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1.  Introduction
The rising level of carbon dioxide (CO2) concentration in the atmosphere has profoundly altered the Earth's 
radiative balance and consequently the global climate (IPCC,  2021). Although sources and sinks of CO2 to 

Abstract  Atmospheric inversions provide estimates of carbon dioxide (CO2) fluxes between the surface 
and atmosphere based on atmospheric CO2 concentration observations. The number of CO2 observations is 
projected to increase severalfold in the next decades from expanding in situ networks and next-generation 
CO2-observing satellites, providing both an opportunity and a challenge for inversions. This study introduces 
the TRACE Regional Atmosphere–Carbon Ensemble (TRACE) system, which employ an ensemble-based 
simultaneous state and parameter estimation (ESSPE) approach to enable the assimilation of large volumes of 
observations for constraining CO2 flux parameters. TRACE uses an online full-physics mesoscale atmospheric 
model and assimilates observations serially in a coupled atmosphere–carbon ensemble Kalman filter. The data 
assimilation system was tested in a series of observing system simulation experiments using in situ observations 
for a regional domain over North America in summer. Under ideal conditions with known prior flux parameter 
error covariances, TRACE reduced the error in domain-integrated monthly CO2 fluxes by about 97% relative 
to the prior flux errors. In a more realistic scenario with unknown prior flux error statistics, the corresponding 
relative error reductions ranged from 80.6% to 88.5% depending on the specification of prior flux parameter 
error correlations. For regionally integrated fluxes on a spatial scale of 10 6 km 2, the sum of absolute errors was 
reduced by 34.5%–50.9% relative to the prior flux errors. Moreover, TRACE produced posterior uncertainty 
estimates that were consistent with the true errors. These initial experiments show that the ESSPE approach in 
TRACE provides a promising method for advancing CO2 inversion techniques.

Plain Language Summary  To gain a better understanding of the main drivers behind atmospheric 
carbon dioxide (CO2) variations and trends, it is essential to accurately quantify CO2 exchanges—also known 
as fluxes—between the atmosphere and other components of the Earth system. It is generally not possible 
to directly measure surface CO2 fluxes at regional scales; however, fluxes can be inferred from a network of 
atmospheric CO2 concentration observations combined with atmospheric modeling and inversion methods, 
which seek to find the most likely fluxes given prior knowledge and observational evidence. This paper 
presents a new regional inversion framework called TRACE Regional Atmosphere–Carbon Ensemble (TRACE) 
for deriving CO2 fluxes at high resolution in space and time. One of the major innovations in TRACE is the 
ensemble-based dual state and parameter estimation approach, which makes it computationally feasible to 
ingest large volumes of observations into the system. A series of experiments were carried out in a domain over 
North America to test the new framework in a controlled setting. In the experiments, we used synthetic tower 
observations of atmospheric CO2 concentrations to constrain parameters controlling terrestrial biogenic and 
oceanic CO2 fluxes. The results show that TRACE is capable of accurately estimating both the magnitude and 
spatial pattern of regional CO2 fluxes.
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the atmosphere (also known as CO2 fluxes) are relatively well understood on a global scale (Friedlingstein 
et al., 2021), there are major knowledge gaps at regional scales, which limit our ability to predict future climate 
change (e.g., Friedlingstein et al., 2014). Terrestrial ecosystems have removed about one-third of human-produced 
atmospheric CO2, but whether this terrestrial carbon sink is mainly driven by longer growing seasons (Piao 
et  al.,  2007), the CO2 fertilization effect (C. Chen et  al.,  2022; Schimel et  al.,  2015), increased soil nutrient 
availability due to elevated nitrogen deposition (Lu et al., 2021; Reay et al., 2008), regrowth of previously logged 
forests in mid-to-high latitudes (Pugh et al., 2019), or other factors remains an open question, in part because the 
spatial distribution of this sink is not known well. To address this and other important open issues in carbon cycle 
science, accurate estimates of regional-scale CO2 fluxes are needed.

It is generally not possible to directly measure surface CO2 fluxes at subcontinental to continental scales partially 
due to their strong heterogeneity. Observations using the eddy covariance technique are typically representative 
of fluxes within a few hundred meters of the measurements (Chu et al., 2021), and upscaling of such observations 
can lead to significant biases (Ran et al., 2016). Correctly modeling the net flux of CO2 between the terrestrial 
biosphere and the atmosphere, known as net ecosystem exchange (NEE), is also challenging because NEE is the 
residual of two typically large fluxes, uptake through gross primary production and release through ecosystem 
respiration. A relatively small error in simulating either of these fluxes can lead to significant systematic errors 
in NEE on monthly or longer time scales. Seiler et al. (2022) found that biosphere models do a reasonably good 
job in simulating the terrestrial carbon sink, but nevertheless leave room for improvements in terms of biases and 
regional-scale processes.

An alternative approach for deriving surface CO2 fluxes is to use atmospheric observations of CO2 concen-
trations. The atmosphere is a natural integrator of CO2 fluxes through atmospheric mixing and transport, and 
variations in CO2 concentrations higher up in the atmosphere therefore tend to be representative of CO2 fluxes 
over larger regions. In this approach, known as inverse modeling, surface CO2 fluxes are inferred from variations 
in atmospheric CO2 using an atmospheric transport model. Early inversion studies focused primarily on the 
global-scale carbon cycle using CO2 concentration measurements sampled in locations remote from anthropo-
genic and natural sources and sinks (e.g., Tans et al., 1990). Subsequent studies found a wide spread in inversion 
results on continental to subcontinental scales (Gurney et al., 2002; Peylin et al., 2013), which was partly attrib-
uted to differences in the modeling of atmospheric CO2 transport. The expansion of the in situ CO2 network and 
availability of new remote sensing observations of atmospheric CO2 have motivated the development of regional 
inversion systems (e.g., Gourdji et al., 2010; Lauvaux et al., 2012; Monteil & Scholze, 2021; Schuh et al., 2010; 
Wesloh et al., 2020). Compared with global systems, regional inversions can represent the CO2 fluxes and atmos-
pheric transport at higher resolutions at feasible computational costs. However, even in regions with relatively 
well-developed observational networks such as Europe, large discrepancies in subcontinental CO2 fluxes still 
remain in regional inversions (Monteil et al., 2020).

In light of the Paris Agreement, there has recently been a growing interest in using inversion methods to support 
national greenhouse gas monitoring and reporting (IPCC, 2019; Janssens-Maenhout et al., 2020). The number 
of CO2 observations is expected to increase severalfold in the next decade to address this need. For example, a 
constellation of operational satellites code-named the Copernicus Anthropogenic Carbon Dioxide Monitoring 
mission (CO2M for short) will deliver data on column-averaged dry air mole fraction of CO2 (XCO2) with 
a swath width of about 250 km and at 2 × 2 km spatial resolution (Meijer, 2019). Using such satellite observations 
is computationally prohibitive for most common inversion schemes, especially for inversions that use Lagrangian 
backward models to compute the sensitivity of observations to surface fluxes, as the satellite retrievals are not 
only numerous but also sensitive to the whole atmospheric column. The computational costs can be reduced using 
techniques that for example, calculate the observational sensitivity for only a subset of the soundings (e.g., Roten 
et al., 2021), but such methods are usually associated with their own limitations, such as not being applicable to 
broader regions or longer time periods.

Another challenge associated with XCO2 retrievals from satellites is how to account for correlated random and 
systematic errors in the spatially dense soundings. Correlated errors in XCO2 can arise due to errors in both 
the instruments and retrieval process (e.g., Baker et al., 2022), as well as due to errors in the simulated atmos-
pheric transport in the inversion. In most inversion schemes, atmospheric transport errors would be prescribed 
in the observation error covariance matrix, which is typically assumed to be diagonal (i.e., uncorrelated observa-
tion errors) to simplify the calculations. Chevallier et al. (2010) showed that neglecting correlated atmospheric 
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transport can cause significant biases in the inverted fluxes when assimilating XCO2 observations, even when 
using techniques such as observation thinning.

