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Problem statement

MRI sampling issue: full acquisition takes a long time and produces
motion blur → undersampling.

Figure: MRI acquisition process

Our problem: from a sequence of undersampled data:

f : Ω× [0,T ] −→ undersampled k-space (1)

where the image domain Ω can be 2D or 3D spatial data, reconstruct
faithful images of the body.
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Basic Inverse Fourier Transform (ZF)

We know consider dynamic data. Let K be the undersampling Fourier
operator:

K : Ω −→ undersampled k-space (2)

it is seen as K = U ◦F where F is the usual Fourier transform and U is an
undersampling mask. We then consider the following least squares
problem:

E (m) =

∫ T

0

1

2
‖Km(t)− f(t)‖2

L2(R2) dt (3)

where m(x, t) is the reconstructed image sequence.
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Basic Inverse Fourier Transform (ZF)

(a) Reference
Frame

(b) Fully sampled
k-space data

(c) Undersampled
k-space data: f

(d) IFT
reconstruction:
m

Figure: Inverse Fourier Transform Reconstruction
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Compressed sensing (CS)

Compressed sensing for MRI, developed by [Lustig, 2007]. We add
regularisation prior to improve the reconstruction quality.

E (m) =

∫ T

0

1

2
‖Km(t)− f(t)‖2

L2(R2) + λ1TV (m(t)) + λ2‖Ψm(t)‖L1(R4) dt

with TV regularisation (sharp edges), sparse wavelet representation.

(a) Reference Frame (b) IFT Reconstruction (c) CS Reconstruction

Figure: Compressed sensing Reconstruction (acceleration factor: 8)
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Compressed Sensing and Motion Compensation

Idea: exploit the temporal correlation, corrupted by motion, between
frames.

(a) Frame t0 = 0 (b) Frame t1 = 1 (c) |t1 − t0|

Figure: Temporal reference frames
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Motion estimation: Optical Flow

We assume the brightness constancy, which after linearisation reads:

∂m

∂t
+∇m · u = 0, (4)

with ∂m
∂t being the temporal derivative of the image sequence, ∇m the

spatial gradient, and u = [ux , uy ]T the unknown motion field.
To deal with the aperture problem, we embed the constraint in a
variational formulation which reads:

inf
u
E (u) =

∫ T

0

∥∥∥∥∂m

∂t
+ u · ∇m

∥∥∥∥p
Lp(Ω)

+ λφr (u) dt, (5)

In the work of [Perez, 2013] authors proposed p = 1 and φr (·) = TV (·),
which is known as the TV-L1 formulation.
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Compressed sensing with motion compensation (CS+M)
[Aviles-Rivero, 2018]

We joint the reconstruction and optical flow in one single model.

E (m,u) =

∫ T

0

1

2
‖Km(t)− f(t)‖2

L2(R2) + λ1TV (m(t)) + λ2‖Ψm(t)‖L1(R4)

(6)

+ λ3

∥∥∥∥∂m

∂t
+∇m · u

∥∥∥∥
L1(Ω)

+ λ4TV (u) dt

Drawback: poor quality of the optical flow, but still improve the
reconstruction.
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Dictionary learnt Optical Flow

Idea: Express the flow field as a sparse linear combination of basis
functions in either off-the-shelf dictionaries or learnt ones.

∀p ∈ P, Rpu = Dap, with ap = ((ax , ay )p)T and ‖ap‖0 small.

We consider,

- a discrete spatial setting,

- P a partition of small overlapping patches of an optical flow,

- Rp the operator extracting patch p,

- a dictionary D =

[
Dx 0
0 Dy

]
where both Dx and Dy are composed of

Nd elements such that Nd × |P| is larger than the image dimension
(→ over-complete dictionary).

T. Schmoderer (INSAR) MRIR-DLMC July 17, 2020 10 / 36



Dictionary learnt Optical Flow

Figure: Scheme of the dictionary decomposition

This sparse representation over a learnt dictionary is incorporated in the
variational setting through this term:

Esparse(u, a) =
∑
p∈P
‖Rpu− Dap‖2

F︸ ︷︷ ︸
representation

+τ ‖ap‖1︸ ︷︷ ︸
sparsity

(7)

where ‖ · ‖F is the Frobenius norm and ‖ · ‖1 is the l1 norm.
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Learning the dictionary

Given a reference optical flow uref , the dictionary is learnt as the result of
the following minimisation problem under constraints:

E (D, a) =

∫ T

0
‖Rpuref

p − Dap‖2
F dt, (8)

