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In this paper, we derive a lubrication model to describe the non-stationary free liquid
film that is created when a vertical frame is pulled out of a liquid reservoir at a
given velocity. We here focus on the case of a pure liquid, corresponding to a stress-
free boundary condition at the liquid/air interfaces of the film, and thus employ an
essentially extensional description of the flow. Taking into account van der Waals
interactions between the interfaces, we observe that film rupture is well defined in
time as well as in space, which allows us to compute the critical thickness and the
film height at the moment of rupture. The theoretical predictions of the model turn
out to be in quantitative agreement with experimental measurements of the break-up
height of silicone oil films in a wide range of pulling velocities and supporting fibre
diameters.
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1. Introduction

Everyday life experience shows that thin films or bubbles made of pure liquids,
such as oil or pure water, are usually short lived, while aqueous solutions containing
surface active molecules can give rise to much more stable films. Yet, even in
the absence of surfactant, gas entrapment in highly viscous liquids can lead to the
formation of bubble layers, for example at the surface of molten glass in furnaces
(Kappel, Conradt & Scholze 1987) or in lava flows (Proussevitch, Sahagian & Kutolin
1993). The stability of such structures has been studied by Debrégeas, de Gennes
& Brochard-Wyart (1998) and then by Kočárková, Rouyer & Pigeonneau (2013)
through drainage measurements on individual viscous bubbles floating at the surface
of a liquid pool. A different film geometry, in which a vertical free film is pulled
out of a soapy solution, has been widely investigated in both experiments (Mysels,
Frankel & Shinoda 1959; van Nierop, Scheid & Stone 2008; van Nierop, Keupp &
Stone 2009; Saulnier et al. 2011) and stationary models (Mysels et al. 1959; Seiwert,
Dollet & Cantat 2014; Champougny et al. 2015). However, the pulling of viscous
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surfactant-free films, in which the flow is intrinsically non-stationary, has attracted
much less attention so far.

A fundamental difference between pulling a soap film and a pure liquid film out
of a bath lies in the nature of the induced flow. In the absence of surfactants, the
film liquid/air interfaces are stress free, leading to an extensional flow with a uniform
velocity in the direction transverse to the film (Howell 1996). Extensional film
flow corresponds mathematically to a distinguished limit, as described by Breward
(1999), in which extensional viscous stresses balance all other forces along the film
such as inertia, surface tension, gravity and van der Waals forces. The addition of
surfactant molecules usually gives rise to a non-zero tangential stress at the interfaces,
for example due to surface tension gradients induced by surfactant concentration
gradients, and the flow profile has a parabolic shape (Mysels et al. 1959). Scheid,
van Nierop & Stone (2012) have shown that sufficient shear stress can also be
obtained by imposing a sharp temperature gradient near the liquid bath such that a
stationary film of pure liquid can still be formed. In the present paper, however, we
only consider films with stress-free interfaces such that the flow is unsteady and of
extensional nature.

Lubrication models are extensively used in literature to describe free-film time
evolution, which can be split into a stretching phase and a break-up phase, the latter
occurring on a much shorter time scale that the former. For instance, Erneux &
Davis (1993) and Vaynblat, Lister & Witelski (2001) describe the mechanism of
free-film rupture for unbounded films and both highlight the importance of nonlinear
contributions to the acceleration of the rupture phenomenon. Similarly, Tabakova
(2010) have analysed the stability of free films attached to lateral plates by a given
contact angle, the value of which determines whether static solutions are unstable or
not under asymmetrical perturbations. However, all these works assume a uniform
base state, i.e. an initial film of constant thickness and zero velocity, which is then
perturbed. Hence, they do not capture the influence of the pulling dynamics on film
rupture. To the best of the authors’ knowledge, the pull-up of a two-dimensional film
above a liquid bath has only been reported by Heller (2008). Using time-dependent
simulations of the two-dimensional Stokes equations with a moving mesh, Heller
(2008) was able to simulate the stretching of a viscous liquid film over a wide range
of pulling velocities, showing that the length of the film increases with the pulling
velocity.

In a different geometry, the pulling and break-up of axisymmetric liquid bridges
have recently attracted much attention, starting with the work of Marmottant &
Villermaux (2004) who studied the stretching of liquid ligaments at small and large
extension rates, and investigated the fragmentation scenario in the last case. For a
liquid bridge between a bath and a perfectly wetting horizontal disk above, Benilov &
Oron (2010) reported that the maximum height of the liquid bridge in the static limit
is twice the capillary length, denoted `c =√γ /ρg, where γ is the surface tension, ρ
is the liquid density and g is the gravitational acceleration. This maximum height was
furthermore shown by Benilov & Oron (2010) to decrease with increasing contact
angle on the disk. Later, Benilov & Cummins (2013) showed that the stability of
their liquid-column solutions strongly depends on the dynamics of the contact line,
and in more general terms on the nature of the boundary condition at the disk. For a
liquid bridge between two parallel horizontal disks, Chen, Tang & Amirfazli (2015)
have explored the influence of surface wettability on the transition from a quasi-static
(capillary dominated) to a dynamic stretching (dominated by viscous and inertial
forces). On the same system, experiments and simulations have been performed to
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FIGURE 1. (Colour online) Sketches of the liquid film under consideration, showing the
notation and in particular the locations x0 and L(t) where the boundary conditions are
imposed. The initial configuration is presented in (a), where a static meniscus connects
the fibre, at the initial position L0, to the liquid bath located at x= 0. The configuration
in (b) represents the liquid film at a later time, during pulling at a constant velocity U.

understand the influence of the stretching velocity (Zhuang & Ju 2015) or acceleration
(Weickgenannt, Roisman & Tropea 2015) on the time of liquid bridge break-up.

In this work, we present a non-stationary lubrication model describing the thin
liquid film that is formed when pulling a horizontal fibre from pure liquid bath,
starting with an initially static meniscus. The lubrication model is presented in
§ 2 and validated in § 3 using the two-dimensional simulations of Heller (2008).
Results including inertia and van der Waals interactions are next shown in § 4. An
experimental study is presented in § 5, whose results are shown and compared with
simulations in § 6. Conclusions are given in § 7.

2. Lubrication model for vertical film pulling
2.1. Problem settings

We seek to describe the thin liquid film that is created when a perfectly wetting
horizontal fibre is vertically pulled out of a liquid bath at a constant velocity U (in
the frame of the laboratory). The liquid under consideration is incompressible and
Newtonian, of dynamic viscosity η, density ρ and surface tension γ . As pictured in
figure 1, the fibre is parallel to the z-axis and invariant by translation along this axis.
It is supposed to have a rectangular cross-section, of width 2H, such that the liquid
film is pinned at y=±H. The film is assumed to be symmetric with respect to the
vertical x-axis, so that only the half-film thickness h(x, t) will be considered in the
following.

