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Abstract
Continuous in-house measurement of gait of elderly People is relevant for health professionals. To be adopted
by most, the system must be low-cost and non-intrusive. In this paper we present a solution for measuring the
walking velocity based on a network of 4 electric potential sensors. In our experiments, we also add PIR
sensors used in our previous work for comparative purposes. A temporary Depth camera is used for training
the model on walking velocity. The first results presented are obtained without machine learning. Then a
machine learning regression method is tested to reduce the uncertainty of the sensors. The results show that
the electric potential sensors are suitable for the in-house measurement of walking speed of elderly people.
The uncertainty is lower than the target of 0.15 m.s-1 known as the upper limit for detecting a reduction in
speed due to illness. As for the PIR sensors, electric potential sensors consume very little energy, they are
inexpensive,  they  can  be  embedded  and  hidden  in  the  home  which  makes  them  less  -intrusive  and
furthermore have better accuracy.

Keywords: Machine learning, Electrostatic Sensor, PIR, Depth camera, Home monitoring, Gait measurement.
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1. Introduction

The measurement of in-house human activity at a
lowest  cost  is  a  great  way  to  improve  the  well-
being  for  the  several  studies  focused  on  the
measurement of walking activity in order to predict
physical diseases [1]. In a previous study [2], we
pointed out the necessity to use low cost and low
consumption non-intrusive sensors to perform such
measurement and proposed a solution based on a
Passive Infra Red (PIR) sensor and on a machine
learning (ML) extraction of walking speed.
Other solutions are based on capacitive sensors or
on the electrical potential [3]. We discard the first
ones  due  to  their  small  range  (ten  centimeters).
The latter have been used in a context close to our
concerns.
In  [4]  Zeng  proposed  a  solution  based  on
electrostatic induction that looks promising for low
cost and low consumption measurement of walking
velocity.  The electrostatic sensors are justified by
several reasons:  they can be miniaturized due to
the small number of components, easily integrated
into  indoor  objects  such  as  skirting  board  for
example and are not subject to the constraints of
optical  sensors  (occlusions  and  lighting).
Moreover, they are potentially inexpensive passive
sensors,  and  they  consume  little  energy.  In  [5],
Kurita also demonstrated that such sensors can be
used to distinguish some gestures and some type

of  steps [6],  which would  allow us to  do human
recognition.  The  electrostatic  sensor  created  by
Kurita  was  also  used  in  combination  with  a  ML
algorithm  to  identify  individual  characteristic  [7].
This  kind  of  sensor  is  a  good candidate  for  the
measurement  of  walking  velocity  but  includes  a
component that reduce to possibility to use it as a
low-cost sensor.

In [8], the authors show that it’s possible to obtain
temporal  gait  parameters  with  electrostatic  field
sensing technology; however, this study does not
include the measurement of walking speed. In [9]
and [10] studies use this kind of sensor but they
focus  on  localization  and  identification.  Actually,
the  technologies  used  to  measure  the  walking
speed do not include electrostatic sensors [11].

The  solution  we  decided  to  explore  is  the
possibility to use a low-cost electrostatic sensor to
perform an accurate contactless measurement of
walking velocity. As this cost reduction is linked to
a sensitivity reduction, we use a ML algorithm to
improve the accuracy of the sensor.
The  learning  phase  is  performed  by  the  way  of
depth sensor the same way than in our previous
study [2].

This  paper  first  presents  the electrostatic  sensor
and the experiment defined to perform the machine
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learning phase and the characterization. Then the
data analysis methods are presented. The results
with  a  direct  computational  method,  and  with  a
machine learning approach are presented.

2. Experience presentation

Our  goal  is  to  measure  an  individual's  walking
speed using a non-intrusive sensor and to ensure
that the results obtained are satisfactory compared
to  what  we  could  achieve  with  another  non-
intrusive sensor. That's why we decided to present
the results  obtained with  an electrostatic  sensor,
but  also  to  compare  them  with  the  results  that
could  have been obtained  with  one  of  the other
sensors (PIR).
Also, we would like to obtain more precise results
than those obtained during previous studies:  We
aim to have a standard uncertainty under 0.15 m/s
[2].

In order to have a reference speed of the person
we use a depth camera that allows us to retrieve
the  characteristic  points  of  the  skeleton  of  the
person and thus use these points to compute the
speed.

3.1 Electrostatic Sensor
The  electrostatic  induction  sensor  proposed  by
Kurita  in  [6]  requires  a  resistor  of  3Thoms  that
makes the sensor incompatible with the low-cost
constraint. The electric potential sensor (EPS) we
developed  is  specifically  sized  for  indoor  human
motion  capture:  human  activity  frequencies  are
between 0 and 20 Hz [12].
They  consist  of  an  electrode  whose  received
potential is filtered and amplified (see Figure 1). 

