simulation at low-resolution, in which the analogues of Mod are searched. As a preliminary step, it is therefore necessary to interpolate/aggregate Coarse-Scale Ref data onto Mod grid. The biases of Mod with respect to Coarse-Scale Ref are corrected with a quantile-quantile correction method [START_REF] Werner | Hydrologic extremes -an intercomparison of multiple gridded statistical downscaling methods[END_REF] in this preliminary step, just after interpolation.

For the description of the emulation method below, daily precipitation is used as an example.

For each target day i in Mod, Xi, (Xi being in the chosen example the low-resolution daily precipitation field on a well-chosen domain for day i), the Na best analogues are searched in the low-resolution reference simulation (Coarse-Scale Ref). In Fig. 1, as a simple illustrative example, Na=2, with two analogues A1 and A2, but the number Na can be larger and is to be chosen. Here, A1 and A2 are the daily precipitation fields in Coarse-Scale Ref that are the most similar to Xi. The Euclidean distance is used as a measure of similarity.

As noted earlier, the analogues A1 and A2 are not perfect and often even potentially quite distant from Xi. The idea of constructed analogues is to search for the linear combination of analogues that is the closest to Xi: the coefficients c1 and c2 are estimated by regression so that c1.A1 + c2.A2 » Xi.

Another input of the emulation method is a high-resolution simulation associated with occurring the same days as A1 and A2, are then selected, and combined thanks to the previous coefficients c1 and c2 to obtain high resolution precipitation over the domain of interest for the day i: xi=c1.a1 + c2.a2.

Following the same procedure for all days i in MOD, the corresponding high resolution downscaled projection, "Emu", is obtained.

In the conventional downscaling methods of [START_REF] Maurer | The utility of daily largescale climate data in the assessment of climate change impacts on daily streamflow in California[END_REF] or [START_REF] Werner | Hydrologic extremes -an intercomparison of multiple gridded statistical downscaling methods[END_REF], No stationary assumption is therefore made, contrary to conventional statistical downscaling: the relationship between predictors and predictands may evolve with climate change.

Two distinct emulation modes exist: the GCM / RCM mode and the RCM / RCM mode. In the GCM / RCM mode, Fine-Scale Ref is a high-resolution regional climate simulation and Coarsescale Ref its driving GCM. In the RCM / RCM mode, Coarse-Scale Ref is simply the Fine-Scale Ref simulation aggregated on the low-resolution grid of the model to be downscaled (Mod). As shown and discussed later, fundamental differences exist between these two emulation modes.

For precipitation, slightly negative values can be obtained with the constructed analogues. They are set to 0 in this study. For future practical applications in impact studies, Emu will be biascorrected based on observations, which will correct this bias more adequately (as well as other potential methodological biases). Indeed, the downscaling method aims to emulate a regional climate model, and therefore it also reproduces the biases of the regional model. In practice, for an impact study, the biases should therefore be corrected based on observations, as one would do for a standard regional climate projection (e.g., [START_REF] Boé | Statistical and dynamical downscaling of the Seine basin climate for hydro-meteorological studies[END_REF][START_REF] Doblas-Reyes | Linking Global to Regional Climate Change[END_REF].

Different parameters of the emulation method based on constructed analogues have to be set: (i) the spatial domain over which the analogue search is performed, (ii) the number of analogues Na used for the construction of analogues, and (iii) the size of the running temporal window over which the analogue search is performed. Sensitivity tests with the evaluation strategy described in the next section have been used for the selection of these parameters. A 40-year window, centered on (but excluding) the year of the target day, is used for the analogue search.

Note that the analogue days are also searched within a 90-calendar day window centered on the day of the year of the target day, in order to take into account seasonality. 120 analogues are selected. As our main domain of interest for the future application of the method is France, several domains centered on France have been tested. The domain finally selected is the one used for the maps in Fig. 2. Both land and sea points on the domain are used for the analogue search (i.e., in the calculation of the Euclidean distance).

Evaluation strategy: perfect model approach

It is difficult to properly evaluate a downscaling method designed to study the impacts of climate change. In that context, the ultimate goal of downscaling is to obtain realistic future climate changes at high-resolution. Obviously, in that context, it is impossible to compare downscaling results to observations to evaluate the skill of the method.

The main approach to evaluate statistical downscaling methods has long been to compare their results to present-day observations, for example in terms of climatological means or temporal variability etc. Such approaches are not sufficient to demonstrate the applicability of the method to the future climate, modified by anthropogenic forcings. In particular, such tests do not allow the evaluation of the stationarity assumption on which conventional statistical downscaling methods rely. There is no guarantee that good skill in the past climate translates into good skill with respect to future changes. Indeed, statistical downscaling methods often perform closely and very well when evaluated in the past climate, but their future changes may largely diverge, as illustrated for example in [START_REF] Dayon | Transferability in the future climate of a statistical downscaling method for precipitation in France[END_REF].

In [START_REF] Dayon | Transferability in the future climate of a statistical downscaling method for precipitation in France[END_REF], following [START_REF] Vrac | A general method for validating statistical downscaling methods under future climate change[END_REF], [START_REF] Frias | Testing statistical downscaling methods in simulated climates[END_REF] or [START_REF] Beuchat | A robust framework for probabilistic precipitations downscaling from an ensemble of climate predictions applied to Switzerland[END_REF], we use a so-called "perfect model" or "pseudo-reality" approach, in order to evaluate a statistical downscaling method in the context of climate change. In this approach, a model is considered as the reality and plays the role of observations in the statistical downscaling algorithm: the downscaling method is applied as if the results of this model were observations. The interest of this approach is that in this "pseudo-reality", the future is known, and it is therefore possible to evaluate a downscaling method in its ability to reproduce future climate changes. Such a perfect model evaluation framework is implemented in this study for the evaluation of the emulation method. Our primary focus is indeed the method's ability to capture future climate changes, as it is the most important aspect of a downscaling method intended to be used to study climate change impacts. Results for other properties (present-day climatology and correlations) are also shown occasionally. As in [START_REF] Dayon | Transferability in the future climate of a statistical downscaling method for precipitation in France[END_REF], several RCMs take turns playing the role of the perfect model, in order to evaluate the method on a large sample of different physically-consistent pseudo-realities (Table 1).

