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Implementation of a stability-based transition model by means of transport equations

An implementation of the AHD transition model is presented. The development is inspired from a previous implementation in a structured Reynolds-Averaged Navier-Stokes code and is derived for an unstructured solver. Four additional transport equations are added to the system. Moreover the model relies on the computation of boundary layer quantities (Reynolds based momentum thickness, incompressible shape factor . . . ) along wall normal lines rather than local correlation. Therefore it requires as well a communication mechanism to accesss wall data from grid points. Numerical simulations are presented on a 2D airfoil and a 3D nacelle. Results are compared against a boundary layer solver and the previous implementation in a structured RANS solver.

I. Nomenclature

II. Introduction

Laminar to turbulent transition has a significant impact on drag and therefore the efficiency of an a ircraft. The development of transition prediction techniques in Computational Fluid Dynamics (CFD) solvers is a key enabler for the prediction of aerodynamic performance and for the design of laminar transport aircraft.

Most of the current techniques rely on models based on Partial Differential Equations (PDEs) where additional transport equations are added to the RANS system of equations in order to model the transition process. This technique was made popular by the "γ -Re θ " model of Langtry and Menter [START_REF] Langtry | Correlation-Based Transition Modeling for Unstructured Parallelized Computational Fluid Dynamics Codes[END_REF], where two additional transport equations are added (on γ and Re θ ). This method is based on phenomenological reasoning and was extended to model cross-flow transition [START_REF] Grabe | Transport Modeling for the Prediction of Crossflow Transition[END_REF]. Menter et al. [START_REF] Menter | A One-Equation Local Correlation-Based Transition Model[END_REF] further developed that model to have only one additional transport equations (on γ).

Those models are "local correlation-based". The source, production and diffusion terms of the additional transport equations only require quantities available at RANS computation points. This explains to a certain extent their success as this property makes them easy to implement in a CFD solver and does not have a significant impact on the computation efficiency.

While those models have been shown to yield satisfactory results on many cases, computing non local variables (e.g. boundary layer quantities) by means of local correlations has a non negligible effect on the accuracy. The elsA [START_REF] Cambier | The Onera elsA CFD software: input from research and feedback from industry[END_REF] structured RANS solver (property of Airbus-Safran-ONERA) features a computational mechanism to access to non local variables (for instance integral boundary layer variables) at grid point and the computation of boundary layer quantities along wall normal mesh lines. Thanks to these features both the AHD criterion [START_REF] Arnal | Transition prediction in transonic flow[END_REF] and the "parabola method" [START_REF] Perraud | Automatic transition predictions using simplified methods[END_REF] were implemented by means of transport equations [START_REF] Bégou | Database Approach for Laminar-Turbulent Transition Prediction: Navier-Stokes Compatible Reformulation[END_REF][START_REF] Pascal | Stability-Based Transition Model Using Transport Equations[END_REF].

This paper presents the implementation of the AHD transition model following Ref [START_REF] Pascal | Stability-Based Transition Model Using Transport Equations[END_REF] in the unstructured CFD solver CODA (originally named FLUCS [START_REF] Leicht | DLR-Project Digital-X-Next Generation CFD Solver'Flucs[END_REF]). The AHD transition model and its implementation is described in section III.

Numerical results are presented in section IV.

III. Implementation of the AHD transition model

In this section is presented the AHD criterion and its implementation in the unstructured CFD solver CODA . The implementation is largely taken from Pascal et al. [START_REF] Pascal | Stability-Based Transition Model Using Transport Equations[END_REF] (which focused on the structured CFD solver elsA ), where more details can be found. Moreover the implementation in CODA can be seen as a restriction of the work of Pascal et al. [START_REF] Pascal | Stability-Based Transition Model Using Transport Equations[END_REF].