‖Dx ,j‖2 ≤ 1, ‖Dy ,j‖2 ≤ 1, 1 ≤ j ≤ Nd ,

‖ap‖0 ≤ k0 ∀p ∈ P,

where the pseudo norm l0(·) counts the non-zero elements of ap. The
constraints on D ensure uniqueness of the solution
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Full Model

The discrete formulation of our proposed joint and hybrid model after the
learning step of the dictionary reads:

inf
m,u,a

E (m,u, a) =

∫ T

0

1

2
‖Km− f‖2

F + λ1TV (m) + λ2‖Ψm‖1 (9)

+ λ3‖
∂m

∂t
+∇m.u‖1 + λ4TV (u)

+
∑
p∈P

λ5‖Rpu− Dap‖2
F + λ6‖ap‖1 dt
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Recall: Chambolle & Pock iteration, proximal operators

We describe the Chambolle & Pock iteration as it is our elementary
algorithmic brick. The Chambolle and Pock procedure aims at solving the
nonlinear primal problem minx∈X F (Cx) + G (x) with the following primal
dual formulation:

min
x∈X

max
y∈Y

〈Cx , y〉+ G (x)− F ?(y). (10)

Algorithm 1 Chambolle & Pock iteration [Chambolle, 2011]

Choose τ, σ > 0 such that τσ‖C‖2 < 1, θ ∈ [0, 1], (x0, y0) ∈ X ×Y and
set x̄0 = x0

Update xn, yn and x̄n as follows:
yn+1 = (I + σ∂F ?)−1(yn + σCx̄n)
xn+1 = (I + τ∂G )−1(xn − τC ?yn+1)
x̄n+1 = xn+1 + θ(xn+1 − xn)

(11)

where the resolvent operators defined through

x = (I + τ∂F )−1(y) = arg min
x

{
‖x − y‖2

2τ
+ F (x)

}
. (12)
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Recall: Chambolle & Pock iteration, proximal operators

where the proximal operators defined through (see [Combettes, 2011] for
details):

x = (I + τ∂F )−1(y) = arg min
x

{
‖x − y‖2

2τ
+ F (x)

}
. (13)

In the following we will describe only the closed form of the proximal
operators.
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Algorithm: Main Loop

Algorithm 2 MRIR-DLMC: Main Loop

Given a threshold ε > 0.
Let m0 be a first approximation of the MRI sequence (ZF).
Let u0 be a first approximation of the optical flow (TV − L1).
Learn the dictionary D (if needed).
Let a0 be a first approximation of the sparse decomposition of u0 in D
(from the learning part).
repeat

Compute mn+1 = arg minm E (m,un, an)
Compute un+1 = arg minu E (mn+1,u, an)
Compute an+1 = arg mina E (mn+1,un+1, a)

until ‖mn+1 −mn‖ < ε‖mn‖
return mn+1.
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Algorithm: Learn the dictionary

We fix a reference optical flow uref and we optimise on D and a.

Let ū = Ruref ∈ RP2
s×Pn×(Nt−1) be such that ūk ∈ RP2

s×Pn is the matrix of
all patch extracted from ū at time k . The joint optimisation reads:

min
D∈D,a∈A

E (D, a) =
Nt−1∑
k=1

1

2
‖ūk − Dak‖2

F (14)

where the two convex constrained sets are given by,

D = {D : ‖Dj‖ ≤ 1, ∀j} , A = {a : ‖a‖0 ≤ k0}
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Algorithm: Learn the dictionary

Finally,

Dn+1 = projD

(
Dn − τ1

(
Dn

Nt−1∑
k=1

aka
T
k −

Nt−1∑
k=1

ūka
T
k

))
(15)

where the projection step is τ1 <
2∥∥∥∑Nt−1

k=1 aka
T
k

∥∥∥ and projD(D) = D
‖D‖ .

And:

an+1
k = projA

(
ank − τ2D

T (Dank − Uk)
)

(16)

where this time, τ2 <
2

‖DDT ‖ . For 1 ≤ j ≤ Pn we denote

|āk,j(1)| ≤ · · · ≤ |āk,j(Nd)| the order of magnitude of the vector
ak,j ∈ RNd . Then the projection operator on A reads:

∀1 ≤ i ≤ Nd , ãk,j(i) =

{
ak,j(i) if |ak,j(i)| ≥ |āk,j(k0)|

0 otherwise.
(17)
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Image reconstruction

Minimise over the reconstructed image sequence m:

E =

∫ T

0

1

2
‖Km− f‖2

2 + λ1 ‖∇m‖1 + λ2 ‖Ψm‖1 + λ3

∥∥∥∥∂m

∂t
+∇m · u

∥∥∥∥
1

dt

Let C =
[
K , ∇, Ψ, ∂t + u · ∇

]T
be the operator acting on m and

y =
[
y1, y2, y3, y4

]
be the collection of dual variables.