In practice, we use the results of a high-resolution regional climate projection as pseudo-reality.

We aggregate its results to the typical resolution of a global climate model, and then we downscale these low-resolution data with the emulation method on the original high-resolution grid of the regional model (Table 2). We then compare the emulated results to those of the original regional simulation on this grid. Unless specified otherwise, for most of the analyses based on the perfect model approach in this paper, the resolution of the grid used for aggregation is about 150 km (1.4° atmospheric grid of the CNRM-CM5 model [START_REF] Voldoire | The CNRM-CM5.1 global climate model: description and basic evaluation[END_REF], a CMIP5 climate model). The impact of the resolution of the grid used for aggregation is tested in one analysis.

The main question tested with this perfect model framework is whether when starting from lowresolution climate information it is possible to reproduce high-resolution climate properties and in particular high resolution climate change signals.

To sum-up, with the terminology introduced in Fig. 1, Mod and Coarse-Scale Ref correspond in the perfect model approach to a regional climate projection from Euro-CORDEX, aggregated on a low-resolution grid, typical of current GCMs. Fine-Scale Ref corresponds to the same projection on its original high-resolution grid. Emulation results (Emu) are then compared to Fine-Scale Ref (Table 2). Note that for the perfect model evaluation, the days of the current year are excluded when searching for the analogues, in order to avoid artificial skill.

Data

Regional climate projections from the Euro-CORDEX project at a 12 km resolution over Europe [START_REF] Jacob | EURO-CORDEX: new high-resolution climate change projections for European impact research[END_REF]) are used in this study. The severe RCP8.5 emission scenario is used for most analyses, to ensure that the emulation method is able to handle even the strongest climate changes. 11 projections are used for the perfect model evaluation (Table 1). Three regional simulations are also used for real-case downscaling: the CNRM-CM5 GCM [START_REF] Voldoire | The CNRM-CM5.1 global climate model: description and basic evaluation[END_REF]) from CMIP5 [START_REF] Taylor | An overview of CMIP5 and the experiment design[END_REF]) is downscaled thanks to the hybrid method using three regional simulations, with the GCM / RCM mode and the RCM / RCM mode (Table 1).

The hybrid downscaling method is also applied in the RCM / RCM mode to downscale a large ensemble of new generation climate projections from CMIP6 [START_REF] Eyring | Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization[END_REF], in order to test the ability of the method to capture a large range of climate change signals. The historical and ssp5-8.5 simulations from the thirteen following CMIP6 models are used: ACCESS-CM2,

CMCC-ESM2, CNRM-ESM2-1, CanESM5, EC-Earth3-Veg-LR, INM-CM5-0, IPSL-CM6A- LR, KIOST-ESM, MIROC-ES2L, MPI-ESM1-2-HR, NESM3, NorESM2-MM, TaiESM1.
The main hybrid downscaling experiments analyzed in the paper and associated data are summarized in Table 2.

3 Evaluation in the perfect model framework

Maps of climatological mean and future changes

First, the ability of the emulation method to capture small scale variations in climatological means and future changes are illustrated with the emulation of ALADIN63 [START_REF] Nabat | Modulation of radiative aerosols effects by atmospheric circulation over the Euro-Mediterranean region[END_REF] forced by CNRM-CM5 in the perfect model framework (Fig. 2345). The emulation method reproduces the fine-scale variations simulated by the RCM in western Europe climate very well, for example the impact of mountain ranges as the Pyrenees and the Alps, both for temperatures and precipitation (Fig. 2 and3). The impact of sea in coastal regions, for example in the Mediterranean in winter is also well captured by the emulation method (Fig. 2). For climatological precipitation, significant differences based on a paired t-test exist between original and downscaled data over a large part of the domain, but the magnitude of the differences remains very small. The emulation method also captures the small-scale features of future temperature (Fig. 4) and precipitation (Fig. 5) changes. The amplification of warming over mountain ranges in winter, likely related to the snow / albedo feedback, or in some mountain regions in summer (as in some parts of the Spanish Pyrenees) are in particular very well captured (Fig. 4). Precipitation changes at small scale are also well reproduced, although the differences between emulation and direct RCM results are somewhat more noticeable than for temperature (Fig. 5), precipitation changes being intrinsically noisier than temperature changes.

Multi-model results

A large spread exists in climate changes projected by global and regional climate models over Western Europe (e.g., [START_REF] Boé | Large discrepancies in summer climate change over Europe as projected by global and regional climate models: causes and consequences[END_REF][START_REF] Coppola | Assessment of the european climate projections as simulated by the large euro-cordex regional and global climate model ensemble[END_REF]. In a perfect model evaluation, it is therefore crucial to consider a large range of possible pseudo-realities, in order to ensure that the downscaling algorithm is skillful for a large range of potential changes and underlying dominant mechanisms.

Eleven regional climate projections from Euro-CORDEX, with contrasted changes, are downscaled within the perfect model framework (Table 1). Simulated and emulated mean climate changes over France are then compared (Fig. 6 for temperature, and Fig. 7 for precipitation). Average temperature and relative precipitation changes over France are almost identical in the emulation results and reference simulations, with an almost perfect inter-model correlation. The hybrid statistical downscaling method is skillful, whether the simulated changes are weak or severe. Slightly larger differences between simulated and emulated changes are seen for the annual maximum daily temperature (Fig. 6c) and precipitation (Fig. 7c), although the inter-model correlation remains very strong. A small, almost general underestimation of changes in annual maximum daily temperature, of the order of 0.1°C, is noted. Regarding the changes in the annual maximum of daily precipitation, the differences between simulations and emulations are model-dependent, but of a few % at most. Given the strong impact of internal variability on extremes and the difficulty in capturing correctly changes in extremes with conventional statistical downscaling methods, those results are nonetheless very satisfactory.