It is also assumed that the film is uniform in the lateral direction, i.e. perpendicular
to the xy-plane, such that edge effects are ruled out. During film pulling, the vertical
and horizontal velocity fields, respectively denoted u(x, y, t) and v(x, y, t) and
the pressure field P(x, y, t) obey the following governing equations and boundary
conditions:

(i) Navier–Stokes (momentum) equations

ρ(∂tu+ u∂xu+ v∂yu)=−∂xP+ η(∂xxu+ ∂yyu)− ρg, (2.1a)
ρ(∂tv + u∂xv + v∂yv)=−∂yP+ η(∂xxv + ∂yyv), (2.1b)
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(ii) continuity equation
∂xu+ ∂yv = 0, (2.2)

(iii) symmetry conditions at y= 0

v = 0, (2.3a)
∂yu= 0, (2.3b)

(iv) kinematic condition at y= h(x, t)

v = ∂th+ u∂xh, (2.4)

(v) tangential and normal stress balances at y= h(x, t)

η

1+ (∂xh)2
[(1− (∂xh)2)(∂yu+ ∂xv)− 4∂xh∂xu] = 0, (2.5a)

P0 − P− 2η
1+ (∂xh)2

[(1− (∂xh)2)∂xu+ ∂xh(∂yu+ ∂xv)] = 2γK, (2.5b)

in which the continuity equation (2.2) has been used, and where P0 is the
atmospheric pressure and K is the mean curvature of the interface expressed as

K(x, t)= 1
2

∂xxh
[1+ (∂xh)2]3/2 . (2.6)

The continuity equation (2.2) can then be integrated along the y-coordinate, using
the Leibniz integral rule and the boundary conditions (2.3a) and (2.4), such that it
yields the mass conservation equation,

∂th+ ∂x(ūh)= 0, (2.7)

where

ū(x, t)= 1
h

∫ h

0
u dy (2.8)

is the average velocity in the film at a given height x and time t.

2.2. Lubrication approximation and velocity decomposition
We first pose that the characteristic lengths in the x- and y-directions are, respectively,
the capillary length `c=√γ /ρg and the fibre half-width H, such that the aspect ratio
ε is defined as

ε= H
`c
� 1. (2.9)

The smallness of ε corresponds to small space modulations of the dependent variables
inherent to the lubrication approximation.

Next, it is well established (see e.g. Howell 1996) that when no shear is applied
at the interfaces, i.e. the right-hand side of (2.5a) is zero, the flow at leading order
is purely extensional (i.e. a plug flow) and that the vertical velocity is uniform and
equal the average velocity ū. Therefore, the vertical velocity field is split into a plug
flow contribution ū(x, t) and a shear contribution u1(x, y, t) as

u(x, y, t)= ū(x, t)+ u1(x, y, t), (2.10)
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where the dominant contribution ū scales as U, while the shear contribution u1(x, y, t)
is assumed to be of order ε2U. Conservation imposes that∫ h

0
u1 dy= 0. (2.11)

A similar velocity decomposition has been proposed by Schwartz & Roy (1999)
aiming at modelling surfactant-stabilised liquid films. For this purpose, they rather
imposed a no-slip condition u1(x, h(x, t), t) = 0 for the shear correction, such that
the leading-order velocity contribution coincides with the interfacial velocity us(x, t),
instead of ū(x, t) in the present case. The justification of Schwartz and Roy’s approach
relies in the fact that us explicitly appears in the transport equation of surfactant at
the interface, while such equation is absent in the case of pure liquids.

The continuity equation imposes the horizontal velocity v to be of order εU,
the pressure P is scaled by ηU/`c and the time t by `c/U. The system of
equations (2.1)–(2.5), in which (2.9) and (2.10) are used, is then non-dimensionlised
and truncated at O(ε2). Making the resulting equations dimensional again yields the
following approximated system:

(i) momentum equations

η ∂yyu1 = ∂xP+ ρg+ ρ (∂tū+ ū∂xū)− η ∂xxū, (2.12a)
∂yP= 0, (2.12b)

(ii) continuity equation
∂xū+ ∂yv = 0, (2.13)

(iii) symmetry conditions at y= 0

v = 0, (2.14a)
∂yu1 = 0, (2.14b)

(iv) tangential and normal stress balances at y= h(x, t)

∂yu1 = 4∂xh ∂xū− ∂xv, (2.15a)
P= P0 − 2η ∂xū− 2γK. (2.15b)

The above system is closed by the unchanged conservation equation (2.7). Note
that we did not truncate at O(ε2) the expression (2.6) for the mean curvature, despite
the higher-order correction at the denominator, as done for liquid bridges by Vincent,
Duchemin & Le Dizès (2014) for example. This keeps the model compatible with the
solution of the static meniscus near the bath, where the slope is not small anymore,
and allows describing the entire film shape, from the bath up to the fibre, without
having to use a matching procedure between the film region and the static meniscus.

Integrating (2.12b) leads to a constant pressure in the horizontal direction, whose
expression is then given by (2.15b). In order now to account for van der Waals
interactions leading to film rupture, we use the concept of disjoining pressure
introduced by Derjaguin & Kusakov (1936). These authors stated that the pressure in
a thin film is modified by the molecular interactions as compared with the surrounding
bulk phase such that (2.15b) is rewritten as follows

P= P0 − 2η ∂xū− 2γK −Π, (2.16)
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where Π(x, t) is the disjoining pressure. Classical theory predicts that the attractive
London–van der Waals interaction for a film of thickness 2h can be expressed as
(Israelachvili 2011)

Π(x, t)=− AH

6π(2h)3
, (2.17)

where AH > 0 is the non-retarded Hamaker constant. Note that even though
intermolecular forces are bulk contributions, they are equivalently introduced as
surface forces in the frame of the lubrication approximation, as thoroughly discussed
by Ivanov (1988).

Finally, using (2.13) and (2.14a), the horizontal velocity can be expressed as

v(x, y, t)=−∂xū y, (2.18)

and the shear component of the vertical velocity u1 is obtained by integration of
(2.12a) using (2.11) and (2.14b),

u1(x, y, t)= 1
2η
[∂xP+ ρg+ ρ (∂tū+ ū∂xū)− η ∂xxū]

(
y2 − h2

3

)
. (2.19)

Substituting (2.18) and (2.19) into (2.15a), while using (2.16) and (2.17), finally yields

ρh(∂tū+ ū∂xū)− h
(

2γ ∂xK − ρg+ AH

16π

∂xh
h4

)
− 4η ∂x(h∂xū)= 0. (2.20)

The dimensional system of equations to be solved consists of equations (2.6), (2.7)
and (2.20), for the three unknowns, K, h and ū.

