

3D printed polymer-based two-phase cooling system for power electronic devices

<u>Tony Gerges</u>¹, Alexandre Marie², Thilini Wickramasinghe¹, Vincent Semet¹, Philippe Lombard¹, Stéphane Lips², Valérie Sartre², Bruno Allard¹, Michel Cabrera¹

¹Univ Lyon, INSA Lyon, Université Claude Bernard Lyon 1, École Centrale de Lyon, CNRS, Ampère, UMR5505, 69621 Villeurbanne, France ²Univ Lyon, INSA Lyon, CNRS, CETHIL UMR5008, F-69621 Villeurbanne, France

tony.gerges@insa-lyon.fr

- 1. Context & state of the art on 3D printed heat sinks
- 2. 3D Plastronics technology
- 3. Polymer 3D printed heat pipe evaporator & thermal characterization
- 4. Hybrid 3D printed heat pipe evaporator & thermal characterization
- **5. Conclusion & Future work**

1. Context

Power electronics are widely used in many industrial sectors :

Air transport

Train transport

Solar Energy

Wind energy

To improve the performance of these converters/inverters it is necessary to use high power density

components

Ampere

Transport:

GaN transistors:

- High power density (small footprint)
- High breakdown voltage
- Reduced power requirements

1. GaN transistors

- High thermal conductivity

Advantage of maintaining a low temperature:

- Preventing thermal runway
- Increasing system performance & circuit reliability
- Reducing losses

For an optimal functioning, GaN transistors need a cooling system : Heat sinks

Among heat sinks, heat pipes offer an efficient cooling solution for high power density components with localized hot spots, which is the case of GaN transistors.

1. Heat pipe: Principle and standard configuration

Standard configuration

Heat pipes are:

Based on liquid-vapor phase-change process of a liquid to transfer the high dissipate heat flux to a remote heat sink (condenser).

Mainly made of metal:

- Copper (high thermal conductivity).
- Aluminum (lightweight).

A TIM is used to improve heat transfer out of electronic components.

In general heat pipes are fabricated with metal using conventional methods or, recently, 3D printing (Additive manufacturing)

TIM : Thermal Interface Material

1. Additive manufacturing: benefits

- > Offers an alternative technique for a heat-sink implementation.
- Presents advantages to overpass limitations imposed by conventional manufacturing:
 - easy customization of the design.
 - High conception flexibility for prototyping
 - Ability to produce complex 3D geometries
 - Validation of functions before mass production
 - Rapid & low cost

In literature, the use of Metal Additive Manufacturing, and Polymer additive manufacturing to

make customized heat sinks with different materials was reported

1. Heat sinks fabricated with metal additive manufacturing

3D printed Aluminum air-cooled heat sink¹

Benefits:

- High thermal conductivity of the metals
- Lightweight (Aluminum)

Two-phase Stainless steel vapor chamber²

Limitations:

- **Requires inert atmosphere to prevent oxidation**
- **High cost fabrication** -
- Chemically incompatible with water (Aluminum) -

³ Wits et al., 24th IEEE Therminic workshop. 2018

Aluminum 3D printed heat-pipe³

¹ Wu et al., IEEE ITEC Conf., 2017

IMAPS THERMAL 2023

1. Heat sinks fabricated with polymer additive manufacturing

Active heat sinks

Liquid jet impingement cooling

mhere

DE LYON

Air jet impingement cooling

3D printed SLA heat sink¹

- Need an external power input

Passive heat sinks

3D printed polymer filled with Graphene nanoplatelets³

copper

3D printed heatsinks using charged filaments⁴

- Require the use of specific polymer filled with charges to increase the thermal conductivity of polymer
- Not efficient as metal

> The manufacture of polymer 3D printed heat pipes is poorly studied in the literature

¹ Michalak et al., 19th IEEE ITHERM Conference, vol. 2020-July, pp. 547-557 ² Kwon et al., IEEE Trans. Components, Packag. Manuf. Technol., vol. 10, no. 2, 2020

³ Jing et al. Chemical Engineering Journal 402 (2020) 126218
⁴ Timbs et al. Thermal Science and Engineering Progress 22 (2021) 100848

IMAPS THERMAL 2023

To develop an <u>efficient & ultra lightweight heat pipes</u> combining the thermal properties of

2. 3D Plastronics

3D plastronics allows:

- Better integration of multiple functions in one device
- Integration of heterogeneous functionalities: electronic, mechanical, thermal
- Facilitates assemblies by reducing the number of components

*T. Gerges et al., J3eA Volume 21, JPCNFM 2021, https://doi.org/10.1051/j3ea/20221017 T. Gerges et al., J3eA Volume 21, CETSIS 2021, https://doi.org/10.1051/j3ea/20222047

3. Polymer evaporator: Configuration

Thermal Interface Material (TIM) between the metallic evaporator and the component

3D printed substrate

GaN

- The PCB is replaced by a 3D printed polymer substrate integrating the electronic components.
- 3D plastronics is used to manufacture the electronic circuit
- Thermal interface is made of polymer (thickness: 500 μm)
- No need for a TIM

500 µm'

GaN

3. Polymer evaporator: 3D design

Polymer 3D Evaporator design:

Bottom view

The polymer thermally active area is a planar surface of 1 mm thick and 40 mm in diameter

Polymer 3D printed evaporator configuration:

- The PCB is replaced by a 3D printed polymer substrate integrating the electronic components.
- 3D plastronics is used to manufacture the electronic circuit
- Thermal interface is made of polymer (thickness: 500 μm)
- No need for a TIM

T. Gerges et al., 2021 23rd European Conference on Power Electronics and Applications (EPE'21 ECCE Europe), 2021, pp. P.1-P.9.

