
HAL Id: hal-04032294
https://hal.science/hal-04032294v1

Submitted on 31 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A tutorial on the formal framework for spiking neural P
systems

Sergey Verlan, Gexiang Zhang

To cite this version:
Sergey Verlan, Gexiang Zhang. A tutorial on the formal framework for spiking neural P systems.
Natural Computing, 2023, �10.1007/s11047-022-09896-0�. �hal-04032294�

https://hal.science/hal-04032294v1
https://hal.archives-ouvertes.fr

Springer Nature 2021 LATEX template

A Tutorial on the Formal Framework for

Spiking Neural P Systems

Sergey Verlan1* and Gexiang Zhang2

1*Univ Paris Est Creteil, LACL, F-94010 Creteil, France.
2School of Automation, Chengdu University of Information

Technology, Chengdu, 610225, China.

*Corresponding author(s). E-mail(s): verlan@u-pec.fr;
Contributing authors: zhgxdylan@126.com;

Abstract

The model of Spiking Neural P systems (SNP systems) is a widespread
computational model in the area of membrane computing. It has numer-
ous applications, especially related to machine learning. Most of these
applications require a custom variant of SNP systems, differing by
the rule form and by semantics. The model of network of cells and
the formal framework for SNP systems were developed to help the
analysis of such custom models, to compare and relate them to each
other and to other models of computing. The model specifies the data
structure, the rules and the update procedure, while the formal frame-
work concentrates on how the input, output and the choice of the
update strategy are handled. Together, these concepts specify a con-
crete instance of a network of cells that strongly bisimulates the desired
model, thus making easier the process of the creation of new mod-
els and the extension of existing ones. Since the formal framework
is rather generic, it might be slightly complex to use it for concrete
cases. This paper provides a tutorial that explains the model of net-
works of cells and the basic concepts used in the formal framework for
SNP systems. It gives a series of examples for the analysis of existing
models, their bisimulation and their extension by different features.

Keywords: Spiking neural P systems, membrane computing, formal
framework, tutorial

MSC Classification: 68-01 , 68Q07 , 68Q42 , 68Q85

1

Springer Nature 2021 LATEX template

2 A Tutorial on the Formal Framework for Spiking Neural P Systems

1 Introduction

Membrane computing is a branch of natural computing inspired by the struc-
ture and the functioning of living cells (Păun, 2000; Pan et al, 2019). Its models,
called P systems, can be considered as distributed multiset rewriting, from a
theoretical point of view (Valencia-Cabrera et al, 2020; Orellana-Mart́ın and
Riscos-Núñez, 2020; Zhang et al, 2020). Beside many theoretical results and
relations to other multiset-based models (like chemical reaction networks, Petri
nets, register machines etc.), P systems have numerous applications in differ-
ent fields ranging from biological modelling to robotic control and machine
learning, we refer to (Csuhaj-Varjú et al, 2021; Zhang et al, 2021a) for a recent
overview. An SNP system is a variant of P systems that is particularly suitable
for this last field and there are numerous results showing that it can provide
highly competitive algorithms for different real-world problems, see a recent
overview in (Rong et al, 2018; Zhang et al, 2017).

P systems, as well as the related models, are mostly based on the multiset
data structure (Dong et al, 2022; Zhang et al, 2021b). While a multiset can be
seen as a set whose elements have multiplicity that can be greater than one, it is
also possible to consider a multiset to be a vector of non-negative integer num-
bers (since its support/alphabet is finite). There are numerous models using a
multiset or a vector of numbers as a data structure, e.g., P systems, Petri nets,
vector addition systems, register machines, population protocols, Boolean net-
works etc. (this list is far from being exclusive) (Battyányi and Vaszil, 2020;
Adorna, 2020). In order to be able to analyse and compare different P systems
and also multiset-based models in general, the formal framework (FF) for P
systems was developed (Freund and Verlan, 2007; Verlan et al, 2020).