2.3. Non-dimensionalised problem
Applying the following transformations,

h→Hh, x→ H
ε

x, ū→Uū, t→ H
εU

t and K→ ε2

H
K, (2.21a−e)

equations (2.7) and (2.20) become in dimensionless form

∂th+ ∂x(ūh)= 0, (2.22a)

We h(∂tū+ ū∂xū)− h
(

2ε∂xK − 1+A
∂xh
h4

)
− 4Ca ∂x(h∂xū)= 0, (2.22b)

where the dimensionless mean curvature (2.6) is rewritten as

K(x, t)= ∂xxh
2[1+ (ε∂xh)2]3/2 . (2.23)

In addition to ε, the dimensionless numbers governing the above system of equations
are the capillary number, the Weber number and the Hamaker number, respectively
defined as

Ca= ηU
γ
, We= ρ U2`c

γ
and A= AH`c

16πγH3
. (2.24a−c)
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The first two terms in (2.22b) account for inertia while the others account, respectively,
for capillary pressure, gravity, intermolecular forces and extensional viscous stress.

The dimensional physico-chemical parameters we implement in the simulation are
those of the V1000 silicone oil that will be used in the experiments presented in § 5,
namely η = 1.00 Pa s, ρ = 970 kg m−3, γ = 21.1 mN m−1 and AH = 4.4 × 10−20 J,
yielding a capillary length `c = 1.49 mm. For a given liquid, the physical parameters
that can be changed experimentally are the pulling velocity U and the fibre
half-width H. In the simulation, these parameters will be explored in the ranges
0.001 mm s−1 6 U 6 30 mm s−1 and 0.1 µm 6 H 6 1000 µm, respectively.
Consequently, the dimensionless numbers defined in (2.24) will vary in the following
ranges:

5× 10−5 6 Ca 6 1, (2.25a)
7× 10−11 6 We 6 0.06, (2.25b)
8× 10−14 6A6 0.02, (2.25c)

1× 10−4 6 ε6 0.6. (2.25d)

It is worth noting that the Hamaker number A can be expressed as a function of ε
as

A= A′

ε3
where A′ = AH

16πγ `2
c

(2.26)

is called the dimensionless Hamaker constant and solely depends on the properties
of the liquid. Similarly, the Weber number We can be expressed as a function of the
capillary number Ca and of the liquid properties. Hence, for a given liquid, only Ca
and ε can be varied independently.

3. Model resolution and validation
3.1. Initial solutions and boundary conditions

We consider the initial configuration pictured in figure 1(a), where the fibre is located
at a (dimensionless) position L0 above the surface of the liquid bath such that it forms
a static liquid bridge. Heller (2008) has shown that for L0 62, a solution exists, whose
shape results from a balance between the capillary pressure gradient γ ∂xK and the
hydrostatic pressure gradient ρg. Integrating the corresponding dimensionless balance

∂xKstat = 1
2ε
, (3.1)

with the boundary conditions Kstat(0) = 0, h′stat(0) = −∞ and hstat(L0) = 1, yields an
analytical expression for the shape of the static meniscus,

hstat(x)= 1+ 1
ε

[√
4− L2

0 −
√

4− x2 − arctanh

(
2√

4− L2
0

)
+ arctanh

(
2√

4− x2

)]
,

(3.2)
which is valid in the range 0< L0 6 2.
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The dimensionless initial solutions corresponding to the static meniscus are therefore

h(0, x)= hstat(x), (3.3a)

K(0, x)= x
2ε
, (3.3b)

ū(0, x)= 1/hstat(x), (3.3c)

where we approximate the initial condition (3.3c) on ū using the value resulting from
(2.22a) in stationary regime.

At first sight, the system of equations (2.22)–(2.23) should require five boundary
conditions: two on the thickness h, two on the vertical velocity ū and one on the
mean curvature K. However, the order of differentiation on ū can by reduced by one
by defining λ= ∂xh as an intermediate variable. Using the mass conservation h∂xū=
−∂th − ūλ in equation (2.22b), only first-order spatial derivative for the variables h,
λ, K and ū are left in the system. The four necessary boundary conditions are then
imposed as follows.

A position x0 is fixed in the static meniscus, close to the surface of the liquid bath
x = 0 such that 0 < x0 < L0, as sketched in figure 1. The following dimensionless
boundary conditions are set at that location:

∂xh(t, x0)= h′stat(x0), (3.4a)

K(t, x0)= x0

2ε
, (3.4b)

where the prime denotes the derivative with respect to the x-coordinate. The remaining
boundary conditions are imposed on the fibre, moving upwards at a constant velocity
U, and thus located at the dimensionless position L(t)= L0 + t:

h(t, L(t))= 1, (3.5a)
ū(t, L(t))= 1. (3.5b)

We show in appendix A that the results are independent of the arbitrary position x0
taken in the static meniscus and do not vary significantly with the initial position L0

of the fibre, as long as L0 6
√

2. These parameters will henceforth be set to x0 = 0.1
and L0 =

√
2, as justified in appendix A.

The system of partial differential equations (2.22)–(2.23), supplemented by the
initial solutions (3.3) and boundary conditions (3.4)–(3.5), is solved using the direct
solver MUMPS in COMSOL 5.2. Since the problem involves a moving boundary, the
fibre which is lifted at a constant velocity to create the film, the domain geometry
is changing with time. The mesh is thus deformed as computed using the arbitrary
Lagrangian Eulerian (ALE) algorithm.

3.2. Static limit
We first check that the static limit is recovered for very small values of Ca in (2.22).
Thanks to the analytical expression of the thickness profile (3.2) in the static case, it
can be shown (Heller 2008) that the point of minimal thickness in the static film is
located at x=√2 for

√
2<L0 6 2. The (dimensionless) maximum height L∗0 of a static

film is then given by hstat(
√

2)= 0, hence the implicit analytical expression for L∗0:

ε=√2−
√

4− (L∗0)2 − arctanh(
√

2)+ arctanh

(
2√

4− (L∗0)2
)
. (3.6)

In figure 2, we compare the maximum height L∗0 of a static film given by (3.6) to
the break-up height of a quasi-static film pulled at Ca = 10−8 using our model, for
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FIGURE 2. The dimensionless break-up height L∗0 of a static film, deduced from (3.6), is
plotted as a function of the aspect ratio ε=H/`c (solid line). The points correspond to the
break-up height computed from our model when pulling at a capillary number Ca= 10−8,
i.e. in a quasi-static regime. The corresponding Weber number is We≈ 3× 10−18 and the
Hamaker constant is set to AH = 4.4× 10−20 J.

different fibre half-widths, i.e. different values of ε. The static limit is successfully
recovered in our simulation.

3.3. Comparison with the two-dimensional case
We now compare the results of our lubrication model in the dynamic regime
with those reported in Heller (2008), who computed the Stokes equations in a
two-dimensional and deformable domain. Note that both inertia and van der Waals
forces were neglected in Heller’s simulation, so we temporarily set We= 0 and A= 0
in (2.22) for the sake of consistency.

Figure 3 compares the drainage dynamics of films pulled at various velocities for
a fixed aspect ratio ε = 0.01, using our model (solid lines with symbols) and the
two-dimensional simulation results of Heller (2008) (dotted lines). The minimum of
the film thickness min(h) is plotted as a function of time, normalised by the time
t1 % when the minimal thickness reaches 0.01, namely 1 % of its initial value. This
normalisation allows us to compare the drainage dynamics obtained for different
values of the capillary number.