The significantly improved availability of CO2 observations in the near future and new applications of CO2 inver-
sions underscore the need to develop inversion schemes that are capable of (a) assimilating a large number of obser-
vations, including column-averaged observations from satellites; and (b) accounting for correlations in the obser-
vation and model errors, for instance correlated atmospheric transport errors. One promising approach is to couple 
a CO2 inversion scheme with an atmospheric data assimilation system and jointly optimize for surface CO2 fluxes 
(or parameters controlling the fluxes) and atmospheric variables including atmospheric CO2 concentrations. In this 
dual state and parameter estimation formulation, CO2 concentrations are considered as part of the state, and CO2 
fluxes are treated as parameters. Uncertainties in modeled CO2 concentrations, which arise partly due to atmos-
pheric transport errors, would then be included in the prior error covariance matrix, which, unlike the observation 
error covariance matrix, is allowed to be non-diagonal. Kang et al. (2012) implemented a dual-state CO2 flux inver-
sion system using the local ensemble transform Kalman filter and a simplified global atmospheric transport model, 
and found that the system could accurately estimate the synthetic true surface CO2 fluxes using idealized satellite 
XCO2 retrievals. Including the error covariances between winds and atmospheric CO2 concentrations was found to 
be beneficial, while error covariances between CO2 concentrations or surface fluxes and other meteorological vari-
ables degraded the results (Kang et al., 2011). Other examples of global dual-state CO2 inversion systems include 
the Tan-Tracker system (Tian et al., 2014) and a system based on the local ensemble transform Kalman filter (Y. 
Liu et al., 2019). At regional scale, Peng et al. (2015) and Kou et al. (2017) tested two systems based on the offline 
Community Multiscale Air Quality (CMAQ) transport model, both at a horizontal resolution of 64 km × 64 km. 
There is a need to further test and develop dual-state CO2 inversion algorithms, especially using online atmospheric 
transport models, which would allow for higher-resolution simulations of the atmospheric CO2 transport.

This paper presents the TRACE Regional Atmosphere–Carbon Ensemble (TRACE) system, a regional coupled 
atmosphere–carbon data assimilation system for CO2 flux inversion. TRACE uses the ensemble-based simulta-
neous state and parameter estimation (ESSPE) approach to jointly optimize atmospheric CO2 mole fractions and 
parameters controlling surface CO2 fluxes. While the inclusion of atmospheric CO2 mole fractions in the state 
vector makes it possible to reduce the uncertainty in the initial atmospheric CO2 field (e.g., Tian et al., 2014), 
the main motivation for the dual state and parameter estimation approach here is to make it computationally 
feasible to assimilate a large number of observations from for example, CO2-observing satellites. TRACE uses 
an online mesoscale numerical weather prediction model to dynamically downscale meteorological variables 
from a global data set, and additionally includes an atmospheric data assimilation component, which makes it 
possible to simulate and reduce atmospheric transport errors by assimilating meteorological observations (see H. 
W. Chen et al., 2019). The objective of this study is to introduce the data assimilation methods used by TRACE 
and comprehensively test the system in a series of controlled experiments with synthetic in situ observations. 
More advanced features, such as assimilation of XCO2 observations from satellites and inclusion of atmospheric 
transport errors, are left for future studies.

Section 2 provides a general overview of the TRACE framework, followed by detailed descriptions of the major 
components in the subsections. Section 3 explains the specific experiments performed in this study, and Section 4 
presents the results. Finally, Section 5 summarizes and concludes the paper.

2.  The TRACE Framework
Figure 1 shows a schematic of the key components of TRACE. Central to the modeling framework is the regional 
atmospheric model (Section 2.2), which simulates the mixing and transport of CO2 in the atmosphere. The atmos-
pheric model downscales meteorological fields from a global data set (Section 3.1) to the mesoscale (spatial 
scales of ∼1–100 km). Atmospheric CO2 mole fractions are provided to the model as initial and lateral boundary 
conditions, and surface CO2 fluxes as lower boundary conditions.

In the inversion procedure, a set of parameters controlling the CO2 surface fluxes are optimized to reduce the 
mismatches between simulated CO2 mole fractions and atmospheric CO2 observations. The parameters are 
currently simple scaling factors on prior CO2 fluxes (Section 2.1), but in principle it is also possible to optimize 
model parameters in for example, a vegetation model, similar to a carbon cycle data assimilation system approach 
(Scholze et al., 2007). The parameter values are estimated at the pixel scale on the same spatial resolution as the 
atmospheric model.
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The inversion procedure is divided into two steps: forward modeling and assimilation. The purpose of the forward 
modeling step is to derive the sensitivities of atmospheric observations to CO2 flux parameters, which is achieved 
by running an ensemble of forward simulations with perturbed flux parameters using the atmospheric model. 
The flux parameter perturbations are randomly drawn according to the prescribed prior flux parameter error 
covariances. In the TRACE framework, it is moreover possible to include perturbed meteorological fields in the 
ensemble members to simulate and constrain atmospheric transport errors (H. W. Chen et al., 2019). This feature 
of the coupled atmosphere–carbon data assimilation system will be investigated in future studies.

The data assimilation component is based on a deterministic square-root ensemble Kalman filter (EnKF), see 
Section 2.3. During the assimilation step, the perturbed flux parameters and corresponding simulated atmospheric 
CO2 mole fractions from the ensemble members are fed to the data assimilation component as prior estimates. 
The simulated atmospheric CO2 mole fractions are translated to observation equivalents using an observation 
operator, which for in situ observations corresponds to straightforward linear interpolations in time and space, 
and are then compared with the observations to produce a vector of data–model differences, also known as the 
innovation. The data assimilation algorithm computes a correction to the prior CO2 flux parameters and mole 
fractions—the analysis increment—by applying a weighting matrix to the innovation, taking into account the 
uncertainties and error covariances of the prior estimates and observations. In the ESSPE approach, the CO2 

Figure 1.  Simplified schematic of the TRACE system. The data flow shows how the prior CO2 fluxes in the top left are propagated through the modeling chain and 
combined with other data to derive the posterior fluxes in the bottom right. Parallelograms denote data (gray parallelograms were not included in this study) and orange 
rectangles denote model components. The dashed lines indicate how the ensemble of posterior atmospheric fields, including atmospheric CO2 mole fractions, and 
posterior flux parameters are passed to the next assimilation cycle as the new prior. Some modeling steps are not shown for simplicity, such as covariance localization 
and inflation, reinitialization of meteorological fields, and forecasting of flux parameters.
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mole fractions are jointly updated with the CO2 flux parameters to reflect the 
updated parameter values, and thus there is no need to re-run the atmospheric 
model with the new parameter values. In addition to updating the ensemble 
mean estimates to be closer to observations, the ensemble deviations are also 
adjusted to reflect the reduced uncertainty after assimilating observations. 
The optimized CO2 flux parameters and mole fractions are then fed back to 
the atmospheric model, and the forward modeling and assimilation steps are 
repeated for the next data assimilation cycle.

2.1.  Flux Model

The flux model simulates the CO2 fluxes based on a set of input data and flux 
parameters. Currently, the space- and time-varying total CO2 fluxes F(x, y, t) 
are calculated based on prior fluxes from different data sets, which are scaled 
by flux parameters for the different flux components:

� (�, �, �) = �bio(�, �, �) ⋅ �bio(�, �, �) + �ocn(�, �, �) ⋅ �ocn(�, �, �)+

�ff(�, �, �) ⋅ �ff(�, �, �) + �fire(�, �, �) ⋅ �fire(�, �, �),
� (1)

where sbio, socn, sff, and sfire are scaling factor parameters for the prior terres-
trial biogenic fluxes (Fbio), oceanic fluxes (Focn), fossil fuel emissions (Fff), 
and wildfire emissions (Ffire), respectively. Section 3.1 provides more infor-
mation about the specific prior fluxes used in this study.