Overall, the emulation method performs very well in capturing a wide range of future climate changes over Europe, as demonstrated by the perfect-model evaluation.

Sensitivity to resolution

For the evaluation of the emulation algorithm in the perfect model framework, RCM data are first aggregated onto a low-resolution grid, typical of current GCMs (Section 2.3). Most tests in this study in the perfect model framework are performed using a 150 km resolution grid for this initial aggregation step. As the resolution of current climate models is very diverse, ranging from around 25 km to more than 500 km, the sensitivity of emulation results to the initial GCM resolution is now characterized. With the CNRM-CM5 / ALADIN63 regional projection, tests in the perfect model framework using two additional grids for the initial aggregation step have been conducted, for a total of three grids:

-"Low resolution" grid: resolution of about 550 km (5° x 4.5° grid of FGOALS-gl, a CMIP5 models mainly used for long paleo-climate simulations) -"Intermediate resolution" grid: resolution of about 150 km (1.5° x 1.5° grid of CNRM-CM5, a CMIP5 model). Grid used in the previous analyses -"High resolution" grid: resolution of about 80 km (0.75° x 0.75° grid of CMCC-CM, one of the highest resolution CMIP5 models)

The results of emulation using these three grids for the initial aggregation step are then compared, in terms of spatial averages over France of temporal correlations calculated on the final high-resolution grid (Fig. 8). These correlations are not very sensitive to the resolution of the data to be downscaled. Indeed, the differences of correlation are extremely small for temperature. For precipitation, the correlations are slightly weaker when using the low-resolution grid for aggregation and higher when using the high-resolution grid, but the differences remain small. High correlations are indeed obtained even with the low-resolution grid. Note that the resolution of this grid, of about 550 km, is extreme, and virtually no GCM today uses such a low-resolution grid to conduct classical climate projections on the 21 st century. Using a high-resolution grid for the initial aggregation step does not lead to major improvements, compared to a more standard resolution.

The ability of the emulation method to produce meaningful fine scale climate variations even when starting from data at a very low resolution shows that the method is well suited to the downscaling all of current GCMs.

Emulation versus classical statistical downscaling

The main motivation for regional climate model emulation compared to conventional statistical downscaling is to be able to capture the potential evolution with anthropogenic climate change of the relationship between large scale predictors and the variables of interest at fine scale.

Emulation does not rely on the stationarity assumption, intrinsic to conventional statistical downscaling methods, that this relationship does not evolve with climate change. Emulation is therefore expected to better capture future climate change signals than conventional statistical downscaling.

This hypothesis can be tested thanks to the prefect model approach introduced previously. A variant to the emulation method described in Section 2 is introduced: the same algorithm is used, except that the analogues are always searched within a fixed present-day window and not within a moving window. This variant is therefore a conventional statistical downscaling method based on constructed analogues, similar to the method of [START_REF] Maurer | Utility of daily vs. monthly large-scale climate data: an intercomparison of two statistical downscaling methods[END_REF] or [START_REF] Maurer | The utility of daily largescale climate data in the assessment of climate change impacts on daily streamflow in California[END_REF], tested here in a perfect model framework. Three RCMs already downscaled thanks to the emulation algorithm are now also downscaled with this method. The spatial RMSE over France for future temperature and precipitation changes at high resolution at the end of the 21st century, for the emulation method and the classical statistical downscaling method, are compared (Fig. 9).

The emulation method leads to more realistic fine scale future temperature changes than the conventional statistical downscaling, with much smaller RMSEs (about 0.05 °C versus between 0.25 and 0.85 °C depending on the season and model for the conventional statistical downscaling method). The differences in RMSEs are especially large for temperature in summer, pointing that in this context the stationarity assumption of the predictor/predictand relationship is quite unrealistic. For precipitation, the RMSEs obtained with the conventional downscaling method are between 25% and 250% greater than the ones obtained with the emulation method.

Note that we use the same variable as low-resolution predictor and high-resolution predictand, which is likely one of the most favorable configurations regarding the stationary assumption.

As shown in [START_REF] Dayon | Transferability in the future climate of a statistical downscaling method for precipitation in France[END_REF] the choice of predictors is indeed very important in that context. The results in Fig. 9 imply that the simple relationship between large-scale and smallscale temperature may strongly evolve with climate change, especially in summer. Local feedbacks, for example the snow-albedo feedback in winter or the soil-atmosphere feedbacks in summer, are probably important in this context. The large scale / small scale relationship also evolves with climate change for precipitation. Note that conventional statistical downscaling and emulation lead to very similar results for present-day climatological means, with a very good skill in both cases (not shown). It highlights that for statistical downscaling, skill in the past does not necessarily imply skill regarding future climate changes.

Cross-scenario perfect model evaluation

In the perfect model framework previously introduced (section 2.3), the downscaled projections (Mod) and the regional projections used for training (Coarse-Scale Ref and Fine-Scale Ref) are identical (see also Table 2). They therefore have the same regional climate sensitivity. In realcase application, however, the GCM to be downscaled and the regional climate projection used from training may have different sensitivities. It is therefore important to test whether it is possible to downscale a climate projection with a strong (weak) regional warming signal using a regional climate projection with a weak (strong) regional warming signal.

This test is performed here in cross-scenario perfect model framework: a RCP8.5 scenario with ALADIN63 forced by CNRM-CM5 is downscaled with the hybrid method after aggregation at low resolution using for training data a RCP4.5 projection with the same GCM / RCM pair.