The comparison presented in figure 3 shows that the lubrication approach is in good
agreement with the corresponding two-dimensional simulations, especially at small
capillary numbers Ca 6 10−4. A small discrepancy (less than 10 %) is observed at
capillary numbers Ca > 10−2, where the lubrication approximation predicts a slightly
slower drainage than the two-dimensional simulations, but the overall shape of the
drainage curve is preserved.

4. Results of the model
In this section, we present the numerical results obtained when solving the model

described in § 2. In particular, we show that film rupture is a well-defined event,
both in space and time. This allows us to introduce the critical thickness for rupture
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FIGURE 3. (Colour online) The minimum film thickness min(h) is represented as a
function of time t, normalised by the time t1 % when min(h) reaches 1 % of its initial
value. For a given capillary number, the solid line with symbols is the drainage curve
obtained from our lubrication approach, while the dotted line is the prediction of the
two-dimensional simulations reported by Heller (2008). In both cases, the aspect ratio is
fixed to ε= 0.01 and inertia and van der Waals forces are omitted (We= 0 and AH = 0).

and the film lifetime (or equivalently the film break-up height), which we determine
as functions of the aspect ratio ε, the capillary number Ca and the dimensionless
Hamaker constant A′.

4.1. Thickness and velocity profiles
Typical film thickness profiles h(x) are represented in figure 4 in (a) linear and (b) log
scales, at different times during pulling. At t= 0, a static meniscus spans between the
liquid bath at x= 0 and the fibre, which is initially located at L0 =

√
2 and set into

motion at a constant velocity U (U= 1 mm s−1 in figure 4). As the fibre goes up, the
liquid film grows in height and thins, as shown in figure 4(a,b). Once the film has
become sufficiently thin, the van der Waals term A ∂xh/h3 comes into play in (2.22b),
as we will see in a more quantitative way in § 4.3. This term ultimately triggers the
film break-up, which is characterised by a very rapid and localised drop of the film
thickness, as demonstrated by the magenta curve at t= 2.0955 in figure 4(b).

Figure 4(c) displays the spatial variation of the average velocity ū in the film at
different times during film pulling, for the same parameters as in figure 4(a,b). The
initial velocity profile (black curve) differs slightly from the initial condition (3.3c)
and is numerically converged towards at time t= 0 to satisfy (2.22)–(2.23). For t> 0.4,
the velocity in the static meniscus (x.

√
2) goes back to zero and the initial velocity

profile is forgotten. At all times t> 0, the average velocity ū is negative in the lower
part of the film and positive in its upper part. Consequently, there is a location in the
film where ū= 0, which is close to the minimum in the thickness profile. The liquid
is expelled from this minimum with a flow rate that seems to diverge at the point of
rupture (magenta curve, at t=2.0955). The flow in the vicinity of the point of minimal
thickness is further studied in appendix B, where the streamlines are computed for
various times during film pulling.
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FIGURE 4. (Colour online) Dimensionless thickness profiles h(x) in (a) linear and (b) log
scales and (c) average velocity profiles ū(x) at different times during film pulling. These
profiles have been obtained by solving the model described in § 2 with a pulling velocity
U = 1 mm s−1 (Ca = 0.047), a fibre half-width H = 50 µm (ε = 0.034) and a Hamaker
constant AH = 4.4 × 10−20 J. The film rupture, defined as the time when the minimum
dimensionless film thickness reaches 10−6, occurs at t= 2.0955, corresponding in this case
to approximately 3 s. The vertical dotted line at ū = 1 corresponds to a (dimensional)
average velocity equal to the pulling velocity U, while the dashed line represents ū= 0.

4.2. Film drainage and rupture
We now follow the film thickness at the point where it is minimal as a function
of time. The thinning dynamics at this point is displayed in figure 5 (solid lines)
for different values of the pulling velocity U. For velocities above 0.1 mm s−1, the
thinning dynamics exhibits two distinct parts: a drainage regime, where the thickness
gently decreases with time, and a rupture regime, where the thickness drops abruptly.

In practice, the simulation is stopped when the minimal thickness min(h) reaches
10−6, which corresponds to a subangstrom film thickness for the example displayed
in figure 4 (where H= 50 µm). The dimensionless film lifetime τ is then defined as
the time when min(h)= 10−6 and the corresponding dimensionless break-up height is
given by L∗=L0+ τ =

√
2+ τ . Note that this definition does not depend on the cutoff

value 10−6 as long as the rupture regime, where the slope is almost vertical, has been
reached. Thus, the break-up height of the film is an observable, which will be studied
in details in § 4.4. Note that the model also gives a prediction for the location of the
puncture in the film, which we compare with experimental observations in appendix C.

4.3. Critical thickness for rupture
The transition from the drainage regime to the rupture regime in figure 5 occurs
around a critical film thickness, when the van der Waals forces come into play. We
define this critical thickness for rupture, denoted h∗, as the intersection between a
power-law fit of the end of the drainage regime (dashed line in figure 5) and the
rupture regime (dotted lines in figure 5). The variation of the critical thickness h∗ with
the capillary number Ca, the aspect ratio ε and the dimensionless Hamaker constant
A′ = AH/16πγ `2

c are respectively displayed in figure 6(a,c,e). The dimensional
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FIGURE 5. (Colour online) The minimum thickness min(h) is plotted as a function of
time in dimensionless units, for various values of the pulling velocity U (solid lines) and
a fixed fibre half-width H= 50 µm (ε= 0.034) and Hamaker constant AH = 4.4× 10−20 J.
For U & 0.2 mm s−1 (Ca & 0.01), a ‘slow’ drainage regime is first observed, followed
by a sharp decrease in thickness, corresponding to film rupture. The transition from the
drainage to the rupture regime happens when the film reaches a critical thickness, which
can be defined as the intersection between a power-law fit of the end of the drainage
regime (dashed line) and the rupture regime (dotted lines).

counterparts of these data sets are shown in figure 6(b,d, f ), where the dimensional
critical thickness H × h∗ is plotted as a function of the pulling velocity U, the fibre
half-width H and the Hamaker constant AH .

Figure 6(a,b) show that the critical thickness h∗ decreases with the pulling velocity
for capillary numbers in the range 0.01 . Ca . 1 where the drainage and rupture
regimes are clearly distinguished (see figure 5). For Ca. 0.01, the critical thickness is
no longer defined in our approach since the drainage and rupture regimes merge. The
decrease of h∗ with Ca shows that entrainment is a stabilising factor for the film, in
the sense that the destabilising effect of van der Waals forces is delayed, i.e. comes
into play for thinner films.