Their model accounts for longitudinal (both in incompressible and compressible regimes), transverse (by means of C1 model [START_REF] Arnal | Théorie de l'instabilité laminaire et critères de transition en écoulement bi et tridimensionnel[END_REF]) and separation-induced (by means of the Gleyzes criterion [START_REF] Gleyzes | Theoretical and experimental study of low Reynolds number transitional separation bubbles[END_REF]) transition. In the present work only longitudinal transition and the incompressible regime are considered. Terms associated with the two other transition mechanisms and compressibility effect will be discarded in the equations.

A. The AHD criterion

The AHD transition model [START_REF] Arnal | Practical transition prediction methods: subsonic and transonic flows[END_REF] has been shown to yield satisfactory results on cases representative of industrial applications [START_REF] Hue | Experimental and Numerical Methods for Transition and Drag Predictions of Laminar Airfoils[END_REF][START_REF] Hue | Wind-Tunnel and CFD Investigations Focused on Transition and Performance Predictions of Laminar Wings[END_REF]. This criterion, derived from local linear stability theory [START_REF] Arnal | Théorie de l'instabilité laminaire et critères de transition en écoulement bi et tridimensionnel[END_REF], is based on N-factor envelopes of Tollmien-Schlichting waves computed on similar boundary layer profiles. This model is written as a threshold on the momentum thickness Reynolds number:

Re θ,tr = Re θ,cr + A exp(B Λ2 ) C ln(T u ) -D Λ2 ( 1 
)
where Λ2 is the averaged value of the Pohlhausen parameter Λ 2 between the critical point and the current location.

The critical point corresponds to the Reynolds number Re θ,cr given by:

Re θ,cr = exp E H i -F . (2) 

B. Transport equations

Using transport equations is a natural way to implement the AHD criterion as this model is to be evaluated along streamlines at the boundary layer edge. To account for the AHD model, four transport equations are added to the system:

∂ t ρ Re θ,cr + ∇ • ρ Re θ,cr U = Γ Re θ, cr (1 -ν cr ) Γ δ ρ Re θ,cr -Re θ,cr (3) 
∂ t ρ Λ2 + ∇ • ρ Λ2 U = ν cr (1 -ν tr )Γ δ ρ||U||Λ 2 (4) ∂ t (ρs) + ∇ • ρsU = ν cr (1 -ν tr )Γ δ ρ||U|| (5) 
∂ t ρ I + ∇ • ρ IU = ν tr Γ δ ρ||U|| (6) 
The transported variable Re θ,cr models the critical Reynolds number. Upstream of the critical point it equals the value given by Eq. ( 2) while it remains constant downstream of the critical point. The new variable Λ2 corresponds to the integral of the Pohlhausen parameter between the critical point and the current location (it is null upstream of the critical point). Finally I is the curvilinear abscissa from the transitional point (it equals zero upstream of the transitional point).

The variables ν cr and ν tr defines respectively the critical or transitional property of the flow. More precisely, ν cr equals one where Re θ ≥ Re θ,cr,e while ν tr equals one where the momentum thickness Reynolds number reaches the threshold Eq. ( 1) where Re θ,cr and Λ2 are replaced by Re θ,cr,e and Λ2,e / s e respectively.

The model is coupled with the turbulence model of Allmaras et al. [START_REF] Allmaras | Modifications and clarifications for the implementation of the Spalart-Allmaras turbulence model[END_REF] by multiplying the Reynolds stress tensor by the intermittency defined by:

γ( I e ) = 1 -exp -5 max I e -d, 0 l tr 2 . ( 7 
)
This formula corresponds to the model of Dhawan and Narasimha [START_REF] Dhawan | Some properties of boundary layer flow during the transition from laminar to turbulent motion[END_REF] where the streamwise extent of the transition region l tr is prescribed by the user. d corresponds to a user-prescribed length that enforces a delay between the found transition point and the location at which γ starts to grow. Such a delay helps to mitigate viscous-inviscid interactions at the transition point [START_REF] Stock | Navier-Stokes Airfoil Computations with eN Transition Prediction Including Transitional Flow Regions[END_REF].