Conversely, the RCP4.5 projection is downscaled using as training data the RCP8.5 projection (see Table 2).

Over France, future temperature and precipitation changes of the RCP8.5 projection with ALADIN63 are very well captured when using the RCP4.5 projection for training, and conversely (Fig. 10). This result indicates that it is therefore possible to downscale with the hybrid method a climate projection with a large regional climate sensitivity using for training data from a RCM with a small regional climate sensitivity, and conversely. This analysis also shows that it is possible to downscale projections based on a severe emission scenario using a regional projection based on a moderate emission scenario and conversely. 2).

Here, we investigate the impact of the emulation mode on downscaling results. A single GCM, CNRM-CMR5 from CMIP5, is downscaled thanks to the emulation method both with the RCM / RCM and GCM / RCM modes, based on three RCM simulations (ALADIN63 forced by CNRM-CM5, HIRAM5 forced by HadGEM2-ES and RCA4 forced NorESM1-M), and their forcing GCMs with the GCM / RCM mode (see Table 1). These three GCM / RCM pairs have been selected because they show different levels of inconsistency with respect to large-scale climate change signals, based on [START_REF] Boé | Large discrepancies in summer climate change over Europe as projected by global and regional climate models: causes and consequences[END_REF]. In summer, ALADIN63 projects a slightly larger warming (~ 0.5 K) than CNRM-CM5 while HIRAM5 projects a much smaller warming (~ -4.5 K) than HadGEM2. The third pair (NorESM1-M / RCA4) exhibits an intermediary behavior, with a moderately less severe warming (~ -1 K) projected by the RCM compared to the GCM (see Fig. 6 in [START_REF] Boé | Large discrepancies in summer climate change over Europe as projected by global and regional climate models: causes and consequences[END_REF].

First, future changes projected by CNRM-CM5 and the three regional climate simulations used for emulation are characterized, to better interpret the emulation results afterwards. CNRM-CM5 is classically characterized by an increase in precipitation over the north of western Europe in winter, including a large part of France, with larger warming in the east of the domain (Fig. 11). The response of CNRM-CM5 in summer is much less usual, with an increase in precipitation over a large part of Europe (as parts of France and Italy), whereas in the full CMIP5 ensemble, precipitation decreases there (e.g., [START_REF] Terray | Quantifying 21st-century France climate change and related uncertainties[END_REF]. Additionally, summer warming is small compared to the one generally projected by other CMIP5 models, with only a small amplification of warming, for example over Mediterranean Europe [START_REF] Terray | Quantifying 21st-century France climate change and related uncertainties[END_REF]).

In the ensemble mean, changes projected by the three RCMs used for emulation are quite similar at large scale to those of CNRM-CM5 in winter, but largely different in summer. They are indeed more similar of what is generally expected in summer, with a large amplification of warming and a decrease in precipitation over a large part of the area (Fig. 11). The warming signal in summer is larger in these regional simulations than in CNRM-CM5, which is the opposite to what is usually seen: Euro-CORDEX RCMs warm generally much less in summer than their forcing CMIP5 GCMs or the full ensemble of CMIP5 GCMs [START_REF] Boé | Large discrepancies in summer climate change over Europe as projected by global and regional climate models: causes and consequences[END_REF].

At small scale, some signals not visible in CNRM-CM5 are seen in the RCMs, in particular related to orography, with an amplification of warming over the Pyrenees and the Alps, very likely due to the snow-albedo feedback in winter. A GCM cannot capture correctly these mechanisms because of the poor representation of orography at low resolutions.

Future temperature changes obtained with emulation with the GCM / RCM and RCM / RCM modes are now shown in Fig. 12. The ensemble average and spread are depicted. In both modes, a large amplification of temperature change over the Alps and the Pyrenees mountains, which does not exist in the original GCM, is noted in winter and, also, to a lesser extent, in summer.

Such amplification also exists in the RCMs (see Fig. 11 for three on them and [START_REF] Coppola | Assessment of the european climate projections as simulated by the large euro-cordex regional and global climate model ensemble[END_REF] for the full ensemble). This amplification is very likely associated in winter with a well understood physical process, the snow albedo feedback, and therefore good reasons exist to think that this signal is realistic. It clearly highlights the power and interest of the emulation method, which allows to recover realistic small-scale climate change signals, typically seen in high-resolution RCMs, starting from low-resolution GCM results where they do not exist.

The RCM / RCM and GCM / RCM modes lead to similar results in winter, although with slightly larger warming over the Alps with the GCM / RCM mode compared to the RCM / RCM mode. Large differences are seen in summer, with generally a much larger warming (close to 1°C) with the RCM / RCM mode compared to the GCM / RCM mode. The spread in emulated projected changes due to the choice of RCM is also largely different between the GCM / RCM and RCM / RCM modes. A much larger spread exists with the GCM / RCM mode, especially in summer.

At large scale, by construction, the results of emulation with the RCM / RCM mode are expected to be very similar to those of the downscaled GCM, as the analogues of the GCM are directly searched in the aggregated RCM results (to use the terminology of Section 2, both Coarse-Scale Ref and Fine-Scale Ref come from the same RCM, with only a difference in resolution. See also Table 2). Differences at large scale between the GCM and emulation results with the RCM / RCM mode are therefore necessarily small, and associated with the constructed analogues methodology.

