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Introduction

The measurement of in-house human activity at a lowest cost is a great way to improve the wellbeing for the several studies focused on the measurement of walking activity in order to predict physical diseases [START_REF] Scherf | Step by step: Early detection of diseases using an intelligent floor[END_REF]. In a previous study [START_REF] Abdel Khalek | A low-cost machine learning process for gait measurement using biomechanical sensors[END_REF], we pointed out the necessity to use low cost and low consumption non-intrusive sensors to perform such measurement and proposed a solution based on a Passive Infra Red (PIR) sensor and on a machine learning (ML) extraction of walking speed. Other solutions are based on capacitive sensors or on the electrical potential [START_REF] Mejiacruz | Walking Speed Measurement Technology: a Review[END_REF]. We discard the first ones due to their small range (ten centimeters). The latter have been used in a context close to our concerns. In [START_REF] Zheng | Determination of velocity and direction of human body motion based on electrostatic measurement[END_REF] Zeng proposed a solution based on electrostatic induction that looks promising for low cost and low consumption measurement of walking velocity. The electrostatic sensors are justified by several reasons: they can be miniaturized due to the small number of components, easily integrated into indoor objects such as skirting board for example and are not subject to the constraints of optical sensors (occlusions and lighting). Moreover, they are potentially inexpensive passive sensors, and they consume little energy. In [START_REF] Kurita | Non contact detection technology for individual characteristics of motorcycle riding operation using electrostatic induction[END_REF], Kurita also demonstrated that such sensors can be used to distinguish some gestures and some type of steps [START_REF] Kurita | Detection Technique of Individual Characteristic Appearing in Walking Motion[END_REF], which would allow us to do human recognition. The electrostatic sensor created by Kurita was also used in combination with a ML algorithm to identify individual characteristic [START_REF] Kurita | Non Contact Detection of movements of standing up from and sitting down on a chair using electrostatic induction[END_REF]. This kind of sensor is a good candidate for the measurement of walking velocity but includes a component that reduce to possibility to use it as a low-cost sensor.

In [START_REF] Li | Estimation of Temporal Gait Parameters Using a Human Body Electrostatic Sensing-Based Method[END_REF], the authors show that it's possible to obtain temporal gait parameters with electrostatic field sensing technology; however, this study does not include the measurement of walking speed. In [START_REF] Fu | Performing indoor localization with electric potential sensing[END_REF] and [START_REF] Grosse-Puppendahl | Platypus: Indoor localization and identification through sensing of electric potential changes in human bodies[END_REF] studies use this kind of sensor but they focus on localization and identification. Actually, the technologies used to measure the walking speed do not include electrostatic sensors [START_REF] Fu | Sensing Technology for Human Activity Recognition : A Comprehensive Survey[END_REF].

The solution we decided to explore is the possibility to use a low-cost electrostatic sensor to perform an accurate contactless measurement of walking velocity. As this cost reduction is linked to a sensitivity reduction, we use a ML algorithm to improve the accuracy of the sensor. The learning phase is performed by the way of depth sensor the same way than in our previous study [START_REF] Abdel Khalek | A low-cost machine learning process for gait measurement using biomechanical sensors[END_REF]. This paper first presents the electrostatic sensor and the experiment defined to perform the machine learning phase and the characterization. Then the data analysis methods are presented. The results with a direct computational method, and with a machine learning approach are presented.

Experience presentation

Our goal is to measure an individual's walking speed using a non-intrusive sensor and to ensure that the results obtained are satisfactory compared to what we could achieve with another nonintrusive sensor. That's why we decided to present the results obtained with an electrostatic sensor, but also to compare them with the results that could have been obtained with one of the other sensors (PIR). Also, we would like to obtain more precise results than those obtained during previous studies: We aim to have a standard uncertainty under 0.15 m/s [START_REF] Abdel Khalek | A low-cost machine learning process for gait measurement using biomechanical sensors[END_REF].

In order to have a reference speed of the person we use a depth camera that allows us to retrieve the characteristic points of the skeleton of the person and thus use these points to compute the speed.