Figure 6(c) indicates that the critical thickness also decreases with the aspect ratio ε.
This behaviour can be qualitatively understood from the fact that the scale of the
van der Waals contribution in (2.22b) is set by the Hamaker number A=A′/ε3. For
a given dimensionless Hamaker constant A′, the larger the aspect ratio, the smaller
the Hamaker number and so the smaller the thickness required for A ∂xh/h4 to be
of leading order, hence the decrease of h∗ with ε. More quantitatively, the variation
of the critical thickness compares favourably with the power law h∗ ∝ ε−0.96 for
ε = 10−2–10−1, as will be justified later. The critical thickness varies more slowly
than ε−1 below ε ∼ 10−1, but faster than ε−1 for ε & 10−1, hence the non-monotonic
behaviour of the dimensional critical thickness H × h∗ as a function of the fibre
half-width H, as shown in figure 6(d). This change in behaviour for ε & 10−1 is
likely due to the ε2 term in the denominator of the mean curvature (2.23), which
becomes non-negligible.

Finally, figure 6(e, f ) display the variation of the critical thickness with the
dimensionless Hamaker constant A′ = AH/16πγ `2

c , which is a property of the liquid.
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FIGURE 6. (Colour online) The dimensionless (respectively dimensional) critical thickness
for rupture h∗ (respectively H × h∗) is plotted as a function of the control parameters,
one being varied at a time with the others fixed to the following values: ε= 0.034 (H =
50 µm), Ca = 0.47 (U = 10 mm s−1) and A′ = AH/16πγ `2

c = 1.84 × 10−14 (AH = 4.4 ×
10−20 J).

The parameters Ca and ε remain fixed, while the Hamaker constant AH is varied in
the range 10−22–10−18 J, all the other properties of the liquid being set to the values
given in § 2.3. The critical thickness h∗ increases with the dimensionless Hamaker
constant as a power law (solid line in figure 6e) with an exponent α ≈ 0.32.

Such a power-law behaviour for the critical thickness as a function of the Hamaker
constant had already been predicted by Vrij & Overbeek (1968) for small horizontal
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liquid films. Their approach consisted in calculating the film lifetime by summing
the time needed for the film to reach a certain thickness and the time required for
a van der Waals-driven instability to develop. Under the assumption of flat and rigid
liquid/air interfaces, they derived the critical thickness, which was found to vary with
the Hamaker constant as A2/7

H (2/7≈ 0.29), an exponent which is close to our value of
0.32. The difference probably stems from the flow in our continuously stretched film
with stress-free interfaces, which is quite different from the Poiseuille flow expected
for rigid interfaces.

We finally give arguments regarding how the power-law behaviour of the critical
thickness h∗ versus A′ can be related to the variation of h∗ with ε. Figure 6(e) shows
that the critical thickness follows h∗= βA′α, where α and β are a priori functions of
ε and Ca (for example, α= 0.32 for ε= 0.034 and Ca= 0.47). Considering that film
rupture is essentially driven by the Hamaker number A=A′/ε3, we can assume that,
for a given capillary number Ca, the critical thickness h∗ is essentially a function of
A: h∗ = f (A). Still for a fixed capillary number, this is equivalent to saying that h∗

depends on ε only through A=A′/ε3, i.e. h∗= f (A)= f (A′/ε3)= β(ε)×A′α(ε). This
imposes that the exponent α is independent of ε and that β(ε)∝ ε−3α, i.e. h∗ ∝ ε−0.96

for Ca= 0.47 and A′= 1.84× 10−14. Figure 6(c) shows that the assumption that h∗=
f (A) seems reasonable, but is not rigorously true for ε. 0.01 and ε& 0.1, since the
data deviate from the h∗ ∝ ε−0.96 behaviour.

The variations of the critical thickness with Ca and ε point to the fact that h∗ is
not an intrinsic property of the liquid but also depends on the experimental conditions
and flow dynamics. Numerous studies (see e.g. Manev & Nguyen 2005) have been
dedicated to the critical thickness of horizontal thin liquid films, from both the
experimental and theoretical point of view. The results presented in figure 6(b,d) put
into question the applicability of these static investigations to dynamic situations,
such as foam generation for instance.

4.4. Maximal height of the film
As demonstrated in §§ 4.1 and 4.2, the height L∗ reached by the film when the rupture
occurs is well defined. In figure 7, we report this break-up height as a function of
the capillary number Ca (figure 7a) and the aspect ratio ε (figure 7b) for given liquid
properties. For fixed pulling parameters, the effect of the dimensionless Hamaker
constant A′ on the break-up height L∗ is displayed in figure 7(c).

For Ca . 10−3, the break-up height of the film is equal to the static limit given
by (3.6) (dotted line in figure 7a). Beyond this value, L∗ increases with the capillary
number, which is expected since the creation of the film is driven by viscous
entrainement. This increase approximately follows a power law of exponent 0.38, as
shown in the inset of figure 7(a). Note that, for given liquid properties, the value of
the exponent may a priori depend on the aspect ratio ε.

As displayed in figure 7(b), the break-up height L∗ is also an increasing function of
the aspect ratio. This can be understood from the fact that the larger the aspect ratio
ε, the smaller the Hamaker number A=A′/ε3 and the thinner the film when van der
Waals forces come into play and trigger film rupture. The ε dependency of the break-
up height seems to exhibit three different regimes. For ε. 10−3, the static limit given
by (3.6) (dotted line in figure 7b) is asymptotically reached. As shown in the inset
in figure 7(b), the break-up height L∗ then appears to follow a power-law increase of
exponent 1/2 up to ε∼ 3× 10−2. Beyond, it enters a third regime where the break-up
height rises more slowly than ε1/2. This is likely again a signature of the ε2 term
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FIGURE 7. (Colour online) The dimensionless film break-up height L∗ is plotted (a) as a
function of the capillary number Ca for a fixed fibre half-width H = 50 µm (ε = 0.034)
in log-linear and log-log scale (inset), (b) as a function of the aspect ratio ε for a fixed
pulling velocity U = 10 mm s−1 (Ca = 0.47) in log-linear and log-log scale (inset), and
(c) as a function of the dimensionless Hamaker constant A′=AH/16πγ `2

c for H= 50 µm
and U = 10 mm s−1. The dotted lines represent the static limit given by (3.6).

https://doi.org/10.1017/jfm.2016.758


(1)

(5)
(4)

(3)

(3) Thin liquid film

(4) Frame

(5) Fishing lines

(6) Force transducer

(2)

U

(6)

FIGURE 8. (Colour online) Sketch of the experimental set-up used to measure the
maximal height of vertical liquid films. A container (1) filled with liquid is bound to a
vertical motorised translation plate (2). By lowering the container at a constant velocity
U, a thin liquid film (3) is deposited on a fixed frame (4) gridded with fishing lines (5).
The break-up of this film is detected using the force transducer (6) to which the frame is
attached. The stars indicate the elements of the set-up which are mobile in the reference
frame of the laboratory.

in the denominator of the mean curvature (2.23), which becomes non-negligible for
ε& 10−1.

Finally, the film break-up height decreases with the dimensionless Hamaker constant,
due to the contribution of A′ to the Hamaker number A. The break-up height turns out
to be less sensitive to the Hamaker constant, varied in the range AH = 10−22–10−18 J,
than to the fibre half-width H or to the pulling velocity U.