The main differences with the model of Pascal et al. [START_REF] Pascal | Stability-Based Transition Model Using Transport Equations[END_REF] are the following:

• The model does not embed the C1 criterion for crossflow-induced transition [START_REF] Arnal | Théorie de l'instabilité laminaire et critères de transition en écoulement bi et tridimensionnel[END_REF] and the Gleyzes correction for separation-induced transition [START_REF] Gleyzes | Theoretical and experimental study of low Reynolds number transitional separation bubbles[END_REF], therefore the associated terms are dropped.

• Rather than solving the equation on the averaged value of the Pohlhausen parameter from the critical point Λ2 , the considered variable is the integral of Pohlhausen parameter from the critical point Λ2 . This was found to improve the convergence.

• Rather than defining the field Γ δ as Γ δ = exp -y n 4δ 4 to activate the source terms only in the near wall regions, Γ δ is defined as equal to one below a user-defined wall distance and then to decrease toward zero proportionally to 1/n 4 . Such field is cheaper to compute than a field based on the exponential function.

• There is no forcing on the Λ2 -, sand I-equations in the subcritical region because the correct subcritical values are simply obtained by convecting the inflow values ( Λ2 = s = I = 0).

• Pascal et al. [START_REF] Pascal | Stability-Based Transition Model Using Transport Equations[END_REF] coupled this model both the turbulence models of Spalart and Allmaras [START_REF] Spalart | A One-Equation Turbulence Model for Aerodynamic Flows[END_REF] and Menter [START_REF] Menter | Two-equation eddy-viscosity turbulence models for engineering applications[END_REF] by multiplying the Reynolds stress tensor and the production terms (except the production of k in the model of Menter [START_REF] Menter | Two-equation eddy-viscosity turbulence models for engineering applications[END_REF]) by the intermittency.

• Computing the derivative ∂ s U e is more difficult in an unstructured CFD solver than in a structured CFD solver.

Therefore at the moment the Pohlhausen parameter is computed thanks to correlation given by Drela and Giles [START_REF] Drela | Viscous-inviscid analysis of transonic and low Reynolds number airfoils[END_REF]:

Λ 2 = 0.058(H i -4) 2 /(H i -1) -0.068. (8) 

C. "Wall arrays" and boundary layer quantities

All the boundary layer quantities (Re θ , Λ 2 Re θ,cr , H i ) and the indicators ν cr and ν tr in the source terms of Eqs (3), ( 4), ( 5) and ( 6) are non local quantities. Rather than that using correlations with local quantities as in Ref. [START_REF] Langtry | Correlation-Based Transition Modeling for Unstructured Parallelized Computational Fluid Dynamics Codes[END_REF], the implementation relies on i) the concept of wall array and ii) the exact computation of boundary layer quantities.

"Wall arrays"

A wall array -as defined in elsA and CODA -contains data stored at a wall face. In particular, the boundary layer quantities and the indicators ν cr and ν tr are wall arrays. A communication mechanism is implemented such that a volume cell can access the values in the wall arrays corresponding the nearest wall face. The concept of wall array is implemented in CODA similarly to what is implemented in elsA . However it is slightly optimised such that any processor only stores the wall data corresponding to the nearest wall faces of its volume cells.

Boundary layer quantities

Boundary layer quantities are computed in elsA by following mesh lines normal to the wall as explained in Ref.

[21].

Such implementation is not possible in an unstructured solver and looses its accuracy if the mesh lines normal to the wall are not exactly orthogonal. Therefore, the computation of the wall normal lines is CODA is implemented by means of a marching method. It relies on the computation of the intersection of a line and a cell by "parametric line-clipping" [START_REF] Cyrus | Generalized two-and three-dimensional clipping[END_REF] [23] [START_REF] Liang | A new concept and method for line clipping[END_REF]. A communication mechanism is implemented such that wall normal lines segments divided on different processors can share data (for instance to compute integral quantities along the wall normal lines).