In this paper, we considered only sbio and socn for optimization. To simplify 
the interpretation of the results we did not include errors in the fossil fuel or 
wildfire emissions; these could be included in future studies in a straightfor-
ward manner. Three different error correlation functions were tested for the 

prior flux parameter errors: (a) ecoregion-specific parameters, with fully correlated parameter errors within the 
same ecoregions, and no correlations between ecoregions; (b) distance-based error correlations that decrease with 
distance; and (c) a hybrid of the previous two approaches, with distance-based error correlations within ecore-
gions, and an additional decay factor that decreases the error correlations between ecoregions. The ecoregions in 
the domain presented in this study are shown in Figure 2. Figure 3a shows how the error correlations vary with 
distance and between ecoregions for the three correlation functions.

The first ecoregion-based correlation function is based on the consideration that many vegetation models calcu-
late CO2 fluxes based on parameters that are assumed to be specific to certain ecoregions or plant functional 
types. The ecoregions in this study are based on the ecosystem classification by Olson et al. (1985) and were 
further simplified to reduce the number of ecoregions (Text S1 in Supporting Information S1). The ocean basins 
were treated in a similar way to ecoregions. We ignored CO2 flux parameters for the Desert and Tundra ecore-
gions and inland water bodies following Jacobson et al. (2020). An example of the ecoregion-based flux error 
correlations for a grid point in the Cool Mixed ecoregion is shown in Figure 3b.

The ecoregion-based correlation function makes use of prior information about the distribution of ecoregions, 
but may overestimate the error correlations between spatially distant grid points because they happen to share 
the same ecoregion. Moreover, this approach creates sharp contrasts in the spatial correlations (see Figure 3b), 
which could add unphysical updates to the posterior fields and make the inversion more sensitive to atmospheric 
transport errors.

The second distance-based correlation function considers only the distance between grid points, as shown in 
Figure 3c. The error correlations r decay with distance d according to a Gaussian function:

𝑟𝑟 = exp

(

−
1

2

(

𝑑𝑑

𝐿𝐿

)2
)

,� (2)

where L is the correlation length. We also tested an exponentially decaying correlation function but found that 
it led to less smooth updates to the posterior fields due to the fast correlation decay at short distances (see 

Figure 2.  Study domain and distribution of ecoregions, inland water bodies, 
and ocean basins based on the Olson et al. (1985) ecosystem classification.
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Figure S1 in Supporting Information S1), and hence only show results for the Gaussian function. In this study, 
the correlation length was set to 500 km for land ecoregions and 3,000 km for ocean basins. The correlation 
between ecoregion and ocean flux parameters was assumed to be zero. Correlations below 0.01 were set to zero 
to reduce long-distance correlations. While the distance-based correlation function results in smoother updates to 
the posterior fields, the completely isotropic correlations could potentially result in unphysical error correlations 
between different ecoregions.

The hybrid correlation function is an attempt to overcome deficiencies in the previous two approaches. It is simi-
lar to the distance-based correlation function, except for the addition of a decay factor γ when calculating the error 
correlations between grid points belonging to different ecoregions. In the hybrid formulation, the correlation 
between two grid points of different ecoregions is calculated as:

𝑟𝑟=𝛾𝛾 ⋅ exp

(

−
1

2

(

𝑑𝑑

𝐿𝐿

)2
)

, 𝛾𝛾 = exp

(

−
1

2

(

𝑑𝑑eco

𝐿𝐿𝑑𝑑

)2
)

,� (3)

where Ld is the decay length, and deco is the average of two distances, d1 and d2. For two grid points x1 and x2 
belonging to two different ecoregions eco1 and eco2, d1 is the shortest distance between x1 and a grid point 
belonging to eco2, and similarly for d2 but for x2 and eco1. Here the hybrid correlation function was tested with 
L = 600 km and Ld = 300 km. The correlation length L was set to a higher value than for the distance-based 
correlation function on the basis that we may expect longer-range correlations for grid points that share the same 
ecoregion.

Figure 3d shows that the hybrid-based correlation function retains some information about the ecoregions, while 
simultaneously creating smoother correlation gradients between ecoregions and reducing far-distant correlations. 

Figure 3.  Correlation functions for flux scaling factors. (a) Decrease in correlation with distance for three correlation functions. The shaded areas at the bottom 
of the graph indicate that the ecoregion changes at 800 km. (b–d) Examples of flux scaling factor correlations with the grid point marked by the white cross for (b) 
ecoregion-based correlations, (c) distance-based correlations, and (d) hybrid ecoregion–distance-based correlations.
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The hybrid approach is flexible in the sense that it can reproduce both the ecoregion- and distance-based corre-
lation functions: letting Ld approach infinity reduces Equations 2 to 3, while letting L approach infinity and Ld 
approach zero yields the ecoregion-based correlation function.

In this study, the flux parameters were assumed to have a prior uncertainty (one standard deviation) of 0.8 
(unitless) for land ecosystems (sbio) and 0.4 (unitless) for ocean flux parameters (socn) following CarbonTracker 
CT2019B (Jacobson et al., 2020). The CO2 flux parameters were treated as constants and were forecast using 
a simple persistence model. The ensemble mean parameter values were not relaxed back to the prior or initial 
parameter values, as is done in for example, CT2019B. Such relaxation techniques could be useful to avoid long-
term biases in parameters that are not well constrained by observations, and will be considered and expanded 
upon in future studies.

2.2.  Atmospheric Model

The atmospheric model in the TRACE system is the Weather Research and Forecasting (WRF) model coupled 
with Chemistry (WRF-Chem; Grell et  al.,  2005) version 3.6.1. WRF-Chem is a regional chemical transport 
model based on the mesoscale WRF model (Skamarock et al., 2008). The regional atmospheric model is used 
for primarily three purposes: (a) to compute the sensitivities of atmospheric CO2 observations to flux parame-
ters; (b) to dynamically downscale meteorology from a global data set to the mesoscale, which can improve the 
modeling of atmospheric CO2 transport (Agustí-Panareda et al., 2019); and (c) to act as the dynamic model for 
atmospheric variables and CO2 mole fractions, making it possible to simulate the error growth in these variables 
due to uncertainties in meteorological fields and model physics. The WRF-Chem version used in TRACE has 
been modified to allow for multiple sets of CO2 fluxes and tracers within one single run, making it computation-
ally efficient to perform ensemble runs with perturbed CO2 flux parameters. Atmospheric CO2 mole fractions are 
provided from a coarse-resolution global model as lateral boundary conditions for the limited-area model using a 
mass-conserving interpolation algorithm (Butler et al., 2020).

In this study, WRF-Chem was set up over North America (see Figure 2) on a spatial resolution of 27 km and with 
60 vertical levels. The time step was set to 60 s. Atmospheric CO2 was modeled as an inert passive tracer with 
no chemical reactions and no feedback to meteorology. The model configuration and physical parameterization 
schemes followed the setup in H. W. Chen et al. (2019), including a positive definite sixth-order diffusion scheme, 
the Noah land-surface model (F. Chen & Dudhia,  2001), the Mellor-Yamada Nakanishi and Niino Level 2.5 
boundary layer scheme (Nakanishi & Niino, 2006), and the Kain-Fritsch convective scheme (Kain, 2004) with no 
parameterized convective transport for tracers.

2.3.  Data Assimilation

The data assimilation system is based on the EnKF algorithm implemented in the Pennsylvania State University 
(PSU) WRF EnKF system (Zhang et al., 2006). This section gives a brief overview of the general data assimi-
lation algorithm, and Section 2.4 presents the specifics of the dual state and flux parameter estimation approach 
for CO2 inversions.