The core of FF is the family of models called Network of Cells (NC). This
family corresponds to a very generic computing model that abstracts many
computing models using multisets/vectors of numbers as a data structure. The
data structure of NC is composed from distributed (spatially distinct) locations
called cells each containing a multiset (of objects). Hence, as a whole, it can
be seen as a vector of multisets. Because of the equivalence between a multiset
and a vector of (non-negative) integers, the above representation can also be
seen as a vector of vectors of integers. Obviously, a vector of vectors can be
seen as a big vector obtained as a concatenation of individual components,
the corresponding procedure being called flattening. However, doing so the
location information might be lost and also the complexity of rules needed to
handle the flattened model might increase.

The computation is performed by rules updating the contents of multisets
and guarded by different context conditions verifying if the vector contents
belongs to some (semilinear) sets. This allows to define the applicability of
a rule and also of a group of rules, yielding the set of applicable multisets
(groups) of rules. Also, an implicit secondary structure can be deduced by
considering all cells involved in a single rule to be part of a connection. In the
general case, this induces a hypergraph, however, in most of the situations a
graph or even a tree structure is obtained.

Springer Nature 2021 LATEX template

A Tutorial on the Formal Framework for Spiking Neural P Systems 3

The important point of the definition of NC is that it does not specify a
default semantics and, in particular, how the data are input, output and pro-
cessed. The definition is given in terms of abstract functions that produce the
input, restrict the rule set to be applied and provide the output. These details
are completed using the formal framework, which provides ready concrete
specifications for common cases and mechanisms for more complex definitions.
Thus, a concrete instance of a model from the family is obtained.

From the description above it looks clear that most of models that have
a multiset (or a vector of multisets) as a data structure and that update this
structure based on some kind of rewriting rules can be directly rewritten in
terms of network of cells. This implies that there is trivial strong bisimulation
between corresponding models and the matching instance of NC. We recall that
in such case most properties valid for the NC are also valid for the target model.
Hence, the model of network of cells combined with the formal framework gives
a powerful tool for the specification, the analysis and the comparison of most
models using multiset as a data structure.

In this paper we present the functioning of the model of network of cells
and list some important bricks provided by the formal framework, especially
in the context of SNP systems. The presentation is not focused on definitions,
but rather aims to help in the understanding how to use the model. We present
a series of examples and use cases showing how to use network of cells and the
formal framework to understand, compare and extend models from the area
of SNP systems.

The structure of the paper is organized as follows. Section 2 gives an intro-
duction to the formal framework and SNP systems model. It also discusses
the particularities of the representation of SNP systems in the formal frame-
work. Section 3 considers some existing models from the area of SNP systems.
It shows how they can be translated to NC using FF and explains how to
analyse the obtained results. Section 4 gives examples of bisimulation between
different variants of SNP and P systems using NC as intermediate. Section 5
explains how to extend existing systems with new features based on their NC
descriptions. Finally, Section 6 summarizes the main points discussed in the
paper and gives further research ideas.

2 Network of cells, formal framework and SNP
systems

This section recalls the ideas behind the model of NC and the FF. We will
not present the definitions and we refer to (Verlan et al, 2020; Freund and
Verlan, 2007) for the formal details. This section also quickly presents SNP
systems and the restrictions that can be considered in the formal framework
when using SNP systems.

We start with a discussion on the links between multisets, vectors of num-
bers and vectors of multisets. For an alphabet V (of objects), a multiset over
V is a mapping M : V → N, where N is the set of non-negative integers. It is

Springer Nature 2021 LATEX template

4 A Tutorial on the Formal Framework for Spiking Neural P Systems

custom to denote a multiset using a string w over V , where the multiplicity
of each symbol corresponds to the value of M : |w|a = M(a), for all a ∈ V .
It should be clear that there might be several strings denoting the same mul-
tiset. By numbering the symbols from V (V = {a1, . . . , an}) it is possible to
associate a vector v with M , where the component i (1 ≤ i ≤ n) of v is equal
to M(ai). Hence, for a given finite alphabet V , there is a straight link between
a multiset over V , a (commutative) string over V and a vector from N|V |.