Figure 1: Diagram of the different signal processing layers

Let's focus on the electrical  diagram (see Figure
2).

Figure 2: Electrical Diagram of the EPS

High-pass filters  with a low cut-off  frequency are
used to cut the DC components of the signal, while
low-pass filters are used to reject components that

do  not  correspond  to  human  movements,  in
particular the 50Hz noise from the AC outlets.

This  architecture  makes  it  possible  to  amplify
variations  in  electrical  potential.  When  someone
walks  near  the  sensor,  an  induced  current  is
generated  on  the  electrode  [13].  Indeed,  the
human body is charged with static electricity due to
the  creation  of  friction  between  the  body  and
clothing; moreover, friction, contact and separation
between  the  human  foot  and  ground  during
walking also charges the human body electric field
around the human body with  the foot  movement
during walking [4].

3.2 Measurement system

The measurement system is made of 4 measuring
boards facing each other in a corridor, each board
including  a  PIR  and  an  EPS.  The  scene  is
observed  by  a  depth  camera  (RealSense  L515)
which makes it  possible to obtain a reference of
the experiments carried out by the detection of the
skeleton of people moving (See Figure 3)

Figure 3: Measurement system with the 4 measurement 
boards and the depth camera.

During  an  experiment,  a  person  walks  in  the
corridor  at  a  constant  speed,  which  varies  from
slow to fast depending on the experiments.
The  signals  measured  by  the  4  PIRs and  the  4
EPS  (see  Figures  4  and  5),  as  well  as  the
skeletons detected by the 3D camera are stored as
a set that we will call an experiment sample.

Figure 4: Graph of data acquired by PIR and EPS for a slow
walking speed. 
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Figure 5: Graph of data acquired by PIR and EPS for a 
medium walking speed.

4. measurement without ML

We  used  a  dataset  of  229  experiments,  one
experiment  corresponding  to  a  person  walking
straight down the center of the corridor. They have
a fixed length of 13 seconds with a sampling rate
of 50 samples per second. 5 different persons of
various  ages  and  sizes  toke  part  to  the
experimentation.
The  reference  speed  is  computed  by  a  linear
regression of the locations of the right hip and the
left hip given by the depth camera.
The  speeds  given  by  the  PIR  are  computed  as
follow: each signal is interpreted as a wave packet
and the moment of the middle of each wave packet
is  obtained  with  the  maximum  of  energy  of  the
Complex  Morlet  wavelet  transform  of  the  signal
(Figure 6). A simple ratio between the time of flight
and the distance between 2 measurement board
gives  the  speed.  The  same  process  is  used  to
compute the speed from the EPS.

Figure 6: Morlet wavelet transform of EPS signal for a walking 
person.

Figure 7: Morlet wavelet transform of PIR signal for a walking 
person.

The  type-A  uncertainty  estimation  gives  the
standard uncertainty u = 0.284 m s-1 for the PIR
sensor after the exclusion of abhorrent results, and
u = 0.213 m s-1 for the EPS (no exclusion).

5. ML-augmented measurement

5.1 Comparison of different models

The hypothesis  we verified is  “an ML regression
can reduce the uncertainty of the sensors”. To test
this  hypothesis,  we  started  an  exploration  of  a
family  of  neural  network  models  to  optimise  the
sensor uncertainty.  The models  we explored are
Convolutional Neural Networks (CNN) taking the 4
wavelet  transforms  computed  from  the  signals
issued from the 4 EPS as inputs.
The  tested  models  were  classical  feedforward
models  including  1  or  2  convolution  layers  each
followed by a Maxpool 2x2 layer. Each convolution
layer has 8, 16, 32 or 64 filters 3x3. The model is
ended with 1 or 2 dense layers in addition to the
last  one.  For  all  layers,  the activation function is
ReLu. The loss function is the mean square error,
and the optimizer is the Adam optimizer. The 229
samples are split  into train and validation groups
respectively with 70 % and 30 % of samples.
The best reproductible results were obtained with
the same model for the PIR and for the EPS. This
model,  denoted  2-layersNN,  has  2  convolution
layers, the first one with 32 filters, and the second
one with  64 filters.  The model  has no additional
dense layer (see Figure 7).
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Figure  7: Parameters  of  the  CNN  model  giving  the  lowest
reproductible uncertainty.

The  results  obtained  with  the  EPS  network  are
more accurate  than those obtained with  the PIR
sensor network. The obtained standard uncertainty
is u = 0.13 m s-1 for the EPS and u = 0.17 m s-1 for
the PIR.

In  order  to  circumvent  the wavelet  transform  we
tested recurrent networks specialized in time series
such as LSTM and TCN. However, none of them
performed well  enough, as  shown in the table  1.
These low results can be explained by the fact that
recurrent  networks,  even  if  they  are  adapted  to
time series like the one produced by the sensors of
this study, implement a forgetting behavior that is
more  dedicated  to  a  continuous  analyse  of  a
signal. 