The Kalman filter is formulated in a Bayesian framework, where the optimal estimate of the state of a dynamical 
system is derived by combining information from a dynamic model and observations, taking their respective 
uncertainties into account. First, a prediction is made using the dynamic model. The prediction step is followed 
by the analysis step, during which the state vector x containing state variables from the dynamic model is updated 
in the Kalman filter according to

𝐱𝐱𝑎𝑎 = 𝐱𝐱𝑏𝑏 +𝐊𝐊
(

𝐲𝐲𝑜𝑜 −𝐇𝐇
(

𝐱𝐱𝑏𝑏
))

,� (4)

where x a is the updated posterior (or analysis) state vector after combining the prior model estimate and observa-
tions, x b is the prior (or background) state vector from the model prediction, y o is a vector containing all obser-
vations, H is the linearized observation operator relating model variables to observations, and K is the Kalman 
gain matrix that minimizes the expected variance. For a linear system with Gaussian errors, the Kalman gain 
takes the form

𝐊𝐊 = 𝐏𝐏𝑏𝑏𝐇𝐇⊤
(

𝐇𝐇𝐇𝐇𝑏𝑏𝐇𝐇⊤ + 𝐑𝐑
)−1

,� (5)
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where P b and R are the error covariance matrices for the prior (background) and observations, respectively. The 
Kalman gain determines the weights of the information provided by the prior and observations, and spreads the 
influence of observations in model space according to the prior error covariances. At the end of the analysis step, 
the prior error covariance matrix is updated to reflect the reduced uncertainty from assimilating the observations 
according to:

𝐏𝐏𝑎𝑎 = (𝐈𝐈 −𝐊𝐊𝐊𝐊)𝐏𝐏𝑏𝑏
,� (6)

where P a is the posterior (analysis) error covariance matrix, and I is the identity matrix.

The EnKF is a Monte Carlo approximation of the Kalman filter that is computationally feasible for high-dimensional 
systems with very large state vectors. In the EnKF, the prediction step is carried out through an ensemble of 
predictions using the full (potentially nonlinear) dynamic model. The prior error covariance matrix is replaced 
by the ensemble approximation

𝐏𝐏𝑏𝑏 =
1

𝑁𝑁 − 1
𝐗𝐗′𝐗𝐗′⊤

,� (7)

where N is the number of ensemble members and X′ is a matrix whose columns are state vectors of the ensemble 
perturbations (deviations from the ensemble mean).

It is often computationally challenging to invert the matrix in parentheses in Equation 5, which has the size 
p × p, where p is the number of observations. The data assimilation component in TRACE uses a deterministic 
square-root formulation of the EnKF to make it possible to assimilate a large number of observations. In this 
formulation, observations are assimilated serially under the assumption that R is diagonal, thus reducing the 
matrix inversion in Equation 5 to a scalar division. The ensemble mean state 𝐴𝐴 𝐱̄𝐱 is updated iteratively for each 
observation using Equation 4, replacing all x in the equation with 𝐴𝐴 𝐱̄𝐱 . In each iteration, the ensemble perturba-
tions are also updated to correspond to the new posterior error covariances after assimilating the observations:

𝐱𝐱′𝑎𝑎 = 𝐱𝐱′𝑏𝑏 − 𝐊̃𝐊𝐊𝐊𝐊𝐊′𝑏𝑏,� (8)

where x′ a and x′ b are the posterior and prior ensemble perturbations, respectively, and 𝐴𝐴 𝐊̃𝐊 is the reduced Kalman 
gain:

𝐊̃𝐊 = 𝛼𝛼𝐊𝐊, 𝛼𝛼 =

(

1 +

√

𝐑𝐑

𝐇𝐇𝐇𝐇𝑏𝑏𝐇𝐇⊤ + 𝐑𝐑

)−1

.� (9)

Because observations are assimilated one at a time, α, R, and HP bH ⊤ are scalars in Equation 9. It is also worth 
noting that the serial EnKF allows the use of the full observation operator 𝐴𝐴  rather than the linearized version H. 
For our purposes the observation operator is already linear (see Section 2.4 for more information), thus it makes 
no difference whether we use 𝐴𝐴  or H. After the analysis step, the ensemble members are propagated to the next 
analysis time using the dynamic model, and the whole cycle repeats.

In EnKF applications, the dimension of the state vector is typically much larger than the ensemble size, which 
can lead to rank deficiency and spurious correlations between unrelated state vector elements. This issue is often 
addressed by localizing the impact of observations to remove artificial correlations far away from the observa-
tions. Another potential issue is that the posterior errors are underestimated due to for example, neglected error 
sources, which can eventually lead to a collapse of the ensemble spread, also known as filter divergence. In this 
condition the EnKF will ignore the observations in Equation 4 because P b, and therefore K, approaches a zero 
matrix. To avoid filter divergence, the ensemble spread is often inflated before or after the analysis step. The 
specific localization and inflation methods used in this study are detailed in Section 2.5. For more information 
about the EnKF, we refer to Houtekamer and Zhang (2016).

2.4.  Ensemble-Based Simultaneous State and Parameter Estimation

The EnKF algorithm in TRACE has been well tested for numerical weather prediction (e.g., Zhang et al., 2006; 
Zhang et  al.,  2019). To extend the data assimilation algorithm for CO2 flux inversion purposes, an ESSPE 
approach was used, whereby the state vector was expanded to include both atmospheric CO2 mole fractions at 
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every grid point and model level, as well as parameters controlling surface CO2 fluxes (see Section 2.1). The act 
of including parameters in the state vector is called state augmentation (e.g., Annan, 2005). Here, the underlying 
assumption is that there are persistent errors in the flux parameters that vary slowly in time. The flux parameters 
differ from state variables from the dynamic model in two important aspects: (a) there is no prognostic equation 
for the parameters in the dynamic model, and (b) the parameters are not physical quantities that can be directly 
observed. In conventional inversions that include only fluxes or flux parameters in their state vectors, the fluxes 
or parameters are related to observations through an atmospheric transport model as part of the observation oper-
ator H. For the ESSPE approach, however, the links between flux parameters and atmospheric CO2 mole fractions 
are instead expressed in the prior error covariance matrix P b, which is estimated from the ensemble members (see 
Equation 7). Consequently, the observation operator relating modeled CO2 mole fractions to in situ CO2 observa-
tions becomes a simple interpolation operation in time and space to the observation points.

An additional advantage of the ESSPE approach is that the prior error covariance matrix P b can contain other 
error sources for simulated atmospheric CO2 mole fractions, including atmospheric transport errors and uncer-
tainties in CO2 lateral boundary conditions in regional inversions. Such errors can exhibit correlations over long 
distances and across time (e.g., H. W. Chen et al., 2019; Feng et al., 2019; McNorton et al., 2020). However, 
conventional inversions typically prescribe these errors in the observation error matrix R, which is often assumed 
to be diagonal (uncorrelated errors) to make the calculations tractable. In the ESSPE approach such errors would 
instead be included by adding additional perturbations to the ensemble members, and the off-diagonal covari-
ances would be preserved in P b.

The classical EnKF operates on the state vector one assimilation time step at a time. There are variations of 
the EnKF called ensemble Kalman smoothers that consider the state and/or observations over an assimilation 
window. In this study we performed CO2 flux inversions in TRACE using both a filter with an assimilation time 
step of 3 hr and no assimilation window, as well as a fixed-lag smoother with a window size of 1 week. For the 
smoother, TRACE assimilated 3-hourly observations over 1-week windows and optimized 3-hourly CO2 mole 
fractions and weekly flux parameters over the same time windows as the observations, with no overlaps between 
the windows.

2.5.  Covariance Localization and Inflation

A horizontal localization scheme was applied to in situ CO2 observations with the shape of the Gaspari and 
Cohn (1999) fifth-order polynomial, which has a similar shape as a Gaussian function but with a faster conver-
gence to zero at the tails. The radius of influence was set to 5,400 km; the relatively large radius of influence 
was found to be beneficial to optimize distant flux parameters. The same localization function was applied when 
updating both CO2 mole fractions and flux parameters, and no vertical localization was used for CO2 mole 
fractions.

When optimizing ecoregion-specific flux parameters, the distance-based covariance localization could lead to 
inconsistent updates to parameter values within the same ecoregion. Thus, when using the ecoregion-based corre-
lation function, the parameter values within each ecoregion were averaged after each data assimilation procedure 
to obtain a single parameter value for every ecoregion.