Electrostatic Sensor

The electrostatic induction sensor proposed by Kurita in [START_REF] Kurita | Detection Technique of Individual Characteristic Appearing in Walking Motion[END_REF] requires a resistor of 3Thoms that makes the sensor incompatible with the low-cost constraint. The electric potential sensor (EPS) we developed is specifically sized for indoor human motion capture: human activity frequencies are between 0 and 20 Hz [START_REF] Antonsson | The frequency content of gait[END_REF]. They consist of an electrode whose received potential is filtered and amplified (see Figure 1). This architecture makes it possible to amplify variations in electrical potential. When someone walks near the sensor, an induced current is generated on the electrode [START_REF] Li | Research of Gait Recognition Based on Human Electrostatic Signal[END_REF]. Indeed, the human body is charged with static electricity due to the creation of friction between the body and clothing; moreover, friction, contact and separation between the human foot and ground during walking also charges the human body electric field around the human body with the foot movement during walking [START_REF] Zheng | Determination of velocity and direction of human body motion based on electrostatic measurement[END_REF].

Measurement system

The measurement system is made of 4 measuring boards facing each other in a corridor, each board including a PIR and an EPS. The scene is observed by a depth camera (RealSense L515) which makes it possible to obtain a reference of the experiments carried out by the detection of the skeleton of people moving (See Figure 3) During an experiment, a person walks in the corridor at a constant speed, which varies from slow to fast depending on the experiments. The signals measured by the 4 PIRs and the 4 EPS (see Figures 4 and5), as well as the skeletons detected by the 3D camera are stored as a set that we will call an experiment sample. 

measurement without ML

We used a dataset of 229 experiments, one experiment corresponding to a person walking straight down the center of the corridor. They have a fixed length of 13 seconds with a sampling rate of 50 samples per second. 5 different persons of various ages and sizes toke part to the experimentation. The reference speed is computed by a linear regression of the locations of the right hip and the left hip given by the depth camera. The speeds given by the PIR are computed as follow: each signal is interpreted as a wave packet and the moment of the middle of each wave packet is obtained with the maximum of energy of the Complex Morlet wavelet transform of the signal (Figure 6). A simple ratio between the time of flight and the distance between 2 measurement board gives the speed. The same process is used to compute the speed from the EPS. The type-A uncertainty estimation gives the standard uncertainty u = 0.284 m s -1 for the PIR sensor after the exclusion of abhorrent results, and u = 0.213 m s -1 for the EPS (no exclusion).

ML-augmented measurement

Comparison of different models

The hypothesis we verified is "an ML regression can reduce the uncertainty of the sensors". To test this hypothesis, we started an exploration of a family of neural network models to optimise the sensor uncertainty. The models we explored are Convolutional Neural Networks (CNN) taking the 4 wavelet transforms computed from the signals issued from the 4 EPS as inputs. The tested models were classical feedforward models including 1 or 2 convolution layers each followed by a Maxpool 2x2 layer. Each convolution layer has 8, 16, 32 or 64 filters 3x3. The model is ended with 1 or 2 dense layers in addition to the last one. For all layers, the activation function is ReLu. The loss function is the mean square error, and the optimizer is the Adam optimizer. The 229 samples are split into train and validation groups respectively with 70 % and 30 % of samples. The best reproductible results were obtained with the same model for the PIR and for the EPS. This model, denoted 2-layersNN, has 2 convolution layers, the first one with 32 filters, and the second one with 64 filters. The model has no additional dense layer (see Figure 7). The results obtained with the EPS network are more accurate than those obtained with the PIR sensor network. The obtained standard uncertainty is u = 0.13 m s -1 for the EPS and u = 0.17 m s -1 for the PIR.

In order to circumvent the wavelet transform we tested recurrent networks specialized in time series such as LSTM and TCN. However, none of them performed well enough, as shown in the table 1. These low results can be explained by the fact that recurrent networks, even if they are adapted to time series like the one produced by the sensors of this study, implement a forgetting behavior that is more dedicated to a continuous analyse of a signal.

Another architecture that cannot be avoided in such study is the ResNet architecture [START_REF] He | Deep Residual Learning for Image Recognition[END_REF]. It allows to have deeper models with higher expressivity. As for the 2-layersNN, the ResNet model takes the 4 wavelet transforms as input. With this architecture, it was able to obtain performances similar than that obtained with the two-convolution model (2-Layers NN).