Another  architecture  that  cannot  be  avoided  in
such study is the ResNet architecture [14]. It allows
to have deeper models with higher expressivity.
As for the 2-layersNN, the ResNet model takes the
4  wavelet  transforms  as  input.  With  this
architecture,  it  was able  to  obtain  performances
similar than that obtained with the two-convolution
model (2-Layers NN).

Moreover, a dual-attention module [15] was added
to the ResNet model before each pooling step; this
attention module is a low complexity approach that
associates  both  network  channel  level  attention
and spatial  attention that  relates here to  spectro
temporal  information.  This  module  allows  the
model  to  be  focused  on  the  areas  holding  the
usefull  information,  in  our  case,  the  area  of  the
wavelet transform  holding the signal energy (see
Figure 8).
This architecture improve the performance of the
system  for  the  PIR  and  gives  also  similar
performances for the EPS as presented in Table 1.

Figure 8: ResNet architecture giving the lowest uncertainty.

Table 1: Standard uncertainties (4 sensors)

u (m s-1) PIR EPS
Without ML 0.28 0.21
2-Layer NN 0.17 0.13
ResNet 0.18 0.13
ResNet + Attention 0.15 0.12
LSTM 0.43 0.43
TCN 0.93 0.79

5.3 Sensor reduction

In  the  previous  parts,  we  observed  an
improvement of the speed gait accuracy by the use
of a ML stage. This means that the signal shapes
of  sensors  may  hold  more  information  than  a
simple  time  shift  between  the  signals  from  2
sensors.
To  test  this  hypothesis,  we  removed  a  pair  of
sensors to  keep only 2 sensors facing each other
(sensors 1 and 2 on fig. 3). 
The two-convolution model and the residual model
with or without attention were tested (see table 2). 
The  sensor  reduction  induced  a  moderate
degradation  of  the  performances  of  the  speed
measurements based on the 2-layer  NN.  This is
not  the case for the ResNet based systems that
keep their performances.

Table 2 : Standard uncertainties (2 sensors)

u (m s-1) PIR EPS
ResNet 0.18 0.13
ResNet + Attention 0.15 0.12
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2-Layer NN 0.20 0.15

These  results  show  that  the  2-Layer  NN  based
speed gait measurement system loses information
during  the  sensor  reduction  but,  in  the  case  of
EPS, keeps enough data to give a measurement
result  with  an  uncertainty  compatible  with  the
target of this study.
We analyse the trained model with the Grad-CAM
tool  to  better  understand  it,  and  to  know  what
features  it  relies  on  to  perform  the  regression.
Grad-CAM is a tool that allows you to understand
what a model is based on to make its prediction, or
on  which  part  of  an  input  image  the  model  is
positioned to give this result [16].

Figure 9: A wavelet transform as one of the Grad-CAM input
and the corresponding heatmap for the trained 2-Layer NN

It  clearly  emerges  that  the  model  bases  its
regression on  the  contours  of  the  wavelet
transform  and  ignore the  low  frequencies  –  the
bottom  part  of  the  wavelet  transform  -  and  the
general shape of the signal – the highest energy
area - . (See Figure 9). 

More surprising is the stability of the perfomances
of  the ResNet  based  systems during  the sensor
reduction  process.  This  can  be  variously

interpreted  and  needs  a  deeper  analysis  of  the
network’s trained models.

6. Conclusion
The comparison between a measurement results
given  by  the  data  processing  and  measurement
results  given  by  a  Machine  Learning  regression
shown that the signals issued from the 2 kind of
sensors, PIR and EPS, hold information on walking
speed that can be exploited by a neural network. 
A  residual  architecture  ResNet  in  addition  to  an
attention  module  gives  significant  performances.
The two-layer  model  still  performs very  well,  but
this  performance  can  strongly  depend  on  the
composition of our dataset and its simplicity. This
is  probably  related to  the number  of  convolution
layers and the low number of samples.
It also shown that EPS - Electric Potential Sensors
are  suitable  for  the  in-house  measurement  of
walking  speed  of  the  elderly.  Indeed,  their
uncertainty is lower than the target  of  0.15 m.s-1

known  as  the  upper  limit  to  detect  a  speed
reduction  related  to  an  illness.  As  for  the  PIR
sensors, EPS consume very little energy, they are
inexpensive,  non-intrusive  but  have  a  better
accuracy. They could therefore be used in several
fields such as health or home monitoring. Actually,
such  sensors  are  included  into  similar  studies
related to human activity such as the notification of
the  presence  of  people  in  a  place,  the
measurement  of  other  gait  parameters  or  the
gesture recognition.
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