In the GCM / RCM mode, the analogues of the GCM to be downscaled are searched in a GCM, and the results of the RCM forced by this GCM are finally used as a basis for emulation results (Table 2). [START_REF] Boé | Large discrepancies in summer climate change over Europe as projected by global and regional climate models: causes and consequences[END_REF] have shown that current RCMs may strongly modify the climate change signals of their forcing GCM, even at large scale, at least in summer. This explains why climate change signals at large scale after emulation are different from the ones of the downscaled GCM with the GCM / RCM mode (compare Fig. 12g and Fig. 11f). Moreover, how the climate change signal is modified by RCMs with respect to their forcing GCMs is also very dependent on the RCM [START_REF] Boé | Large discrepancies in summer climate change over Europe as projected by global and regional climate models: causes and consequences[END_REF]. This explains why the spread in emulated changes associated with the choice the regional simulation used for emulation can be very large with the GCM / RCM mode at large scale, as seen in summer (Fig. 12h).

Following the previous explanation, the smaller warming in summer obtained after emulation with the GCM / RCM mode compared to CNRM-CM5 implies that as an ensemble the three RCMs used for emulation tend to reduce the large scale warming of their forcing GCM. This is consistent with [START_REF] Boé | Large discrepancies in summer climate change over Europe as projected by global and regional climate models: causes and consequences[END_REF] who have shown that Euro-CORDEX RCMs generally warm much less than their driving GCM in summer. This is true for two RCM projections used here: HIRAM5, which warms much less in summer than its forcing GCM HagGEM2-ES and RCA4, which warms less than NorESM1-M (e.g., see Fig. 6 in [START_REF] Boé | Large discrepancies in summer climate change over Europe as projected by global and regional climate models: causes and consequences[END_REF].

The same general conclusions hold for precipitation changes (Fig. 13), although the differences between GCM / RCM and RCM / RCM modes discussed above for temperature are often more subtle. At large scale, precipitation changes from emulation are more similar to the downscaled GCM with the RCM / RCM mode than with the GCM / RCM mode in summer. Much larger inter-model differences also exist with the GCM / RCM mode in summer for the same reasons than for temperature.

Note that in summer, a season during which the results of CNRM-CM5 are largely different from the ones of the RCMs used in this work as an ensemble (Fig. 11e and13g), the emulated results at large scale are more similar to those of CNRM-CM5, with an increase in precipitation over a large part of Europe, in particular with the RCM / RCM mode, which is the expected behavior: the emulation method in the RCM /RCM mode simply downscale the GCM without changing its large-scale climate signals as explained previously.

Over some regions in summer, emulated precipitation with the GCM / RCM mode increases more at large scale than in CNRM-CM5. This is also consistent with the results of [START_REF] Boé | Large discrepancies in summer climate change over Europe as projected by global and regional climate models: causes and consequences[END_REF] who have shown that summer precipitation in Euro-CORDEX RCMs generally decreases less than in their forcing GCMs.

Table 3 summarizes the differences of temperature and precipitation changes between results of hybrid downscaling in the RCM / RCM and GCM / RCM modes, for each GCM / RCM pair used for training. The differences are significant for all GCM / RCM pairs and grid points over France for temperature change in summer, while between 11% and 35% of grid points exhibit significant differences for winter precipitation. The magnitude and the sign of the differences may vary, depending of the GCM / RCM pair, as seen for summer temperature change. A much larger warming is obtained in the RCM / RCM mode compared to the GCM / RCM mode with HadGEM2-ES / HIRHAM5 while a slightly smaller warming is obtained in the RCM / RCM mode with CNRM-CM5 / ALADIN63. This depends on how each RCM modifies the largescale climate change signal of its forcing GCM. In summer, HIRHAM5 strongly reduces the warming signal of HadGEM2-ES, while ALADIN63 slightly increases the warming signal of CNRM-CM5.

Downscaling of a large sample of CMIP6 GCMs

As discussed above, by construction if the hybrid downscaling method works correctly, it is expected that in the RCM / RCM mode, the large-scale climate change signal of the global climate projection is well conserved by downscaling. As discussed in section 3.5, the question arises whether it is really possible to downscale a GCM with a high climate sensitivity by using for training a regional model with a low sensitivity and conversely. In order to complete the previous tests in the cross-scenario perfect model framework (section 3.5), we now tackle this question in real-case downscaling. A large ensemble of new generation GCMs from CMIP6, with a large spread in terms of equilibrium climate sensitivities (ECS) are downscaled with the hybrid method (see section 2.4). For example, based on [START_REF] Schlund | Emergent constraints on Equilibrium Climate Sensitivity in CMIP5: do they hold for CMIP6?[END_REF], CanESM5 has the higher ECS (ECS=5.62°C) of any CMIP5 and CMIP6 models, while INM-CM5-0 has a very low ECS (1.92°C, lower than any CMIP5 models, and second lowest of the CMIP6 ensemble). A RCP8.5 projection with ALADIN63 forced by CNRM-CM5 is used for training (Table 2).

Spatially-averaged temperature and precipitation changes projected by CMIP6 models are very well captured by the hybrid downscaling method, both in summer and winter, whether they are strong or weak (Fig. 14). The hybrid downscaling method can therefore be applied to downscale global climate projections with a large range of climate sensitivity, without risking over-or underestimation of climate change signals.

Discussion

As shown in the previous section, large differences may exist, depending on the season and variable, between downscaled results with the GCM / RCM and RCM / RCM modes, even at large scale.

At a fundamental level, this is because RCMs may change the climate change signals of their forcing GCMs at large scale (obviously RCMs may also change the climate change signals at small scale, but this is expected, and why downscaling is done in the first place). As a result, climate change signals from emulation with the GCM / RCM mode may strongly diverge from those of the downscaled GCM at large scale. Additionally, a large inter-model spread due to the choice of the regional simulation (i.e. the RCM and its forcing GCM) exists in emulated results at large scale in the GCM /RCM mode, as each RCM may change large-scale climate signals differently. The question is whether this behavior is desirable, and which emulation mode, GCM / RCM or RCM / RCM, should be preferred.