To avoid filter divergence, the ensemble spread (including both CO2 mole fractions and flux parameters) was 
inflated after each analysis step by relaxing the posterior ensemble perturbations to their prior values following 
Zhang et al. (2004):

𝐱𝐱′𝑎𝑎
relaxed

= (1 − 𝛼𝛼)𝐱𝐱′𝑎𝑎 + 𝛼𝛼𝐱𝐱′𝑏𝑏,� (10)

where 𝐴𝐴 𝐱𝐱′𝑎𝑎
relaxed

 is the new posterior ensemble perturbation for a particular ensemble member and α is the relaxation 
coefficient. In this study α was set to 0.2.

Even with this inflation scheme, the estimated errors in the parameters would inevitably decrease after each 
assimilation cycle as there is no error growth in the parameters due to the lack of error growth in the dynamic 
model for the flux parameters. Hence, the parameters were also partially relaxed to their prescribed initial pertur-
bations after each analysis step (except for the last analysis step) in preparation for the next cycle according to

𝐬𝐬′𝑎𝑎
relaxed

= sgn
(

𝐬𝐬′𝑎𝑎
)

⋅

[

(1 − 𝛽𝛽) ⋅ abs
(

𝐬𝐬′𝑎𝑎
)

+ 𝛽𝛽 ⋅ abs
(

𝐬𝐬′𝑖𝑖
)]

,� (11)
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where sgn(x) is the element-wise sign function (−1 if x is negative, 0 if x is 0, 
and 1 if x is positive), abs(x) is the element-wise absolute value function, and 
β is the relaxation coefficient for parameter values. The value of β was set to 
0.1 in our experiments. s′ is a vector containing perturbed parameter values, 
with 𝐴𝐴 𝐬𝐬′𝑎𝑎

relaxed
, 𝐬𝐬′𝑎𝑎 , and s′ i denoting the new relaxed parameter perturbations, the 

posterior parameter perturbations, and the initial parameter perturbations 
prescribed at the start of the experiments, respectively. Thus, at a minimum, 
the parameters will have an uncertainty of 10% of the initial uncertainty. The 
parameter inflation plays a critical role in preserving the links between the 
flux parameters and CO2 mole fractions in the off-diagonals of the prior error 
covariance matrix estimated from the ensemble members (Equation 7).

In Equation 11, the sgn(x) and abs(x) functions are included to account for 
cases with nonlinearities, for example, due to ensemble members having 
different atmospheric transport, which can result in corresponding elements 
in s′ a and s′ i having opposite signs. If that happens, the relaxation scheme 
could cause the ensemble spread to decrease instead of increase. In this study 
we considered only cases with perfect transport, in which case Equation 11 
takes the same form as Equation 10.

3.  Observing System Simulation Experiments
A series of observing system simulation experiments (OSSEs) were performed to thoroughly test the ESSPE 
approach in TRACE for regional CO2 inversions. The experiments focused on constraining biogenic and oceanic 
CO2 fluxes in North America during the month of July in 2016. We chose this case because first, the biogenic 
activity is strongest in summer, and second, it coincides with the first Atmospheric Carbon and Transport—
America (ACT-America) airborne field campaign (Davis et al., 2021), which can provide additional observations 
for assimilation and verification in future studies using real data.

The OSSEs were performed by first running a reference simulation with one set of CO2 fluxes, which was taken 
as the truth. Synthetic observations were then sampled with noise from the truth simulation according to a realis-
tic network of ground-based CO2 monitoring sites (see Figure 4). Next, we assimilated the synthetic observations 
in data assimilation experiments to assess how well the TRACE system could reconstruct the true fluxes. These 
experiments used different prior CO2 fluxes than the truth simulation but were otherwise identical to the refer-
ence. Further information about the data and experimental setup is provided in the following subsections.

3.1.  Atmospheric and Flux Data

The regional atmospheric model was driven by meteorological initial and boundary conditions from the 
ERA-Interim reanalysis (Dee et al., 2011). The ERA-Interim data had a spatial resolution of about 81 km, 60 
vertical levels, and 6-hourly time resolution. Initial and lateral boundary conditions in CO2 mole fractions were 
taken from the global CarbonTracker CT2019B data set (Jacobson et al., 2020), which has a spatial resolution 
of 3° × 2° longitude-latitude and 25 vertical levels. The initial conditions in atmospheric CO2 mole frac tions 
were created by first initializing WRF-Chem with mole fractions from CT2019B (linearly interpolated to 
the WRF-Chem grid), and then running the model for two months to allow the mesoscale model to simulate 
high-resolution gradients in atmospheric CO2. During the two-month spin-up, the meteorological fields were 
reinitialized from ERA-Interim every five days with an initial 12 hr spin-up each time.

The prior CO2 fluxes came from the prior fluxes in CT2019B with a spatial resolution of 1° × 1°. The biogenic 
fluxes were originally from a Carnegie-Ames Stanford Approach (CASA; Potter et al., 1993) biogeochemical 
model simulation called CASA GFED 4.1s, and the oceanic fluxes were based on the Takahashi et al. (2009) 
climatology. These monthly-mean fluxes had been postprocessed by the CarbonTracker team and downscaled 
to 3-hourly time resolution, as documented on the CT2019B website (http://dx.doi.org/10.25925/20201008). 
We spatially interpolated the CT2019B prior fluxes to the WRF-Chem grid using a first-order conservative 
regridding scheme. Because we chose to exclude the uncertainties in fossil fuel and wildfire emissions, these flux 

Figure 4.  Locations of assimilated in situ CO2 observations from tall 
(triangles) and short (squares) towers. A tower is considered tall if the 
measurement height is 100 m above ground level or higher. A combined 
triangle and square symbol denotes a tower with multiple measurement 
heights, and the location is then indicated by the lower square. The colors 
show the fractions of observations assimilated from the towers.
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components would have no effect in our perfect transport OSSEs, and were thus set to zero. In the final set of 
experiments, we used different fluxes for the truth simulation based on an alternative CASA simulation (CASA 
GFED_CMS) for biogenic fluxes and Ocean Inversion Fluxes (Jacobson et al., 2007) for oceanic fluxes, which 
are also used as prior fluxes in CT2019B.

3.2.  Observations

TRACE was tested with synthetic in situ CO2 observations, the locations of which are shown in Figure 4. We 
focused primarily on NOAA and Environment Canada towers (see Table S1 in Supporting Information S1 for a 
full list) that were available during the study period. The observations were sampled from the truth simulation as 
3-hourly instantaneous CO2 mole fractions at the locations and measurement heights of the real measurements. 
To simulate observation errors due to representativeness errors, errors in the observation operator, and measure-
ment errors, we added random errors to the observation values drawn from a Gaussian distribution with a mean 
of 0 and standard deviation of 1 ppm.

Many inversion systems use predefined times for when observations are considered for assimilation, for example, 
using only afternoon values for observations within the planetary boundary layer (PBL) to ensure well-mixed 
conditions. Here we used an alternative approach where instead of specifying the times a priori, we considered 
all observations and filtered out those that were deemed to not be representative of fluxes at the scales of interest. 
Specifically, we kept the observations that met at least one of the following criteria in summer: (a) the modeled 
PBL height at the observation site was 1,000 m or higher; (b) the observation was within the marine boundary 
layer; or (c) the observation was at least 100 m above the PBL in the model. The 100 m margin was included to 
account for possible errors in modeled PBL heights in real cases.

An observation error of 4 ppm was assigned to the in situ CO2 observations in the observation error covariance 
matrix when assimilating the observations. The observation error was set to a larger value than the true observa-
tion errors of 1 ppm to take into account that the specification of prior flux parameter error covariances is imper-
fect, which can be considered as part of representativeness errors in the model. Erroneous prior flux parameter 
error covariances can lead to incorrect upscaling of the flux corrections, and a larger observation error gives the 
inversions more room to avoid overfitting to observations in such cases.