The edge of the boundary layer is found along the wall normal lines following the method of Stock and Haase [START_REF] Stock | Feasibility Study of eN Transition Prediction in Navier-Stokes Methods for Airfoils[END_REF].

The trapezoidal rule is used to compute the boundary layer integral quantities. All boundary layer edge quantities are directly computed (no averaging around the boundary layer edge is performed as in elsA ).

IV. Numerical simulations

In the following sections, the proposed model is applied on a two-dimensional airfoil and a three-dimensional geometry. The results are compared with the boundary layer equations solver 3C3D [START_REF] Houdeville | Three-dimensional boundary layer calculation by a characteristic method[END_REF]. 3C3D software solves the boundary layer equations by a means of a characteristics method [START_REF] Houdeville | Three-dimensional boundary layer calculation by a characteristic method[END_REF].

A. CODA software

CODA is CFD software being developed as part of a collaboration between the French Aerospace Lab ONERA, the German Aerospace Center (DLR), Airbus, and their European research partners. CODA is jointly owned by ONERA, DLR and Airbus.

CODA offers a generic framework to solve PDEs on unstructured grids [START_REF] Leicht | DLR-Project Digital-X-Next Generation CFD Solver'Flucs[END_REF][START_REF] Huismann | HyperCODA -Extension of Flow Solver CODA to Hypersonic Flows[END_REF]. In this paper linearized implicit Euler method is used for time integration to a steady state where automatic differentiation generates the Jacobian but CODA offers different time integration schemes for both steady and unsteady computations. While it features discontinuous Galerkin technique, spatial discretization is here performed by means of a cell-centered finite volume scheme. The Spalart-Allmaras turbulence model in its negative formulation is here chosen [START_REF] Allmaras | Modifications and clarifications for the implementation of the Spalart-Allmaras turbulence model[END_REF] over the Menter-SST model. The mean flow convective flux is here chosen to be modeled by means of the Roe flux while the convective terms in the turbulent and transition transport equations are discretized with a local Lax-Friedrich flux.

Futher details can be found in References [START_REF] Leicht | DLR-Project Digital-X-Next Generation CFD Solver'Flucs[END_REF][START_REF] Huismann | HyperCODA -Extension of Flow Solver CODA to Hypersonic Flows[END_REF].

B. NLF1-416 airfoil

The implementation presented in section III is validated on the NLF1-416 airfoil. The aerodynamic conditions are choosing following Ref. [START_REF] Somers | Design and experimental results for a natural-laminar-flow airfoil for general aviation applications[END_REF]: the Reynolds number is 4.0 × 10 6 , the Mach number is 0.1 and the angle of attack is α = 0.01 o . However, rather than taking Tu = 3 × 10 -4 , Tu is set to 1 × 10 -2 to avoid that transition occurs near the separation point. Such case will be addressed in a future study once the Gleyzes criterion is implemented.

The mesh corresponds to the refinement level "U" of the AIAA CFD Transition Modeling and Prediction Workshop.

The mesh considered is composed of 2113 nodes in the chordwise direction and 289 nodes in the normal direction.

Validation is performed against the ONERA in-house boundary layer solver 3C3D which embeds transition prediction models and in particular the AHD criterion. A very good agreement between CODA and 3C3D on the incompressible shape factor is observed in the laminar regions, see figures 1(a-b). This comparison highlights the high accuracy that can be achieved by computing boundary layer quantities exactly in a RANS solver even on the shape factor which is more prone to error than for example the momentum thickness. Since the transition locations are not the same in CODA and 3C3D (see below) a larger deviation is observed from x ≈ 0.3 on both sides. The number of cells within the boundary layer thickness grows monotonously from 50 to 80 (respectively 50 to 85) between the leading edge and the end of the laminar region at the suction side (respectively pressure side). The agreement on the intermittency is good, see Figures 2(a-b). The difference is term of shape is expected as a different intermittency function is used in 3C3D. In addition to this difference in term of shape, the transition location (i.e.

where the intermittency γ starts to grow) is found with CODA slightly downstream of the transition location predicted by 

C. XRF1 nacelle

In this section, the transition model is applied on the XRF1 nacelle of Airbus. XRF1 is an Airbus provided industrial standard multi-disciplinary research testcase representing a typical configuration for a long range wide body aircraft.