Note that solving the system without inertia, i.e. setting We= 0 in equation (2.22b),
essentially yields the same results. Although it plays virtually no part within the range
of parameters explored here, inertia was kept in all simulations since it was found to
help the convergence of the numerical solver used in COMSOL.

5. Experiments: materials and methods
In the following, we measure experimentally the break-up height of pure liquid films

in order to test the predictions of the model presented in § 4. More specifically, we
investigate the influence of the capillary number Ca by varying the pulling velocity U
and the liquid viscosity η, and the influence of the aspect ratio ε by using different
fibre diameters.

5.1. Experimental set-up and protocol
The liquid films are formed on a 2 cm × 9 cm rigid acrylonitrile butadiene styrene
(ABS) frame covered in cross-linked polyepoxide to avoid liquid penetration. As
sketched in figure 8, the frame is gridded with one horizontal and two vertical nylon
fishing lines of diameter D = 11, 57 or 175 µm. The spacing between the vertical
fishing lines is equal to 15 mm. The frame is initially immersed in a liquid container,
the horizontal fishing line being located at about 1 mm below the surface of the
liquid bath. While the frame remains fixed during the whole experiment, the liquid
container can be lowered at a constant velocity 0.01 mm s−1 6U 6 10 mm s−1 using
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The break-up of free films pulled out of a pure liquid bath 515

Property Unit V350 V1000 V10000 V12500 V60000

Viscosity η Pa s 0.379 0.937 9.34 10.4 49.2
Density ρ kg m−3 970 970 970 973 973
Surface tension γ mN m−1 21.2 21.3 21.1 21.2 21.1
Molar mass Mn kg mol−1 16.5 25.7 58.3 60.2 90.1

TABLE 1. Main physical properties of the silicone oils used in the experiments. The
viscosity and surface tension are given at 25 ◦C and have been measured after the
fractionation processes for the V350 and V1000 oils. The experimental errors are .0.5 %
for viscosity measurements and ±0.1 mN m−1 for surface tension measurements. The
number average molar mass Mn is deduced from the viscosity using the expression log η=
1.00+ 0.0123 M1/2

n (Mark 1999).

a motorised linear stage (Newport UTS 150 CC) coupled to a motion controller
(Newport SMC 100 CC), hence creating a thin liquid film between the fishing lines.

The film lifetime τexp is defined in the experiments as the difference between the
time when the horizontal fishing line crosses the surface of the liquid bath and the
time when the film breaks. This experimental definition would correspond to an initial
meniscus height L0,dim = 0 in the simulations. The film rupture is detected thanks to
the force sensor (HBM, 5 g) on which the frame is attached. When the film bursts, the
signal measured by the force transducer undergoes a jump due to the disappearance of
the surface tension contribution to the total vertical force exerted on the frame. When
this jump is detected, the translation plate automatically stops and comes back to its
initial position. This automated set-up allows for statistical measurements of the film
lifetime τexp or, equivalently, of the film break-up height L∗exp =Uτexp.

5.2. Finding a pure liquid
In our experiments, the liquid used to form the films is silicone oil (methyl-terminated
polydimethylsiloxane, PDMS, purchased from either Sigma Aldrich or Bluestar
silicones), which is often considered as a model Newtonian pure liquid. The
physicochemical parameters of the different silicone oils tested in the experiments
are summed up in table 1. The viscosities and surface tensions were respectively
measured with a Physica MCR 300 rheometer and the rising bubble technique
(Tracker, TECLIS), in the temperature range T = 18–25 ◦C. The Hamaker constant
is expected to be the same for all the silicone oils used in this study and equal to
AH = 4.4× 10−20 J at 20 ◦C (Drummond & Chan 1997).

As the liquid viscosity is varied over more than two orders of magnitude, the other
physicochemical parameters, i.e. density and surface tension (see table 1) as well as
the Hamaker constant, remain virtually constant. This allows us to consider that, for
a given pulling velocity U and a given fibre half-width H, changing the liquid will
only affect the viscosity, hence the value of the capillary number Ca, while leaving
the other dimensionless parameters ε, We and A unchanged.

The model we have built in § 2 is valid only for pure liquids, i.e. in the absence
of tangential stress at the interfaces. The experimental difficulty is that any small
surface tension gradient, due to temperature inhomogeneity or surface active agents
for example, will invalidate the stress-free boundary condition at the interfaces (2.5a).
Because of their high surface tension, water surfaces are particularly prone to be
contaminated by surface active impurities, which can lead to surface tension gradients.
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It has been shown that the drainage of a water film between two bubbles can be
modelled using a no-slip boundary condition for surface tension gradients as small as
0.1 mN m−2 (Yaminsky et al. 2010). This is the reason why we turned to silicone
oil as a model pure liquid in the first place.

Commercially available silicone oils are actually mixtures of PDMS chains of
different lengths (or equivalently of different molar masses), the distribution of which
is peaked around the number average molar mass Mn. The surface tension of silicone
oil increases with the number average molar mass up to Mn ∼ 104 g mol−1, where
the surface tension saturates at a constant value γ ≈ 21 mN m−1 (Mark 1999). Since
short PDMS chains (i.e. with a molar mass less than approximately 104 g mol−1)
have a lower surface tension than longer chains, any spatial heterogeneity in their
concentration, either due to the creation of fresh interface or to evaporation, can
generate surface tension gradients. This phenomenon was already observed by Bascom,
Cottington & Singleterry (1964) to have a strong influence on the spreading of oil
on solid surfaces. Similarly, we suspect that traces of short PDMS chains may be
sufficient to create interfacial shear stress in our silicone oil films, thus resulting in
their overstabilisation.

To avoid this problem, we use a basic fractionation protocol to get rid of the
shortest chains in silicone oil. The commercial silicone oil is poured into a separator
funnel with about three times as much acetone (in volume). The mixture is vigorously
shaken for five minutes and left to decant for several hours. Short PDMS chains are
soluble in acetone while longer chains are not, so when the phase separation is
complete, the PDMS phase contains less short chains than initially. The PDMS phase
is then extracted, left in an oven at 60 ◦C for at least 20 h and finally put in a
vacuum chamber for at least 20 h to remove the remaining acetone.

Figure 9 shows the break-up height of V350 silicone oil films as a function of
the pulling velocity for a non-fractionated and (up to three times) fractionated oils.
While the data corresponding to the non-fractionated oil are scattered, the application
of the fractionation protocol described above yields much more reproducible results.
Moreover, fractionated oils lead, on average, to shorter films than the non-fractionated
oil, supporting the hypothesis of surface tension gradients due to short PDMS chains.
The lower the viscosity, the more short chains in the oil. Thus, the fractionation
protocol had to be applied three times to the V350 oil, but only once to the V1000
oil to get reproducible results. No fractionation was needed for the most viscous oils
(V10000, V12500 and V60000).