Primary GaN-based circuit:

- Vehicle circuit intended for the thermal analysis
- Dual legs circuit
- The high-side transistors are polarized as dissipating resistors

The circuit is largely sufficient for providing losses with a heat flux up to 10 W/cm²

3. Polymer evaporator: Fabrication process

3D printed part:

- Stereolithography process
- Form 2 (Formlabs)
- High temperature resin

Surface treatment:

UNIVERSITÉ DE LYON

- Chemical or physical treatment
- To improve metal adhesion

Soldering the components

Copper electroplating could be used to enhance copper thickness

*T. Gerges et al., Manuscript submitted to Additive Manufacturing 2023, (under revision)

3. Polymer evaporator: Characterization & Quality control

IMAPS THERMAL 2023

- Vacuum is applied (P < 500 Pa)</p>
- Partially filled with heat transfer liquid (HFE7000)

UNIVERSITE DE LYON

Developed test bench

Apparent heat transfer coefficient:

$$h_{app} = \frac{\Phi_{elec}}{S \times (\bar{T}_{elec} - T_{sat})}$$

 $\Phi_{\it elec}$: the total heat flux dissipated by the components

400

300

200

100

0

X

 $h_{app}[W.m^-$

2

S: the total evaporator surface in contact with the dissipative components

 \bar{T}_{elec} : the mean value of the 4 components' temperature measurements.

 T_{sat} : surrounding fluid area temperature.

Heat flux density:

 φ_{eff} = φ_{elec}/S

To evaluate the efficiency of the polymer evaporator -> the heat flux applied to the evaporator is increased until the electronic components reached a maximum temperature of 120°C

 φ_{eff} = 3.5 W.cm⁻²

 $\varphi_{eff} [W.cm^{-2}]$

Developed test bench

Ampere

UNIVERSITÉ DE LYON

Heat flux density:

 φ_{eff} = 1.6 W.cm⁻² \rightarrow the phase change is initiated

 φ_{eff} = 3 W.cm⁻² \rightarrow Boiling is fully developed above each component

 φ_{eff} = 3.5 W.cm⁻² \rightarrow Maximum heat flux is achieved

Ampere

3. Polymer evaporator: Improved version with pinholes

The surface morphology effect on the nucleate boiling performance:

The pinholes were placed :

UNIVERSITÉ DE LYON

Ampere

- on the boiling surface side
- precisely at the location of the 4 components
- > Pinholes dimensions: radius of 500 μ m, a depth of 300 μ m

- Pinholes increased the heat transfer by 20%.

The efficiency of this configuration remains limited because of

the high thermal resistivity of the polymer

4. Hybrid evaporator: Configuration

TIM between the metallic evaporator and the component

Hybrid 3D printed evaporator configuration:

- The PCB is replaced by a 3D printed polymer substrate integrating the electronic components.
- 3D plastronics is used to manufacture the electronic circuit
- Thermal interface is made of copper (thickness: 250 μm)
- No need for a TIM

This copper interface allows a direct thermal contact between the components and the liquid

IMAPS THERMAL 2023

4. Hybrid evaporator: 3D design

Boiling surface

250 µm

Power Resistors

Cross section view

1mm

Hybrid 3D Evaporator design:

The first prototype was made with small footprint power

For fabrication and measurement purposes:

resistors (PWR263S-35-33R0F)

Bottom view

Hybrid 3D printed evaporator configuration:

- The PCB is replaced by a 3D printed polymer substrate integrating the electronic components.
- 3D plastronics is used to manufacture the electronic circuit
- Thermal interface is made of copper (thickness: 250 μ m)
- No need for a TIM

This copper interface allows a direct thermal contact between the components and the liquid

IMAPS THERMAL 2023

22

4. Hybrid evaporator: Fabrication process

4. Hybrid evaporator: Fabrication process

Copper electroplating to:

- Cover entirely the thermal interface
- Increase the thermal conductivity

Copper thickness = 250 μ m

Thin silver layer deposit:

To prevent the oxidation of copper

during experiments

Silver thickness = 200 nm

Impere

UNIVERSITÉ DE LYON

Preliminary measurements :

- High flux density dissipated > 50 W/cm²
- Evacuated flux density is 10 times > polymer evaporator
- Apparent heat coefficient is 20 times > polymer evaporator

5. Conclusion

- > Two 3D printed polymer-based heat pipe evaporators were manufactured using 3D plastronics and characterized:
 - Polymer evaporator with polymer for thermal interface
 - > Hybrid evaporator with copper for thermal interface
- > The use of polymer:
 - reducing the weight and cost of the assembly.
 - Chemically compatible with cooling fluids (specially water).
- > 3D Plastronics technology allows to create directly the copper circuit on the polymer surface.
- > 3D printed hybrid evaporator shows a high dissipated flux density > 50 W/cm²

- > Testing the hybrid version with a power electronic circuit using GaN components.
- > Designing and manufacturing of a heat pipe with the hybrid evaporator and a polymer condenser
- > Developing heat pipes with an industrial manufacturing process such as injection molding for mass production

Thank you for your attention

tony.gerges@insa-lyon.fr