The answer to these questions essentially lies on whether the "added value" (e.g. Di [START_REF] Luca | Potential for added value in precipitation simulated by high-resolution nested Regional Climate Models and observations[END_REF]) of a RCM is only seen at small scale or whether an added-value at large scale also exists, The question of added value due to resolution in regional climate models is complex, often not well posed (e.g. Lloyd et al. 2021), and, in the end, far from fully solved. Many studies have focused on the assessment of added value at small scale, where it is expected, but much fewer studies have focused on the question of added value at large scale. Additionally, in the climate change context, we are interested in added value regarding future climate changes, which is impossible to characterize precisely, as no observational reference exists in that context to judge whether results from higher resolution models are more realistic than results from lower resolution models. Added value can only be properly assessed on the historical period, when observations can be used as reference, and, not surprisingly, most studies have focused on added value on the historical period. However, nothing guarantees that added value in this historical context implies added value regarding future climate changes.

When future climate projections from RCMs and GCMs diverge, only a fine understanding of the mechanisms at play and how these mechanisms could potentially be impacted by resolution can provide some clues regarding the existence of a possible added value in that context.

There is no doubt that very large differences at large scale may exist between RCMs and their forcing GCMs, as shown in [START_REF] Boé | Large discrepancies in summer climate change over Europe as projected by global and regional climate models: causes and consequences[END_REF] regarding Euro-CORDEX projections during summer. Different hypotheses have been proposed to explain these differences. In particular the absence of time-varying aerosols in most Euro-CORDEX RCMs (including two out of the three RCMs used in the previous section: SMHI RCA4 and DMI HIRAM5, e.g. [START_REF] Boé | Large discrepancies in summer climate change over Europe as projected by global and regional climate models: causes and consequences[END_REF], Guttierez et al. 2021) and of the physiological impact of CO2 on plants in most RCMs, that is simulated by a majority of forcing GCMs (here NorESM1-M and HadGEM2-ES) are expected to lead to smaller warming in RCMs compared to GCMs, for wrong reasons [START_REF] Schwingshackl | Regional climate model projections underestimate future warming due to missing plant physiological co2 response[END_REF][START_REF] Boé | The physiological effect of CO2 on the hydrological cycle in summer over Europe and land-atmosphere interactions[END_REF]. Note also that [START_REF] Ribes | An updated assessment of past and future warming over France based on a regional observational constraint[END_REF] who develop new warming projections in France based on CMIP6 projections constrained by observations, show that both CMIP5 and Euro-CORDEX ensembles may substantially underestimate future warming in France, which implies that the smaller warming generally projected by Euro-CORDEX RCMs compared to their CMIP5 forcing GCM is even farther from the truth.

It is still possible that other processes, positively impacted by an higher resolution, are also involved in the differences in projected changes between RCMs and GCMs and therefore associated with a real added value at large scale, but based on current knowledge, it cannot be concluded that the large differences between future changes projected by current Euro-CORDEX RCMs and their forcing GCMs at large scale are associated with an added value, on the contrary.

Progress is necessary to better characterize the added value of RCMs at large scale in the climate change context. Meanwhile, the GCM / RCM emulation mode in this study cannot be considered to lead to more realistic results compared to the RCM / RCM mode. This is not a general conclusion, as it only applies to hybrid statistical dynamical downscaling methods that use current Euro-CORDEX simulations. This has important practical implications for emulation. With the RCM / RCM mode, it might be sufficient to emulate a GCM with a single RCM, as, as seen and explained previously, in this mode the spread due to the choice of the RCM is small at large scale. Note however that an important spread at small scale, over mountains in particular, may still exist in the results obtained with the RCM / RCM mode. With the GCM / RCM mode, it is clearly necessary to use several regional simulations (different forcing GCM / RCM combinations) to emulate a single GCM, as the spread associated with the regional simulations used can be very large, even at large scale. This may constitute an important difficulty for the practical use of the approach in impact studies. For this reason, the RCM / RCM mode is easier to apply in practice. In the GCM / RCM mode, the choice of criteria used to select GCM / RCM pairs could also be an important issue.

Conclusions

In this study, a hybrid statistical-dynamical downscaling method to emulate regional climate models is presented and evaluated. It aims to combine the strengths of dynamical downscaling (in particular its robustness, thanks to the ability to take into account all the physical mechanisms that can play a role in regional climate change) and of statistical downscaling (ease of use, low computing cost), while eliminating or at least reducing their respective weaknesses.

The method is derived from the constructed analogues approach, used in different contexts [START_REF] Terray | A dynamical adjustment perspective on extreme event attribution[END_REF][START_REF] Deser | Forced and internal components of winter air temperature trends over North America during the past 50 years: Mechanisms and implications[END_REF], including conventional statistical downscaling [START_REF] Maurer | Utility of daily vs. monthly large-scale climate data: an intercomparison of two statistical downscaling methods[END_REF][START_REF] Maurer | The utility of daily largescale climate data in the assessment of climate change impacts on daily streamflow in California[END_REF][START_REF] Werner | Hydrologic extremes -an intercomparison of multiple gridded statistical downscaling methods[END_REF]. The main difference compared to conventional statistical downscaling methods is that the training database consists of climate projections at low and high resolution and not observations, which allows to train the statistical model not only in the past climate, but also in the future, and anthropogenically modified, climate.