Moreover, a dual-attention module [START_REF] Fu | Dual Attention Network for Scene Segmentation[END_REF] was added to the ResNet model before each pooling step; this attention module is a low complexity approach that associates both network channel level attention and spatial attention that relates here to spectro temporal information. This module allows the model to be focused on the areas holding the usefull information, in our case, the area of the wavelet transform holding the signal energy (see Figure 8). This architecture improve the performance of the system for the PIR and gives also similar performances for the EPS as presented in Table 1. 

Sensor reduction

In the previous parts, we observed an improvement of the speed gait accuracy by the use of a ML stage. This means that the signal shapes of sensors may hold more information than a simple time shift between the signals from 2 sensors.

To test this hypothesis, we removed a pair of sensors to keep only 2 sensors facing each other (sensors 1 and 2 on fig. 3).

The two-convolution model and the residual model with or without attention were tested (see table 2). The sensor reduction induced a moderate degradation of the performances of the speed measurements based on the 2-layer NN. This is not the case for the ResNet based systems that keep their performances. These results show that the 2-Layer NN based speed gait measurement system loses information during the sensor reduction but, in the case of EPS, keeps enough data to give a measurement result with an uncertainty compatible with the target of this study.

We analyse the trained model with the Grad-CAM tool to better understand it, and to know what features it relies on to perform the regression. Grad-CAM is a tool that allows you to understand what a model is based on to make its prediction, or on which part of an input image the model is positioned to give this result [START_REF] Selvaraju | Grad-CAM: Visual Explanations from Deep Networksvia Gradient-based Localization[END_REF]. More surprising is the stability of the perfomances of the ResNet based systems during the sensor reduction process. This can be variously interpreted and needs a deeper analysis of the network's trained models.

Conclusion

The comparison between a measurement results given by the data processing and measurement results given by a Machine Learning regression shown that the signals issued from the 2 kind of sensors, PIR and EPS, hold information on walking speed that can be exploited by a neural network.

A residual architecture ResNet in addition to an attention module gives significant performances.

The two-layer model still performs very well, but this performance can strongly depend on the composition of our dataset and its simplicity. This is probably related to the number of convolution layers and the low number of samples. It also shown that EPS -Electric Potential Sensors are suitable for the in-house measurement of walking speed of the elderly. Indeed, their uncertainty is lower than the target of 0.15 m.s -1 known as the upper limit to detect a speed reduction related to an illness. As for the PIR sensors, EPS consume very little energy, they are inexpensive, non-intrusive but have a better accuracy. They could therefore be used in several fields such as health or home monitoring. Actually, such sensors are included into similar studies related to human activity such as the notification of the presence of people in a place, the measurement of other gait parameters or the gesture recognition.
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 1 Figure 1: Diagram of the different signal processing layers
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 2 Figure 2: Electrical Diagram of the EPS
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 3 Figure 3: Measurement system with the 4 measurement boards and the depth camera.
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 4 Figure 4: Graph of data acquired by PIR and EPS for a slow walking speed.
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 5 Figure 5: Graph of data acquired by PIR and EPS for a medium walking speed.
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 6 Figure 6: Morlet wavelet transform of EPS signal for a walking person.
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 7 Figure 7: Morlet wavelet transform of PIR signal for a walking person.
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 7 Figure 7: Parameters of the CNN model giving the lowest reproductible uncertainty.
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 8 Figure 8: ResNet architecture giving the lowest uncertainty.

Figure 9 :

 9 Figure 9: A wavelet transform as one of the Grad-CAM input and the corresponding heatmap for the trained 2-Layer NNIt clearly emerges that the model bases its regression on the contours of the wavelet transform and ignore the low frequencies -the bottom part of the wavelet transform -and the general shape of the signal -the highest energy area -. (See Figure9).

Table 1 :

 1 Standard uncertainties (4 sensors)

	u (m s -1 )	PIR	EPS
	Without ML	0.28	0.21
	2-Layer NN	0.17	0.13
	ResNet	0.18	0.13
	ResNet + Attention 0.15	0.12
	LSTM	0.43	0.43
	TCN	0.93	0.79

Table 2 :

 2 Standard uncertainties (2 sensors)

	u (m s -1 )	PIR	EPS
	ResNet	0.18	0.13
	ResNet + Attention 0.15	0.12