Example 1 Consider the alphabet V = {a, b, c} and the multiset M defined by
M(a) = 3, M(b) = 0, M(c) = 1. Then M can be written as a string as aaac, aaca,
acaa or caaa. Also, M can be written as a 3-dimensional integer vector as (3, 0, 1).

Remark 1 We would like to note that in the model of register machines (Minsky,
1967), the configuration is described in terms of a vector of non-negative numbers.
So, it is quite clear that the corresponding data structure is a multiset.

A vector of multisets (or a vector of vectors) can be seen as a single multi-
set over a bigger alphabet. This can be simply observed by taking the vector
representation of the multiset. Then, by concatenating the corresponding vec-
tors, a vector of higher dimension is obtained, that corresponds to a bigger
multiset. We call this procedure flattening. We remark that while a vector of
multisets is equivalent to its flattened version, it is still interesting to consider
it in this manner, as it allows to spot the positional information easier.

Example 2 Consider the alphabet V = {a, b, c} and the vector of multisets v =
(aab, abc, abbcc). In the vector representation this corresponds to the following vector
of vectors of integers: ((2, 1, 0), (1, 1, 1), (1, 2, 2)). By concatenating each component
a vector v1 = (2, 1, 0, 1, 1, 1, 1, 2, 2) is obtained. This corresponds to the multiset
a1a1b1a2b2c2a3b3b3c3c3 over the alphabet V ′ = {a1, b1, c1, a2, b2, c2, a3, b3, c3}. We
observe that the first representation looks simpler and allows to better understand
the structure of the multiset.

2.1 Network of cells and the formal framework

We start with the general schema depicting the relation between NC and FF.
As shown on Fig.1, the definition of NC specifies the notions of configuration
and rule. More precisely, a configuration is a vector of multisets, each com-
ponent being called a cell. Rules are defined as vector of multisets rewriting,
guarded by context conditions. A context condition is defined via a vector of
control languages, allowing the application of a rule only if each component of
the current configuration belongs to the corresponding language. Hence, the
definition of network of cells defines the applicability of a rule, the computation
of the set of multisets of applicable rules (for a given configuration) and how a
group (multiset) of rules is applied altogether, we refer to (Verlan et al, 2020)

Springer Nature 2021 LATEX template

A Tutorial on the Formal Framework for Spiking Neural P Systems 5

Configuration

Rules

Set of applicable multisets
of rules

Application

Derivation mode

Input

Output

Derivation mode

Input

Output

Family of networks of cells Network of cells Formal framework

instance

Fig. 1 An instance of a network of cells is obtained by specifying ingredients (input, output
and derivation mode) from the formal framework.

for more details. The computation follows the algorithm below (also depicted
on Fig. 2):

1. At each discrete time t ≥ 0, for a configuration C(t) (initially fixed, given
by the definition) a configuration C ′(t) is computed by combining C(t) and
the input at time t.

2. Based on C ′(t) and the set of rules R, the set of multisets of applicable
rules Appl(R, C ′(t)) is computed.

3. This set is restricted according to the derivation mode (strategy) δ, yielding
the set Appl(R, C ′(t), δ).

4. If the size of Appl(R, C ′(t), δ) is greater than one, a non-deterministic choice
is performed in order to obtain the multiset of rules to be applied R (if the
size is one, then the corresponding multiset is directly taken).

5. The multiset of rules R is applied to the configuration C ′(t) yielding the
next configuration C(t+ 1).

6. The above process is repeated for t+1. The result is collected at each time
step using an output function. It is possible to consider a halting mechanism
and a single result.

Derivation mode

One of the most important ingredients provided by the formal framework are
the derivation modes. They concretize the semantics of the corresponding NC
model, allowing it to be further considered in proofs or implementations. Tech-
nically, derivation modes are defined as set restrictions of the set of multisets of
applicable rules computed for some configuration Appl(R, C). This allows to
extract from Appl(R, C) the multiset(s) of rules satisfying the derivation mode
property. We give below the informal description of some common derivation
modes, see (Freund and Verlan, 2007) for more formal details.