A so-called "perfect model" or "pseudo-reality" approach in a multi-model framework, used for example in [START_REF] Dayon | Transferability in the future climate of a statistical downscaling method for precipitation in France[END_REF] for the evaluation of statistical downscaling, is implemented to assess the applicability of the emulation method in the climate change context. The hybrid downscaling method developed in this study is very skillful. It allows to reproduce very well the changes projected by regional climate models over France, even when starting with data at a very coarse resolution, characteristic of the current lowest resolution global climate models, or from a different scenario. The interest of the approach compared to a conventional statistical downscaling method also based on constructed analogues is demonstrated thanks to the perfect model framework: future changes are much closer to the target with the hybrid method compared to a conventional statistical downscaling method based on constructed analogues. This result is of course not general and only applies to the algorithm and predictors used in this study. Contrary to statistical downscaling, based on a statistical relationship built with observations, the hybrid approach entirely relies on RCMs. The hybrid approach could therefore be more prone to biases. The hybrid approach is indeed expected to reproduce the biases of RCMs, which can be large. It may be important to correct these biases for impact studies, as usually done with regional climate models results (e.g. [START_REF] Doblas-Reyes | Linking Global to Regional Climate Change[END_REF]. This was not the focus of this study, but bias correction methods classically used for RCMs, such as trendpreserving quantile-quantile correction methods (e.g. [START_REF] Cannon | Bias correction of GCM precipitation by quantile mapping: How well do methods preserve changes in quantiles and extremes?[END_REF][START_REF] Switanek | Scaled distribution mapping: a bias correction method that preserves raw climate model projected changes[END_REF], could be used. This bias correction step would also correct the biases caused by the emulation algorithm itself, for example, here, the biases in the precipitation distribution associated with the constructed analogues approach.

The hybrid approach has the advantage of not requiring the stationarity assumption of statistical downscaling, but it relies on the hypothesis that RCMs provide a reasonable approximation of nature. We don't think it is especially problematic because, in any case, downscaling GCMs with statistical downscaling, dynamical downscaling or hybrid approaches always relies on the implicit hypothesis that climate models provide a reasonable approximation of nature. Indeed, there is no point to downscale GCMs if we don't expect them to provide reasonable climate change signals. Since GCMs and RCMs are based on the same basic principles, the hybrid approach ultimately does not really require any additional assumptions over statistical downscaling.

The emulation method is applied to downscale a global climate model, based on three regional climate simulations. Two emulation modes exist. In the GCM / RCM mode, the downscaling relationship is built between a RCM and its forcing GCM. In the RCM / RCM mode, the downscaling relationship is built between a RCM and the same RCM after aggregation of its results to the low resolution grid of the GCM to be downscaled.

The two emulation modes lead to large differences, in particular in summer, with a larger warming obtained with the RCM / RCM mode. This is related to the tendency of current Euro-CORDEX RCMs to warm less than their forcing GCMs at large scale, not necessarily for good reasons as discussed in [START_REF] Boé | Large discrepancies in summer climate change over Europe as projected by global and regional climate models: causes and consequences[END_REF]. Ultimately, the choice of the emulation mode lies on whether a real added value at large scale due to resolution exists regarding future climate change.

A large spread in future climate change at large scale is associated with the choice of the RCM when downscaling a GCM with the emulation method in the GCM / RCM mode. This is explained by the fact that each RCM may change the climate change signal of its forcing GCM at large scale in its own way. Some uncertainties also exist with the RCM / RCM mode, but they are limited to small scales, and are mainly visible over mountain regions.

In the RCM / RCM mode, the climate change signal at large scale of the original GCM is very well captured by the hybrid statistical downscaling method, independently of its magnitude.

The emulation method described in this work, based on constructed analogues, is simple. More complex methods based on state-of-the-art machine learning algorithm could be used (e.g. Doury et al. 2022). Given its ease of use, we think that our approach may constitute a good benchmark upon which results from more complex methods could be compared to assess their added-value. In the statistical downscaling context, the direct application of state-of-the-art machine learning methods does not necessarily provide improvements over more conventional and widely-used approaches [START_REF] Vandal | Intercomparison of machine learning methods for statistical downscaling: the case of daily and extreme precipitation[END_REF]. Note that the existence of two modes for emulation (GCM / RCM and RCM / RCM), the practical implications regarding uncertainties sampling in regional climate change and impact studies, and the importance of the question of added-value in this context, are not specific to the emulation method developed in this study.

All RCM emulation methods would face these issues.

Our hybrid statistical downscaling approach, and similar emulation methods, which aim to combine the best of dynamical downscaling and statistical downscaling worlds, could, if they live up to their promises, play an important role in the future studies of the impacts of climate change. Emulation methods would obviously not replace dynamical downscaling, as regional projections are still needed as a basis for emulation. They could usefully complement dynamical downscaling, especially since convection-permitting regional climate models, which are even more costly than conventional regional climate models, are likely to be increasingly used in the coming years.

Emulation methods allow for a robust but much more agile downscaling step compared to dynamical downscaling and allows for real bottom-up impact studies where the choice of the projections to be downscaled is really built upon the need of local stakeholders, instead of topdown approaches in which impact modelers and local stakeholders have to deal with ensembles of opportunity produced within large coordinated international exercises. Additionally, and very importantly, emulation methods make it possible to downscale very large ensembles of global climate projections and therefore to fully explore the uncertainties involved in regional climate changes, which is basically impossible to do with classical dynamical downscaling, and even less so with convection-permitting regional climate models. x o x x x
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  Coarse-Scale Ref ("Fine-Scale Ref"). Each day in Fine-Scale Ref corresponds to the same day in Coarse-Scale Ref, but at a higher resolution. For example, Fine-Scale Ref can be a regional climate simulation forced by Coarse-Scale Ref. Daily precipitation fields at high-resolution in Fine-Scale Ref corresponding to the low-resolution analogues A1 and A2, a1 and a2, i.e.

  Coarse-Scale Ref and Fine-Scale Ref are observations. The analogues are searched only in the past, even for the future period of Mod. For the hybrid statistical-dynamical approach of this study, Coarse-Scale Ref and Fine-Scale Ref are climate projections extending into the future (e.g. 1950-2100 period). The analogues are searched within a running window centered on the target day Xi, and thus potentially in the future climate when Xi corresponds to a future period.