The XRF1 research testcase is used by Airbus to engage with external partners on development and demonstration of relevant capabilities/technologies. The flow conditions are the same as in Ref. [START_REF] Pascal | Stability-Based Transition Model Using Transport Equations[END_REF]: the Mach number is M ∞ = 0.6 and the angle of attack is α = 1.1 o . The turbulence intensity for transition prediction is set to T u = 0.1%. The prescribed transition region length is l = 0.05L where L is the length of the nacelle. A delay of 0.02L is imposed between the found transition point and the growth of the intermittency. Such delay was found to mitigate viscous-inviscid interactions at the transition point.

The surface mesh on the nacelle is shown in Figure 3. It corresponds to mesh #2 of Ref. [START_REF] Pascal | Stability-Based Transition Model Using Transport Equations[END_REF]. The mesh is composed of 4.9 × 10 6 hexahedral cells. Respectively 120 and 100 cells are distributed on the nacelle along the streamwise and azimuthal direction. The fan is modeled as a pressure boundary and slip boundary condition is prescribed at the hub.

The transition locations computed with CODA is compared to the results of elsA and 3C3D presented by Pascal et al. [START_REF] Pascal | Stability-Based Transition Model Using Transport Equations[END_REF]. Transition prediction in 3C3D is performed by means of the parabola method [START_REF] Perraud | Automatic transition predictions using simplified methods[END_REF]. This transition model is known to agree well with exact linear stability computation [START_REF] Perraud | Automatic transition predictions using simplified methods[END_REF][START_REF] Hue | Wind-Tunnel and CFD Investigations Focused on Transition and Performance Predictions of Laminar Wings[END_REF]. The transition lines are defined as the locations where the intermittency starts to grow and are plotted in Figures 4(a-b) on both sides of the nacelle. For the sake of visualization, the nacelle surface is unrolled and plotted in a plane (x, θ). 

V. Conclusion

The implementation of the stability-based AHD transition model in the unstructured CFD solver CODA is presented.

The model was originally developed by Pascal et al. [START_REF] Pascal | Stability-Based Transition Model Using Transport Equations[END_REF] where it was implemented in the structured CFD solver elsA.

The implementation is based on transport equations and relies on i) the exact computation of boundary layer quantities and ii) communication mechanisms such that wall data (such as boundary layer quantities) can be accessed from grid points.

The model was first validated on the NLF1-416 airfoil. In order to show the correct computations of boundary layer quantities, comparisons in term of incompressible shape factor against the boundary layer equations solver 3C3D is presented. Moreover, a good agreement is observed on the transition location. Similar good agreement is observed on the three-dimensional XRF1 nacelle of Airbus by comparing against 3C3D and elsA.

At the moment, the model is only valid for incompressible longitudinal transition mechanisms. Further work is required to extend the model to compressible flow, crossflow instability and separation-induced transition as in Pascal et al. [START_REF] Pascal | Stability-Based Transition Model Using Transport Equations[END_REF].
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 1 Fig. 1 Incompressible shape factor H i , comparison between CODA (solid line) and 3C3D (dotted line) at the pressure (a) and suction (b) sides.
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 2 Fig. 2 Intermittency γ with CODA (solid line) and 3C3D (dotted line) at the pressure (a) and suction (b) sides.
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 3 Fig. 3 Mesh of the XRF1 nacelle -The fan is shown in black.
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 4 Fig. 4 Transition lines on the inner (left) and outer (right) sides of the nacelles computed by CODA (solid line), elsA (dash-dotted line) and 3C3D (dotted line).
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