6. Experiments: results and comparison with theory
6.1. Influence of the pulling velocity

Using a nylon fibre of fixed diameter D = 175 µm, the influence of the pulling
velocity U on the film break-up height is first explored for silicone oils of various
viscosities. The film break-up height is measured using the protocol described in
§ 5.1 and the experiment is repeated at least 20 times for a given velocity and a
given liquid viscosity. In the results presented in figure 10, each point is thus an
average over at least 20 points and the error bar represents the square root of the
quadratic sum of the standard deviation and a systematic error of ±0.5 mm on the
position of the liquid bath surface. It can be noted that the standard deviation of
the measurements increases with Ca, which may be due to the finite acquisition
frequency of the force sensor used to detect film rupture.

Data points were obtained with pulling velocities varying over three orders of
magnitude and liquid viscosities varying over two orders of magnitude. They collapse
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FIGURE 9. (Colour online) The experimental break-up height L∗exp of V350 silicone oil
films is measured as a function of the pulling velocity U with a nylon fibre of diameter
D= 175 µm. The various symbols/colours show the data obtained after the application of
n fractionations (0 6 n 6 3) to the silicone oil taken from the bottle. The fractionation
protocol, which aims at removing the shortest methyl-terminated polydimethylsiloxane
chains, significantly improves the reproducibility of the measurements.

onto a single master curve when plotted versus the capillary number Ca = ηU/γ .
Note that the data corresponding to the less viscous oil (V350) lie slightly above
the others for Ca & 0.1, perhaps because of residual surface tension gradients due to
short PDMS chains that were not removed by the fractionation protocol.

The experimental data are in good agreement with our model with 2H = 175 µm
(solid line in figure 10) up to Ca ∼ 0.1. A small deviation from the theoretical
prediction is observed at capillary numbers larger than 0.1, where the films last
longer than expected from the model, as will be discussed in § 6.3.

6.2. Influence of the fibre diameter

The effect of the diameter D of the horizontal fibre which supports the film is then
investigated experimentally. The film break-up height is measured as a function of the
capillary number for three different fibre diameters, D= 11, 57 and 175 µm and the
results are shown in figure 11. As in figure 10, each data point is averaged over at
least 20 measurements. The theoretical predictions computed from our model, setting
2H = 11, 57 and 175 µm (i.e. ε = 0.0037, 0.019 and 0.059, respectively), are also
displayed in figure 11.

For all fibre diameters, the experimental data are in good agreement with the
theoretical predictions for Ca 6 0.1. The deviation previously observed at higher
capillary numbers for the thickest fibre (D= 175 µm) is reduced as the fibre diameter
diminishes and the data for the thinnest fibres (D = 57 µm and D = 11 µm) stay
in line with the model for the whole range of capillary numbers probed in the
experiments.
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FIGURE 10. (Colour online) The break-up height L∗exp of films made from silicone oils
of various viscosities is measured as a function of the pulling velocity U, using the same
nylon fibre of diameter D= 175 µm. The film break-up height is non-dimensionalised by
the capillary length `c = 1.49 mm and displayed as a function of the capillary number
Ca= ηU/γ . The non-dimensionalised experimental data (symbols) collapse onto a single
master curve, which is compared to the prediction of our model (solid line, see also
figure 7a) with 2H = 175 µm.
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FIGURE 11. (Colour online) The break-up height L∗exp of films made from silicone oil is
measured as a function of the pulling velocity U, using nylon fibres of various diameters.
The experimental data (symbols) are non-dimensionalised as in figure 10 and compared
with the predictions of our model (solid lines), where 2H has been set equal to the fibre
diameter D. The data for D = 11 and 175 µm were obtained using the V1000 silicone
oil, while the experiments for D= 57 µm were carried out with the V10000 silicone oil.
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FIGURE 12. (Colour online) (a) Sketches of the boundary condition at the fibre in the
model (top), assuming a rectangular cross-section of width 2H, and in the experiments
(bottom), where the fibre has a circular cross-section of diameter D, certainly coated with
a liquid layer, leading to an effective fibre width 2Heff >D. (b) The sets of experimental
data displayed in figures 10 and 11 are replotted together (symbols) and compared with
the predictions of the model (dashed lines) using an effective fibre 2Heff = D + 2hLL to
account for the coating of a liquid layer of thickness hLL around the fibre. The solid lines
are again the predictions of the model assuming 2H =D.

6.3. Discussion
The simulations are in quantitative agreement with the experimental data, except at
capillary numbers Ca& 0.1, where the maximal film length is actually underestimated
by the simulations. Several hypotheses can be proposed to explain this discrepancy.
First, we showed that the results of the full two-dimensional approach (Heller 2008)
are successfully recovered by our lubrication model for Ca < 10−2, but that a small
deviation appears for larger capillary numbers (see figure 3). The difference between
our model and the experimental break-up height observed for Ca & 0.1 may then be
attributed to two-dimensional effects that are not captured in our lubrication analysis.

Since the deviation from the theoretical prediction depends on the fibre diameter,
we may also seek its explanation in the boundary condition at the top of the film,
where it meets the supporting fibre. In the model, we impose that the thickness 2h
at the top of the film is equal to the width 2H of the fibre. To compute the solid
lines in figures 10 and 11, we assumed that 2H is equal to the diameter D of the
nylon fishing line used in the experiments. However, in practice, we can expect the
nylon fibre to be coated with a liquid layer as it crosses the surface of the liquid pool,
thus corresponding to an effective boundary condition with 2Heff >D, as pictured in
figure 12(a). Since the film break-up height L∗ is an increasing function of ε, i.e. of
H, see figure 7(b), the underestimation of H can lead to an underestimation of L∗.

In order to get a more quantitative insight into the effect of fibre coating on the film
break-up height, we need to estimate the thickness of the liquid layer coated onto the
horizontal fibre as it crosses the interface. This is actually a complex time-dependent
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problem, which is however related to the classical problem of vertical fibre coating.
The latter was solved in stationary regime by Landau & Levich (1942), who found
an entrained thickness hLL proportional to Ca2/3. Assuming that hLL gives the correct
order of magnitude for the thickness of the liquid layer coated onto a horizontal fibre,
we have solved our model (§ 2) where 2H was replaced by the effective value

2Heff (Ca)=D+ 2hLL(Ca)=D(1+ 1.34 Ca2/3). (6.1)

The corresponding predictions are displayed as dashed lines in figure 12(b), along with
the experimental data of figures 10 and 11 (symbols), and with the predictions of the
model assuming 2H=D (solid lines, same as in figure 11). As expected from equation
(6.1), the influence of the coated layer becomes significant only for Ca& 0.1. It leads
to a better agreement between the model’s prediction and the experimental data for
the thickest fibre (D= 175 µm), but to an overestimation of the film break-up height
for the thinnest fibres (D= 11 µm and D= 57 µm).

This overestimation of the break-up height is not particularly surprising since
our way of taking into account the coated liquid layer is quite crude. The coated
layer is not simply static during film pulling but can also drain by capillarity with
a typical time scale ηD/2γ (Kočárková et al. 2013), which is at most 0.3 s for
the thickest fibre (D = 175 µm) and the most viscous oil (V60000). This drainage
time is always much shorter than the experimental film lifetime, which lies in the
range τ ∼ 2–240 s, depending on the pulling velocity. The liquid layer coated onto
the fibre may then feed the film and thus delay its rupture in a way which is not
straightforward to estimate. Finally, the above arguments show that the discrepancy
between the presented model and the experiments at high capillary number may be
explained by fibre coating. However, taking this effect into account in the simulation
a more quantitative way would require the development of a model for horizontal
fibre coating and thus lies beyond the scope of this paper.