3.3.  Experiments

A total of five OSSEs were performed, which are listed in Table 1. In the first two experiments (ECO and DIST), 
the true fluxes were generated by perturbing the prior fluxes with random scaling factors (80% uncertainty on 
land parameters and 40% on ocean parameters, see Section 2.1) sampled from the same prior flux parameter error 
covariance matrix as the ensemble members. In other words, we assumed that the true flux error covariances were 
known in these experiments. This assumption is highly over-optimistic; the purpose of these experiments was to 
test the data assimilation system under ideal conditions, which is useful to understand the “intrinsic” constraint 
on CO2 flux parameters given nearly perfect conditions (analogous to intrinsic predictability, see e.g., Melhauser 
& Zhang, 2012).

For the last three ALT experiments, we used alternative datasets for the biogenic and oceanic fluxes (see 
Section 3.1) in the truth simulation, reflecting a more realistic scenario where the true flux error statistics are 
unknown. The inversions used the same prior fluxes as before. Three inversions with different prior flux param-

Table 1 
Specification of True Fluxes and Prior Flux Parameter Error Correlations for the Ensemble Perturbations in the 
Experiments

Experiment True fluxes Prior flux parameter error correlations

ECO Prior perturbed by ecoregion-based parameters Ecoregion-based

DIST Prior perturbed by distance-based parameters Distance-based

ALT_ECO Alternative biogenic and oceanic fluxes Ecoregion-based

ALT_DIST Alternative biogenic and oceanic fluxes Distance-based

ALT_HYBRID Alternative biogenic and oceanic fluxes Hybrid-based
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eter error correlation functions (Section 2.1) were performed to investigate how the prescribed prior flux param-
eter errors influence the inverted fluxes. All inversion experiments were performed using 40 ensemble members 
with perturbed flux parameters. The flux parameter perturbations were sampled from the prior flux parameter 
error covariance matrices assuming normally distributed errors. After drawing the perturbations, we recentered 
the ensemble members to ensure a prior ensemble mean flux parameter value of 1 at each grid point.

The data assimilation experiments were started on 3 June 2016 at 0000 UTC to allow the system to spin up for 
4 weeks. First, we ran the atmospheric model for 2 weeks without assimilating observations to establish the 
initial sensitivities of atmospheric CO2 mole fractions to the flux parameters. Next, in situ CO2 observations were 
assimilated to jointly constrain the atmospheric CO2 mole fractions and CO2 flux parameters. The first 2 weeks 
of assimilation were discarded to account for spin-up. Because most experiments used an assimilation window of 
1 week, the experiments ended on 5 August 2016, 9 full weeks after the start date. Posterior fluxes beyond July 
2016 were discarded in the analyses to focus on the month of July.

We evaluated the performances of the inversions based on the errors in spatially integrated posterior fluxes. The 
error is defined as the difference between the posterior or prior fluxes and the true fluxes from the reference 
simulation. We also examined the estimated errors from the ensemble spread, which we will refer to as uncertain-
ties to differentiate them from the true errors. For the errors (and uncertainties) we calculated the relative error 
(uncertainty) reduction, defined as 1 minus the ratio of the posterior and prior absolute errors (uncertainties). The 
closer the relative error reduction is to 100%, the better the inversion performed, while a negative error reduction 
indicates that the inversion degraded the prior fluxes.

4.  Results and Discussion
4.1.  Idealized Inversions With Known Prior Flux Parameter Error Covariances

In the first ECO experiment, the true NEE fluxes were generated by perturbing the prior NEE with ecoregion-based 
scaling factors (see Section 2.1 for details). Figure 5 shows the true scaling factors for six selected ecoregions 
along with the estimated scaling factors from the inversion. The prior parameter values were initially 1 for all 
ecoregions, and this was also the value for the estimated parameters during the first 2 weeks when no observa-
tions were assimilated. After 2 weeks the system started to assimilate in situ CO2 observations to simultaneously 

Figure 5.  Time evolution of flux scaling factors in the ECO experiment when assimilating observations for six selected ecoregions: (a) Warm Crops, (b) Cool Crops, 
(c) Warm Grass/Shrub, (d) Warm Forest/Field, (e) Northern Taiga, and (f) Tropical. The black line shows the truth, the blue line is the ensemble mean estimate, and the 
blue shading represents the ensemble spread (one standard deviation from the ensemble mean). The orange line is the ensemble mean from the experiment that does not 
use an assimilation window. Flux values within the spin-up period (left gray shading) and after the month of interest (right gray shading) were omitted in the subsequent 
analyses.
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optimize the atmospheric CO2 state and CO2 flux parameters, which brought the estimated scaling factors closer 
to the true values. For some ecoregions, for example, Warm Crops and Cool Crops (Figures 5a and 5b), the 
inversion initially slightly overcorrected the flux parameters, and required one additional assimilation cycle for 
adjustments. This overcorrection is more likely to occur at the beginning of the data assimilation window due to 
the large prior uncertainties and model–data mismatches before any observations have been assimilated. The first 
2 weeks of assimilation were therefore discarded as spin-up.

In addition to improving the ensemble mean estimates of the flux parameters, the posterior uncertainties in the 
parameters were also continually updated after each assimilation cycle, as shown by the shadings in Figure 5. 
In ecoregions with flux parameters that were relatively well constrained by the atmospheric observations, for 
example, Warm Crops (Figure 5a), Cool Crops (Figure 5b), and Warm Forest/Field (Figure 5d), the posterior 
uncertainties were also strongly reduced.

The flux parameter for the Tropical ecoregion in Figure 5f converged slower to the truth than the other flux param-
eters due to the low observational sensitivity to fluxes in the remote Tropical ecoregion. In the ESSPE approach, 
it is possible to constrain distant fluxes even with a relatively short 1-week assimilation window because (a) the 
errors in the flux parameters are assumed to be strongly correlated in time (here the parameters were treated as 
constants); and (b) the prior error covariances, which contain the link between the CO2 mole fractions and fluxes, 
are cycled between assimilation windows. Thus, later observations can constrain past parameter values as air 
from distant regions arrives at the observation sites. This aspect is shown clearly by the experiment using a filter 
without an assimilation window (orange line in Figure 5), which was still able to estimate flux parameters in areas 
remote from observations such as the Tropical ecoregion. The filter inversion exhibited stronger fluctuations in 
estimated flux parameters at the start of the experiment, which were reduced when using a 1-week assimilation 
window because some of the random errors were averaged out over the assimilation window. We therefore show 
results from inversions that used the assimilation window setup in the subsequent analyses.

Figures 6a–6c show the spatial distribution of the monthly NEE from the ECO experiment for the prior fluxes, 
true fluxes, and posterior fluxes after assimilating observations, respectively. The fluxes were integrated over 
the month of July 2016. When both the true fluxes and the perturbed fluxes in the ensemble members were 
derived using ecoregion-based scaling factors, the system was able to accurately retrieve the true fluxes (compare 
Figures  6c and  6b). The difference in monthly domain-integrated NEE between the posterior and truth is 

Figure 6.  Spatial map of monthly net ecosystem exchange integrated over July 2016 for the (a, d) prior fluxes, (b, e) true fluxes, and (c, f) posterior fluxes after 
assimilating observations in the ECO (first row) and DIST (second row) experiments. (a, d) are the same except that the latter also shows labels for the states and 
provinces that are mentioned in the text: British Columbia (BC), Alberta (AB), Saskatchewan (SK), North Dakota (ND), Minnesota (MN), Wyoming (WY), Colorado 
(CO), Nebraska (NE), Iowa (IA), Illinois (IL), and Indiana (IN). The Corn Belt covers roughly eastern Nebraska, southern Minnesota, Iowa, Illinois, and western 
Indiana.
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−3.2 Tg C month −1, compared with −134.1 Tg C month −1 for the prior and truth, corresponding to a 96.9% 
relative error reduction. Although the ensemble-mean scaling factor for the Tropical ecoregion did not reach the 
true value (Figure 5f), the NEE in this ecoregion was relatively small and therefore had a negligible effect on the 
error in domain-integrated NEE. In terms of spatial correlation, the correlation between the posterior fluxes and 
the truth is r = 1.0, compared with r = 0.77 for the prior. The inversion using a filter setup showed similar results 
(not shown).