With, the Legendre-Fenchel conjugate given by:

E ?(y) =

∫ T

0

1

2
‖y1‖2

2 + 〈y1, f 〉+ δ{y :‖y‖2,∞≤1}

(
y2

λ1

)
+ δ{y :‖y‖∞≤1}

(
y3

λ2

)
+ δ{y :‖y‖∞≤1}

(
y4

λ3

)
dt

with the convex characteristic function δI (y) = 0 if y ∈ I and +∞
otherwise.
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Image reconstruction

The Chambolle-Pock [Chambolle, 2011] iteration then reads,


yn+1 = (I + σ∂E ?)−1(yn + σCmn)
mn+1 = mn − τCTyn+1

mn+1 = mn+1 + θ(mn+1 −mn)
(18)

And the proximal operator is given in closed form by:

(I + σ∂E ?)−1(y) =


y1 = y1−σf

σ+1

y2 = πλ1(y2)
y3 = πλ2(y3)
y4 = πλ3(y4)

, πλ(y) =
y

max
(

1, ‖y‖2

λ

) (19)

πλ: projection onto the unit ball.
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Sparse representation

The minimisation over the variable a can be split for each component ap

which is given by Ẽ (ap) = λ5‖Rpu− Dap‖2
F + λ6‖ap‖1.

We take F = λ6‖ · ‖1, the proximal operator of its Legendre-Fenchel
conjugate is given by the projection operator:

(I + σ∂F ?)−1(y) = πλ6(y) (20)

Moreover since G (·) = λ4‖Rpu− D · ‖2
2 is smooth, its resolvent reduces to

the gradient,

τ∇G (ap) = 2τλ5D
T (Dap − Rpu). (21)
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Optical Flow approximation

Let E (u) = F (∇u) + G (u) with F (·) = λ4‖ · ‖2,1 and
G (·) = λ3

∥∥∂m
∂t +∇m·

∥∥
1

+ λ5
∑

p ‖Rp · −Dap‖2
F .

For simplicity of the notations we introduce the operators and notations:

A = I + 2τλ5

∑
RT

p Rp, ρ(u) =
∂m

∂t
+ u · ∇m

ũ = u + 2τλ5

∑
RT

p Da

Then the proximal operator of G reads,

A(I + τ∂G )−1(u) = ũ+
−λ3∇m if ρ(A−1ũ) > τλ3A−1‖∇m‖2

λ3∇m if ρ(A−1ũ) < −τλ3A−1‖∇m‖2

−ρ(ũ) ∇m
‖∇m‖2 else

and the F ? one is

(I + σ∂F ?)−1(y) = πλ6(y).
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Framework

Figure: General workflow of the algorithm
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Error measurements

We compare the quality of the results with the metrics:

SSIM(m,mr ) =
(2µmµmr + C1)(2σm,mr + C2)

(µ2
m + µ2

mr
+ C1)(σ2

m + σ2
mr

+ C2)

PSNR(m,mr ) = 10 log10

(
1

mean((mr −m)2)

)
We test against,

- ZF: pure IFT reconstruction,

- CS: compressed sensing [Lustig, 2007],

- LS: Low rank + sparsity (another state of the art method)
[Otazo, 2013],

- CS+TVL1: compressed sensing and motion compensation
[Aviles-Rivero, 2018],

- MC+JPDAL: recent improvement on CS+TVL1 [Zhao, 2019].
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Parameters choice

Parameters chosen to optimise the metrics. Same parameters for all
datasets

Main Learning Dictionary Reconstruction Optical flow

λ1 = 3× 10−3 Dn = 1024 τ = 1/20 τ=1/25
λ2 = 1× 10−4 k0 = 300 σ = 1/20 σ = 1/2
λ3 = 1× 10−3 θ = 1 θ = 1
λ4 = 1× 10−3

λ5 = 1× 10−3

λ6 = 1× 10−4

ε = 1× 10−4

Table: Table of the Parameters

Datasets have size:

Nx = 128, Ny = 128 and Nt ∈ {14, 24, 30}.
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Presentation of the datasets

Figure: (Top column) Visual samples of the datasets used in our experiments.
(Bottom column) visualisation of some undersampling patterns used in our
experiments using acceleration factor={2x,4x,6x,8x}.
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CINE Dictionary example

Figure: (A) Samples extracted from our learned dictionary with 1024 atoms and
patches of size 16× 16. (B) Evolution of the energy during the learning process.
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Results CINE and ETH