7. Conclusions
In this article, we described the pulling of a liquid film with stress-free interfaces

by the means of a non-stationary model in the lubrication approximation. The entire
life of the film could be addressed, from an initial static meniscus bridging the gap
between a horizontal fibre and a liquid pool, until film rupture under the action of
van der Waals forces. The film rupture turned out to be well defined by a swift and
localised decrease of the film thickness, allowing the definition of the critical thickness
for rupture h∗ for capillary numbers Ca & 0.01 and of the film break-up height L∗.
Both quantities were computed as functions of the capillary number Ca, the aspect
ratio ε and the dimensionless Hamaker constant A′.

Experiments were performed on thin films made of silicone oils of various
viscosities and for three different fibre diameters. The predictions of the model
turned out to be in very good agreement with the film break-up heights measured
experimentally for fibre diameters varying over more than one order of magnitude
and capillary numbers varying over three orders of magnitude. A small deviation was
observed for Ca & 0.1 for the thickest fibre, which may be qualitatively explained
by the coating of a liquid layer around the fibre as it crosses the surface of the
liquid pool.

We also found that the experimental break-up heights were reproducible only
if the less-viscous silicone oils were fractionated in order to remove the shortest
PDMS chains, which were suspected to give rise to surface tension gradients during
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FIGURE 13. (Colour online) Predictions of the model for the influence of (a) the position
x0 in the static meniscus at which the boundary conditions are imposed (L0 =

√
2 being

fixed) and (b) initial height of the static meniscus L0 (x0 = 0.1 being fixed). The pulling
velocity and fibre half-width are U= 1 mm s−1 (Ca= 0.047) and H= 50 µm (ε= 0.034)
respectively.

film pulling. This emphasises how sensitive film pulling experiments can be to
minute quantities of surface active impurities and thus how strong the hypothesis of
stress-free interfaces is.
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Appendix A. Influence of x0 and L0 on the film break-up height
In this appendix, we check that our main observable, namely the film break-up

height L∗, is reasonably independent of the arbitrary position x0 where the boundary
conditions close to the liquid bath are set and of the initial height L0 of the static
meniscus. Figure 13(a) shows that the break-up height does not vary by more than
0.2 % within the range 0.016 x0 6 0.5. We have chosen to use the intermediate value
x0 = 0.1 in order to avoid the large thickness gradients in the vicinity of the liquid
bath (arising when x0 is too close to zero), while keeping a reasonably large initial
domain (of length L0 − x0).

Similarly figure 13(b) indicates that the initial position L0 of the fibre does not
change the value of L∗ by more than 2 % as long as L0 is large enough compared
with x0 and less than or about

√
2. In the simulations, the initial position of the

fibre has thus been set to the maximal value within this range, namely L0 =
√

2, in
order to have the largest possible initial domain and therefore the most mesh elements,
allowing to keep a good spatial resolution when the mesh is stretched during film
pulling. Note that for L0 >

√
2, the thickness profile of the initial static meniscus

features a minimum (Heller 2008), which may explain the drop in the film break-up
height observed for initial film heights greater than

√
2.
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FIGURE 14. (Colour online) Morphology of the flow in a film generated with a pulling
velocity U = 1 mm s−1 (Ca = 0.047), a fibre half-width H = 50 µm (ε = 0.034) and a
Hamaker constant AH = 4.4× 10−20 J (same parameters as in figure 4). For three different
times, we display (a) the streamlines (thin black lines) superimposed on the film thickness
profiles (thick black lines) and (b) the average velocity profiles ū(x).

Appendix B. Streamlines in the vicinity of the rupture point
In this appendix, we compute the streamlines in order to visualise the flow in the

vicinity of the rupture point. Figure 14(a) shows the streamlines for three different
times, t=1.6, t=2 and t=2.0955, namely at rupture, during the pulling of a film with
the same parameters as in figure 4. They were obtained by plotting the isocontours
of the (dimensionless) streamfunction

ψ =
∫

u dy= ūy+ ε2
∫

u1 dy. (B 1)

The contribution of u1 to the streamfunction ψ was found to affect only marginally the
streamlines; we thus used the approximation ψ≈ ūy in figure 14(a). The corresponding
average velocity profiles ū(x) are displayed in figure 14(b).

Several remarkable positions can be introduced:

(i) the point of minimum film thickness (green dash-dotted line in figure 14), located
at a vertical position xm and defined by ∂xh= 0;

(ii) the point where the vertical velocity ū changes sign (red dotted line in figure 14),
located at xu

n and defined by ū= 0;
(iii) the point where the horizontal velocity v changes sign (blue dashed in figure 14),

located at xvn and defined by ∂xū= 0 according to equation (2.18).

One can see from figure 14 that the minimum of film thickness xm is initially
located close to the point of zero vertical velocity xu

n. As time goes by and the film
is stretched, xm seems to be moving away from xu

n and getting closer to the point
of zero horizontal velocity xvn. All three points merge at the approach of film rupture
(t= 2.0955).

Appendix C. Location of the puncture in the film
In addition to predicting the break-up height of the film, the model developed

in § 2 also gives a prediction for the location of the puncture in the film (see e.g.
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FIGURE 15. High-speed observations of the bursting of films generated from a V350
silicone oil at a pulling velocity U = 10 mm s−1. The location of the puncture was not
reproducible from one film to another and the films were observed to rupture (a) at the
bottom centre, (b) in the upper left corner or (c) in the upper right corner.

figure 4b), which calls for experimental verification. In this appendix, we sum up our
observations regarding the bursting of silicone oil films, recorded with a high-speed
camera (Photron Fastcam SA3) at frame rates ranging from 10 000 to 25 000 frames
per second. We tested films made of V350 (pulling velocities 2–10 mm s−1), V1000
(pulling velocities 1–5 mm s−1) and V10000 (pulling velocities 0.3–1 mm s−1)
silicone oils.

Our first observation was that the film thickness is not homogeneous in the
horizontal direction (z-axis), as can be seen qualitatively from the interference fringes
in figure 15. This may be due to edge effects caused by the finite width of the film.

Some rupture events occur in the centre of the film (with respect to the z-direction),
as exemplified in figure 15(a). This is expected from our model, which assumes the
film to be invariant along the z-axis. Under the same conditions, some rupture
events are also observed in the upper corners of the film, as shown in figure 15(b,c).
However, the location of the puncture does not seem to affect the overall film lifetime,
which was shown to be reproducible for a given capillary number (see figure 10).
Thus, no matter where the film punctures, it bursts approximately at the same time,
meaning that the thickness of the thin zones in the centre and upper corners of the
film follows approximately the same time evolution.
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