For the ECO experiment there were 15 flux parameters to optimize, one for each ecoregion or ocean basin. To 
test a more complex case, the flux parameters were instead assumed to vary per grid point with a distance-based 
error correlation (500 km correlation length for land fluxes) in the DIST experiment (see Section 2.4 for details). 
Figure 6e shows the true NEE for the DIST experiment and Figure 6f the posterior NEE after assimilating obser-
vations. There are some differences between the posterior and true fluxes, most noticeable in western Wyoming 
and Colorado where the inversion overestimated the strength of the CO2 sink, likely due to the scarcity of obser-
vations around this region. Nevertheless, the posterior fluxes are considerably closer to the truth than the prior 
fluxes in terms of both spatial pattern (r = 0.87, compared with r = 0.68 for the prior fluxes) and domain-integrated 
NEE; the difference from the truth is −2.9 Tg C month −1, compared with −134.1 Tg C month −1 for the prior 
fluxes, corresponding to a 97.9% relative error reduction. Repeating the inversion with an extensive theoretical 
in situ network—tower observations at 100 m above ground level spaced 540 km apart—reduced the erroneous 
differences in the posterior fluxes and increased the spatial correlation to r = 0.93 (not shown).

In addition to improving the CO2 flux estimates, the ESSPE algorithm simultaneously reduced the errors in simu-
lated atmospheric CO2 mole fractions. In the ECO experiment, the domain-integrated root-mean-square error 
in XCO2 (excluding 20 grid points around the edges of the domain) was reduced, on average, from 0.65 ppm in 
the simulation with prior fluxes, to 0.03 ppm after assimilating the CO2 observations (Figure S2a in Supporting 
Information S1). For the DIST experiment, the corresponding root-mean-square error in XCO2 was reduced on 
average from 0.76 to 0.23 ppm (Figure S2b in Supporting Information S1).

4.2.  Inversions With Unknown Prior Flux Error Statistics

In the previous experiments, the true flux parameters and ensemble perturbation parameters were sampled from 
the same error covariance matrix, and with a sufficiently large ensemble the truth would lie in the subspace 
spanned by the ensemble members. In reality, the joint distribution of the true flux errors are unknown and 
largely uncertain. A new set of experiments were therefore carried out to test a more realistic scenario where the 
true flux errors and their statistics were not known a priori. The prior fluxes in these experiments were the same 
as in the previous experiments, while the true fluxes were obtained from different datasets than the prior fluxes. 
Figures 7a–7c show the spatial distribution of monthly NEE in July 2016 for the prior and true fluxes, and the 
difference between them. The prior fluxes have a weaker carbon sink than the truth in the Midwest (north central 
United States), British Columbia, and Alberta. In most other parts of the land areas in the domain, the differences 
in NEE between the prior and true fluxes tend to be negative.

Three inversion experiments were carried out with different prior flux parameter error covariances in the 
inversions: ecoregion-based (ALT_ECO), distance-based (ALT_DIST), and a new hybrid scheme based 
on both ecoregions and distance (ALT_HYBRID). Figures  7d–7f show the spatial patterns of the posterior 
fluxes from the three experiments. The posterior fluxes show a stronger CO2 sink in the Corn Belt region in 
all three inversions, especially in Minnesota and Iowa, which better matches the true fluxes (Figure 7b). The 
differences between the posterior and true fluxes (Figures  7g–7i) show that the positive NEE differences in 
Nebraska, Illinois, and Indiana persist in the posterior fluxes, but the differences are generally smaller in the 
inversions compared with the prior fluxes, except for the ALT_ECO experiment. The posterior fluxes from the 
ALT_ECO inversion are further from the truth in these regions than the prior fluxes, and furthermore show larger 
negative deviations from the true fluxes in patches around southern Saskatchewan and western/eastern North 
Dakota. These errors show clear patterns of the prescribed ecoregions in their spatial distribution (Figure 7g) and 
were most likely caused by erroneous spreading of observation information through the ecoregion-based prior 
flux parameter error correlations.

All three inversions partially retained the positive NEE biases from the prior in the northwestern part of the 
domain over land, as well as the negative NEE biases in the southern part of the domain. The posterior fluxes 
from the ALT_DIST and ALT_HYBRID inversions generally show larger reductions in the NEE biases than the 
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ALT_ECO inversion in these regions. One exception is the region in southeastern Mexico, which is predominantly 
classified as the Tropical ecoregion, where the posterior fluxes from the ALT_ECO inversion show the largest 
error reductions. In terms of XCO2, the domain-integrated root-mean-square error was reduced on average from 
0.47 ppm in the simulation with prior fluxes, to 0.29, 0.26, and 0.24 ppm in the ALT_ECO, ALT_DIST, and 
ALT_HYBRID experiments, respectively (Figure S3 in Supporting Information S1).

Figures 7j–7l show the estimated uncertainties in the posterior fluxes from the ensemble spread (one standard 
deviation). Comparing the posterior uncertainties with the true errors in Figures 7g–7i, we see that the uncertain-
ties are generally underestimated in the ALT_ECO inversion, especially around the Corn Belt region, suggesting 

Figure 7.  Spatial map of monthly net ecosystem exchange integrated over July 2016 for the (a) prior fluxes, (b) true fluxes, and (c) the difference between prior and 
true fluxes for the ALT experiments. Panels (d–f) show the posterior fluxes for the same period from the three ALT inversion experiments with different correlation 
functions (ALT_ECO, ALT_DIST, and ALT_HYBRID), panels (g–i) show the corresponding differences between the posterior and true fluxes, and panels (j–l) show 
the estimated posterior flux uncertainty derived from the ensemble spread (one standard deviation).
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that inversions using this type of prior flux parameter error covariances require a larger covariance inflation 
for  the flux parameters. Overall, the posterior uncertainties from the ALT_DIST and ALT_HYBRID inversions 
correspond well to the true errors.

The time evolutions of daily domain-integrated NEEs are shown in Figure 8 for the prior, true, and posterior 
fluxes from the ALT experiments. All fluxes exhibit similar daily variations because they were downscaled to 
3-hourly NEE using the same algorithm and driving data. The domain-integrated prior fluxes show an overall 
overestimated negative NEE throughout the period of interest. The negative NEE bias is substantially reduced 
in all three ALT inversions after assimilating the in situ CO2 observations. Some negative biases persist in the 
posterior fluxes, particularly in the beginning and end of July. In the beginning of July, the biases in the posterior 
fluxes are mainly caused by small-scale errors in the Corn Belt region and negative NEE biases in the Southern 
United States and southeastern Mexico, while the biases at the end of July are mostly due to negative NEE biases 
in the Southern United States (not shown).

4.3.  Regional Fluxes From Inversions

Next, we assessed the performance of the inversions in terms of constraining regional fluxes. A grid-scale 
comparison between the prior and posterior fluxes with the truth can be misleading because the prior and true 
fluxes have the same spatial resolution, while the posterior fluxes from the inversions introduced additional 
small-scale variations on the spatial resolution of the atmospheric model. Thus, metrics such as spatial corre-
lation and root-mean-square error would tend to show unfavorable results for the high-resolution posterior 
fluxes. Instead, we divided the study domain into six regions of roughly the same area (5.3–5.9 × 10 6 km 2) and 
calculated the total NEE in each region. Figure 9a shows the regional NEEs for the prior, true, and posterior 
fluxes from the ALT experiments, and the corresponding domain-integrated NEEs are shown in Figure 9b. 
The six regions are displayed in Figure 9c together with the spatial distribution of the true fluxes and loca-
tions of observations. As seen from Figure 9a, the inversions were generally able to reduce the errors in the 
regional fluxes compared with the prior. Two exceptions are the NW and N regions, where the combination 
of positive and negative NEE biases in the prior result in a regionally integrated prior NEE that is close to 
the truth. In the N region, only the ALT_HYBRID inversion produced posterior fluxes with a smaller error 
(12.2 Tg C month −1) than the prior fluxes (−16.6 Tg C month −1). The overall performance in capturing the 
regional NEEs was quantified by the sum of absolute errors in regional fluxes: 157.7 Tg C month −1 for the 
prior fluxes, 103.3 Tg C month −1 for ALT_ECO, 92.6 Tg C month −1 for ALT_DIST, and 77.5 Tg C month −1 
for ALT_HYBRID. Thus, in terms of regional fluxes, all inversions improved upon the prior fluxes, with the 
largest relative error reductions in the ALT_HYBRID inversion (50.9%), followed by ALT_DIST (41.3%) and 
ALT_ECO (34.5%).