Asynchronous (asyn): there is no additional restriction.
Sequential (seq): allows the application of only one rule at each time step.
Maximally parallel (max): at each step only maximally parallel multisets of
rules from Appl(R, C) can be used. A multiset (group) of rules R is maximally

Springer Nature 2021 LATEX template

6 A Tutorial on the Formal Framework for Spiking Neural P Systems

Configuration C

Input

Set of rules R 1.
Compute the set

of applicable
multisets of rules

Appl(R,C’)

r1
1...rn

1

r1
p...rs

p

r1
1...rn

1

2.
Restrict according

to derivation
mode

2.
Restrict according

to derivation
mode

3.
Choice

3.
Choice

r1
2...rn

2

r1
2...rn

2

r1
1...rn

1

4.
Apply

4.
Apply

Next
configuration Output

Fig. 2 A computational step is performed in following steps: (1) based on the current
configuration, current input and the set of rules, the set of multisets of applicable rules is
computed; (2) a derivation mode restricts the obtained set; (3) a non-deterministic choice is
performed (if there are more than 1 variant); (4) the chosen multiset of rules is applied yield-
ing the next configuration. The output of the system is obtained from each configuration.

parallel, if there is no other multiset of applicable rules in Appl(R, C) that
strictly includes R.
Set-maximally parallel (also called flat) (smax): this variant corresponds to
those maximally parallel multisets of rules, where each rule has the multiplic-
ity at most one. It can also be seen as a set of rules that cannot be extended
by a different rule and still be applicable.
Minimally parallel of size 1 (min1): in this mode the rule set is additionally
partitioned in subsets and from each subset at most one rule might be cho-
sen such that the final result is not extensible by some rule (from a not yet
considered subset).

We remark that set-maximally parallel derivation mode can be seen asmin1

mode, where each partition is composed from exactly one rule. Usually partions
correspond to cells, so it is then possible to say that a rule is “located” in the
corresponding cell. In the area of Petri nets or register machines, generally,
the sequential derivation mode is considered, while in the area of P systems
the most common mode is the maximally parallel. However, this is different
for spiking neural P systems, whose semantics is driven by the min1 mode.

Example 3 Consider a network of cells with a single cell and whose rules do not have
context conditions. In this case, the configuration of the system is a multiset and
the rules are plain multiset rewriting rules. Let the set of rules be defined as follows:
R = {r1 : a → bc, r2 : abc → cc, r3 : c → ab}. Consider the configuration C = aabc.
Then, Table 1 gives the set of applicable multisets of rules for different derivation
modes (for the min1 mode we consider the partition {r1, r2} ∪ {r3}).

Springer Nature 2021 LATEX template

A Tutorial on the Formal Framework for Spiking Neural P Systems 7

Table 1 Applicable multisets of rules from Example 3 for different derivation modes.

mode δ Appl(R, C, δ)

asyn {r1, r2, r3, r1r2, r1r1, r1r3, r1r1r3}
seq {r1, r2, r3}
max {r1r2, r1r1, r1r1r3}
smax {r1r2, r1r1}
min1 {r2, r1r3}

Input

Among different types of input described in the FF, we would like to mention 3
variants. The first one, initial input, corresponds to the input handling common
in P systems or Petri nets — at the beginning of the computation input values
(an input multiset) are added to the first configuration. The second variant,
spike train input, inputs a value in the system by considering the time difference
between two apparitions of some specific symbol in a specific location. The
corresponding time difference is taken as the input data. Such input handling
is common to the area of spiking neural P systems.

In both cases above, the input is single and it is added to the configuration
(at some time step). The third variant, transient input, allows a recurrent
insertion of data at some specific point of the configuration. E.g., some input
value can be specified by a number of symbols a in the first cell, updated
at each time step by an external entity. Such kind of input is interesting for
the cases when the computation consists in continuously updating the output
based on varying inputs, e.g., in the case of numerical P systems used for robot
controllers.