Fig. 10

 10 Fig. 10 also highlights that the inter-annual and decadal variations of the original projection are reproduced very well with the hybrid downscaling method, as already suggested by the high temporal correlations seen in Fig 8. This ability to preserve the low-frequency variations of the original low-resolution projection means that the hybrid downscaling method would recover very well the variability of the different members of single model initial-condition large ensemble (SMILEs) with global models, to obtain relevant SMILEs at high resolution for impact studies.

  i.e. on tenet 5 in[START_REF] Laprise | Challenging some tenets of Regional Climate Modelling[END_REF]: "The large scales are (a) unaffected, (b) improved or (c) degraded within the RCM domain". If (a) is true, both emulation modes are equivalent. If (b) is true, the GCM / RCM mode should be preferred. Conversely, if (c) is true, then the RCM / RCM mode should be chosen. We can already eliminate (a) for the current generation of RCMs: as shown in Boé et al. (2020) large differences in future climate change projected by the Euro-CORDEX RCMs and their forcing GCMs generally exist.
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 145 Figure 1: Schematic representation of the hybrid statistical-downscaling method
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 7 Figure 7: Relative change in precipitation(%, 2070/2099 -1971/2000) approximately averaged over France (land points within the box whose limits are 42°N -51°N; -5°E -9°E ) as directly projected by RCMs (x-axis) and as emulated within the perfect model framework (y-axis). (a) Summer (JJA) average, (b) Winter (DJF) average, (c) Annual maximum of daily precipitation.

Figure 8 :

 8 Figure 8: Spatial average over France of the temporal correlations between CNRM ALADIN63 and its emulation over France (land points within the box whose limits are 42°N -51°N; -5°E -9°E ) (a) for 2-m temperature and (b) precipitation, between 1970 and 2000, with an initial aggregation step on three grids with different resolutions (see text for details). Green: daily correlations, blue: inter-annual correlations in winter (DJF), red: inter-annual correlations in summer (JJA).
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 9 Figure 9: Spatial RMSE over France (land points within the box whose limits are 42°N -51°N; -5°E -9°E ) between downscaled and original high-resolution (a) 2-meter temperature change (K) and (b) precipitation change (mm/day) in the perfect model framework, for three RCMs. X-axis: hybrid statistical-dynamical method. Y-axis: standard statistical downscaling method. The changes are computed as the differences between 2070-2099 and 1971-2000. Blue points: winter. Red points: summer. See text for details.
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 10 Figure 10: Results of hybrid downscaling in the cross-scenario perfect model framework with ALADIN63 forced by CNRM-CM5. (a,b) Temperature anomaly (K) and (c,d) relative precipitation anomaly (%) (reference: 1971-2000 ) in (a,c) winter and (b,d) summer over France (land points within the box whose limits are 42°N -51°N; -5°E -9°E ). Direct results of ALADIN63 are shown for the RCP8.5 and RCP4.5 scenario, as well as the results of the downscaling of the RCP8.5 scenario with the RCP4.5 projection as training data and conversely (see Table2and text for more details). The RCP4.5 and RCP8.5 projections branch off from the same historical member
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 11 Figure 11: Precipitation (%) and temperature (K) changes (2070/2099 -1971/2000) in summer and winter (a,b,e,f in) the GCM to be downscaled (CNRM-CM5) and (c,d,g,h) ensemble mean of the three Euro-CORDEX RCMs used for downscaling in (a,b,c,d) winter (DJF) and (e,f,g,h) summer (JJA) for (a,c,e,g) precipitation and (b,d,f,h) temperature

  

  

  

Table 1 :

 1 Euro-CORDEX regional climate projections used in this study. Rows: regional climate model. Columns: global climate model that forces the regional climate simulation. The crosses (X) indicate the simulations used for the perfect model evaluation. The o indicates the simulations used for real-case downscaling in section 4.1

	CNRM-CM5	EC-EARTH	HadGEM2-ES	MPI-ESM-LR	NorESM1-M
	CNRM ALADIN63				

Table 2 :

 2 Synthesis of the different types of hybrid downscaling experiments performed in the study. Mod, Coarse-Scale Ref and Fine-Scale Ref correspond to the notations used in Fig. 1 and for the description of the method in section 2

	Type of analysis	Mod	Coarse-Scale	Fine-Scale	Additional
			Ref	Ref	Information
	Perfect Model	RCMk aggregated at	RCMk	RCMk	-k=1,...,11. See crosses in Table 1
		low resolution	aggregated at low		-Section 3.1, 3.2, 3.3, 3.4
			resolution		-Results of downscaling are
					compared to RCMk

Table

  

Table 3 :

 3 Difference of downscaling results obtained with the RCM / RCM and GCM / RCM modes (RCM / RCM minus GCM /

	RCM) over France (land points within the box whose limits are 42°N -51°N; -5°E -9°E). The area-weighted percentage of grid
	points over France where the difference of changes between the RCM / RCM and GCM / RCM modes is significant with p <
	0.01 (paired t-test) and the area-averaged difference of futures changes (2070/2099 -1971/2000) are given. For each RCM
	/ GCM pair, the first line corresponds to temperature and the second line corresponds to precipitation.
		Percentage of grid	Percentage of grid	Area averaged	Area averaged
		points with	points with	difference DJF	difference JJA
		significant	significant		
		differences	differences		
		DJF	JJA		
	CNRM-CM5 /	79 %	100 %	0.06 K	-0.37 K
	ALADIN63	11 %	63 %	-0.03 mm/day	0.55 mm/day
	HadGEM2-ES /	59 %	100 %	-0.02 K	1.06 K
	HIRHAM5	35 %	91 %	0.05 mm/day	-0.93 mm/day
	NorESM1-M /	94 %	100 %	0.19 K	0.57 K
	RCA4	31 %	26 %	0.02 mm/day	0.16 mm/day
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