Dataset
Reconstruction

Scheme
2x 4x 6x 8x

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Cardiac Cine

Zero-Filling 31.40 90.19 25.14 81.40 25 76.97 22.99 72.71
CS 32.85 93.58 31.57 88.57 27.98 81.48 22.97 72.76

L+S 34.21 92.77 31.09 86.20 27.74 80.10 22.98 72.68
CS+M 36.72 96.23 31.53 90.26 28.39 80.17 24.9 72.68

MC+JPDAL 36.7 97.85 32.72 92.06 27.80 84.29 23.15 75.51
MRIR-DLMC 38.01 97.33 32.35 92.26 27.65 84.76 23.12 76.03

ETH

Zero-Filling 22.43 72.95 17.84 57.66 18.49 50.80 16.84 44.98
CS 26.61 83.48 22.7 69.31 19.36 54.15 17.03 45.86

L+S 24.26 77.68 21.71 63.39 19.19 52.46 16.82 44.96
CS+M 31.91 91.73 25.86 76.32 21.14 58.37 20.01 49.17

MC+JPDAL 32.81 93.07 27.3 82.01 22.34 65.62 19.39 54.1
MRIR-DLMC 34.21 94.16 28.28 84.26 22.65 67.17 19.57 55.02

Table: Numerical comparison of our technique vs single and joint technique for
different acceleration factors. The results are reported as the average of the
corresponding metric over all the corresponding dataset.
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Results Phantom FB and BH

Dataset
Reconstruction

Scheme
2x 4x 6x 8x

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

PHANTOM

Free Breathing

Zero-Filling 28.27 78.87 23.97 68.08 20.53 61.39 22.57 61.09
CS 31.91 83.11 28.58 76.35 24.83 67.01 22.58 61.12

L+S 30.59 82.17 27.74 73.7 24.63 65.35 22.58 60.91
CS+M 32.65 87.1 30.5 81.91 24.84 70.30 21.94 63.06

MC+JPDAL 36.5 93 32.45 86.44 28.08 76.92 24.46 69.45
MRIR-DLMC 33.19 88.46 30.5 82.77 27.76 76.18 25.14 71.9

PHANTOM

Breath Holding

Zero-Filling 28.84 79.3 24.31 67.84 20.57 60.48 22.46 59.61
CS 31.19 82.51 28.66 74.89 25.26 65.87 22.48 59.61

L+S 30.59 82.8 27.99 72.93 24.9 64.5 22.46 59.38
CS+M 32.11 86.13 30.02 89.16 24.28 67.74 21.55 60.59

MC+JPDAL 35.37 91.86 31.24 83.85 27.3 74.16 24.14 66.66
MRIR-DLMC 32.76 87.48 29.41 80.12 26.9 73.43 24.05 66.5
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Transfer learning experiment

Figure: Experiment with outer dictionary
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Transfer learning experiment results

Dataset
Reconstruction

Scheme
2x 4x 6x 8x

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Cardiac Cine

Zero-Filling 31.40 90.19 25.14 81.40 25 76.97 22.99 72.71
CS 32.85 93.58 31.57 88.57 27.98 81.48 22.97 72.76

L+S 34.21 92.77 31.09 86.20 27.74 80.10 22.98 72.68
CS+M 36.72 96.23 31.53 90.26 28.39 80.17 24.9 72.68

MC+JPDAL 36.7 97.85 32.72 92.06 27.80 84.29 23.15 75.51
MRIR-DLMC 38.01 97.33 32.35 92.26 27.65 84.76 23.12 76.03

MRIR-DLMC w/TL 37 97.05 31.79 90.71 27.70 84.85 24.80 81.01

Table: Numerical comparison of our technique vs other reconstruction methods.
The numerical values are computed as the averages of the similarity metrics over
the complete corresponding dataset. w/TL denotes the transfer learning
capability of our technique, that is- the results are from training our dictionary
with phantom datasets and applied to the real cardiac cine.
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Conclusions and Future works

- Novel mathematical model to improve the reconstruction quality in
dynamic MRI,

- Single functional embedding the reconstruction and the optical flow
estimation,

- Motion estimation based on dictionary learning,

- Efficient and tractable optimisation framework,

- Various numerical experiments show the potential of our model,

Future works:

- Remove brightness constancy assumption,

- Study the effect of the size of the dictionary,

- Embed the proposed algorithm in a coarse to fine pyramidal approach.

T. Schmoderer (INSAR) MRIR-DLMC July 17, 2020 32 / 36



Thank You!
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