For the domain-wide NEE, the posterior fluxes from the inversions were substantially closer to the true values 
than the prior fluxes in all experiments (Figure 9b). The relative error reductions in the domain-integrated NEE 
are 80.6% for the ALT_ECO experiment, 88.5% for ALT_DIST, and 84.4% for ALT_HYBRID. Although the 

Figure 8.  Time evolution of domain-integrated net ecosystem exchange for the ALT experiments. Flux values within the spin-up period (left gray shading) and after 
the month of interest (right gray shading) were omitted in the analyses.
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ALT_HYBRID inversion has the smallest error in regional fluxes, the ALT_DIST inversion performed margin-
ally better in terms of estimating the domain-wide NEE.

Figures 9a and 9b also show the estimated uncertainties (two standard deviations) in the prior and posterior fluxes 
as error bars. The prior uncertainties in regional NEE vary slightly between the three ALT experiments due to 
the different specifications of prior flux parameter error correlations; the error bars on the prior fluxes depict the 
average prior uncertainties. The reductions in the posterior estimated uncertainties in domain-integrated NEE 
relative to the prior uncertainties are 82.1% for the ALT_ECO experiment, 73.1% for ALT_DIST, and 77.6% for 
ALT_HYBRID. For the ALT_DIST and ALT_HYBRID experiments, the relative uncertainty reductions are a 
bit lower but generally in agreement with the relative error reductions. The ALT_ECO inversion results tend to 
underestimate the true errors, as was also seen when comparing Figures 7g and 7j. Both the prior and posterior 
uncertainties in all experiments underestimate the errors in regional NEE in the S and SE regions. In the other 
regions, as well as for the domain-wide NEE, the posterior uncertainties from the ALT_DIST and ALT_HYBRID 
inversions correspond well to the true errors, and the true values fall within two standard deviations of the poste-
rior estimates.

5.  Summary and Conclusions
This study introduced the TRACE Regional Atmosphere–Carbon Ensemble (TRACE) data assimilation system 
and demonstrated its CO2 flux inversion capabilities in a series of controlled experiments. The main novelty of 
TRACE is its ensemble-based simultaneous state and parameter estimation (ESSPE) approach, which opens up 
possibilities to assimilate dense high-resolution observations from for example, spaceborne CO2 observations. 
Here we focused on rigorously testing the system using synthetic observations from the conventional CO2 tower 
network. Some error sources were deliberately excluded to simplify the interpretation of the results. As a conse-
quence, the results are overly optimistic, and should be considered as a demonstration of the capabilities of the 
TRACE framework, and not as an assessment of the observational network.

The experiments were performed for July 2016 in a domain covering a large part of North America at a spatial 
resolution of 27 km. Most inversion experiments assimilated observations using a 1-week assimilation window. 
Under ideal conditions where the true flux error covariances are known, TRACE was able to reconstruct the true 
fluxes to a large degree; the posterior fluxes reduced the errors in monthly domain-integrated NEE by about 97% 
relative to the prior flux errors, and with spatial correlations of r = 0.87 and above between the posterior and true 
fluxes. In the second set of experiments, we considered a more realistic case where the true flux errors and their 
statistics are unknown. The true fluxes in these experiments were derived from different datasets than the prior 
fluxes, and three different prior flux parameter error correlations were tested. The inversions with distance-based 

Figure 9.  Net ecosystem exchange in July 2016 from the ALT experiments for the prior, true, and posterior fluxes integrated over (a) six regions and (b) the whole 
model domain. The regions are shown in (c) together with the true fluxes and locations of tower observations. The error bars in (a, b) represent the posterior flux 
uncertainty derived from the ensemble spread (two standard deviations from the ensemble mean).
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and hybrid (ecoregion- and distance-based) flux error correlations resulted in the largest error reductions in 
monthly domain-integrated NEE (88.5% and 84.4% relative to the prior errors, respectively). In terms of regional 
fluxes on a spatial scale of 10 6 km 2, the distance-based inversion was outperformed by the hybrid-based inver-
sion (41.3% and 50.9% relative error reductions, respectively). The inversion with ecoregion-based flux parame-
ters performed the worst for both domain-integrated (80.6% relative error reduction) and regional (34.5% relative 
error reduction) NEE, but nevertheless substantially reduced the biases in the prior fluxes.

TRACE provides not only estimates of CO2 fluxes, but also uncertainties on the flux estimates derived from the 
ensemble spread. The inversion with ecoregion-based flux parameters had a slight tendency to underestimate the 
uncertainties due to the erroneous specification of prior flux parameter error correlations. For the distance-based 
and hybrid-based inversions, the estimated posterior uncertainties in domain-integrated and regional NEEs 
correspond well to the true errors, except in regions where the prior uncertainties were already underestimated.

In the ESSPE approach, the state vector consists of both CO2 flux parameters and atmospheric CO2 mole 
fractions. The CO2 mole fractions are updated jointly with the flux parameters to reflect the adjustments to the 
parameter values. In this formulation, assuming persistent flux parameter errors, it is not necessary to include 
an assimilation window to optimize flux parameters that are distant from the observations, as the sensitivities 
of atmospheric CO2 mole fractions to CO2 flux parameters are carried by the ensemble perturbations and main-
tained between assimilation cycles. An assimilation window can be used to smooth the inversion solution over 
the time window, and to account for flux parameter errors that are decorrelated in time. A possible concern 
with including atmospheric CO2 mole fractions in the state vector is that the mass of atmospheric CO2 is not 
necessarily conserved, especially when covariance localization is applied. However, as shown by the exper-
iments in this study, these errors were not detrimental to our regional inversion results, possibly because the 
errors in atmospheric CO2 mole fractions were continuously transported out of the limited-area model domain, 
and thus did not accumulate over time (see e.g., H. W. Chen et al., 2019). For global dual-state inversions it 
may be beneficial to introduce algorithms that reduce mass conservation errors (Z. Liu et al., 2022).

This paper focused on giving an overview of the TRACE framework and ESSPE approach, and did not explore 
the full potential of the coupled atmosphere and carbon data assimilation system. Nevertheless, some new innova-
tions were already shown, such as the dynamic selection of observations and hybrid ecoregion- and distance-based 
prior flux parameter error correlation scheme. Future studies will consider other important aspects of CO2 inver-
sions including assimilation of XCO2 from satellites, more refined prior flux parameter error covariances, opti-
mization of CO2 lateral boundary conditions and fossil fuel emissions, inclusion of atmospheric transport errors, 
and assimilation of meteorological observations to improve the simulated atmospheric transport. Here we have 
shown that the ESSPE approach is suitable for regional CO2 flux inversions, and that the TRACE system offers a 
promising platform for developing next-generation coupled atmosphere and carbon data assimilation techniques.

Data Availability Statement
All data used in this study are publicly available. The prior fluxes from CT2019B can be downloaded from 
the CarbonTracker website: https://gml.noaa.gov/ccgg/carbontracker/download.php. The WRF-Chem model 
is freely distributed to the scientific community by NCAR at https://www2.mmm.ucar.edu/wrf/users/down-
load/get_source.html. The code for the EnKF algorithm is provided by the Penn State Center for Advanced 
Data Assimilation and Predictability Techniques (ADAPT) at http://adapt.psu.edu/index.php?loc=outreach 
under the Download Links section. Data and scripts supporting this study are available through Zenodo at 
https://doi.org/10.5281/zenodo.6583536.
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