Output

As for the previous cases we shall focus on some common types of output
described in FF. The most used one, called total halting, corresponds to the
strategy when one waits until the system has no more applicable rules (i.e. it
halts) and then the output of the computation is considered to be the contents
of some predefined cell. A different strategy is a spike train output, which as
in the case of the corresponding input would encode the result in the time
difference between two apparitions of some value in some predefined cell. We
remark that in this case there is no requirement for the system to reach a
halting state, so there might be applicable rules, but they would never allow
an apparition of the signal symbol in the output cell. Another strategy, the
direct output, just collects a projection of the configuration of each step, and
is particularly useful for transducer-like computation, e.g., for robot control
applications. Finally, we would like to mention the decision output that returns
a Boolean result: true if the system halts and false otherwise. This strategy is
commonly used in the acceptor variants of NC.

The generic data structure and powerful rules allow a reasonable simple
construction of an NC model for most variants of P systems, Petri nets and
other multiset-based computing models.

Springer Nature 2021 LATEX template

8 A Tutorial on the Formal Framework for Spiking Neural P Systems

2.2 Spiking neural P systems case

We recall here the definition of SNP systems given in (Păun et al, 2010)
and (Ionescu et al, 2006).

A spiking neural P system of degree m is the following tuple:

Π = (O, σ1, . . . , σm, syn, in, out),

where

� O = {a} is the singleton alphabet (a is called spike);
� σi, 1 ≤ i ≤ m are neurons of the form (ni, Ri), where ni ≥ 0 is the initial
number of spikes contained in σi and Ri if a finite set of rules of following
two forms:

– (spiking rules) E/ac → a; d, where E is a regular expression over O (we
also call it a context condition), c ≥ 1 and d ≥ 0. If E = ac, or d = 0
corresponding parts are omitted from the writing, e.g., ac → a;

– (forgetting rules) as → λ, s ≥ 1, with the restriction that for any rule of
type E/ac → a; d from Ri we have as ̸∈ L(E);

� syn ⊆ {1, . . . ,m}2 with (i, i) ̸∈ syn, for all 1 ≤ i ≤ m, are the synapses
between neurons. The tuple ({1, . . . ,m}, syn) forms a directed graph;

� in, out ∈ {1, . . . ,m} indicate the input and the output neurons of Π.

A firing rule E/ac → a; d ∈ Ri is applicable in neuron σi if it contains
k ≥ c spikes and ak ∈ L(E). The application of such a rule removes c spikes
from σi and delivers a spike to each connected (via a synapse) neuron after d
computational steps (at the same step if d = 0). In the period after the spikes
were removed and before they were emitted (at steps 1 to d − 1), the neuron
remains closed. Any spike arriving to a closed neuron is lost and also no rule
can be applied (even selected) in the meanwhile. A forgetting rule just removes
the corresponding number of spikes.

During each step of the computation, all applicable rules are selected for the
application, with the condition of selecting at most one rule per neuron. The
computation starts with the initial configuration given by the initial contents
of neurons and continues by applying at each step rules as described above.
The input and the output are done using a spike train, as described earlier in
this section.

Informally, an SNP system is a set of neurons (cells) containing an integer
number of spikes (denoted by a power of symbol a) arranged in a directed graph
structure. Each neuron contains rules that remove a number of spikes from it
and add one spike to each interconnected neuron (in the case of non-forgetting
rules). Rules are guarded by regular expressions and may have a delay. They
are executed in parallel, but at most one rule per neuron is executed.

The NC model corresponding to SNP systems has some particularities that
we would like to present below. First, since the alphabet of the system is
composed of a single symbol, a, the dimension of each vector corresponding
to a cell is 1. Hence, in this case it becomes interesting to flatten the system

Springer Nature 2021 LATEX template

A Tutorial on the Formal Framework for Spiking Neural P Systems 9

𝑎𝑎2

𝑎𝑎2 / 𝑎𝑎 → 𝑎𝑎
𝑎𝑎 → 𝜆𝜆

𝑎𝑎
𝑎𝑎 → 𝑎𝑎
𝑎𝑎2 → 𝜆𝜆

𝑎𝑎3

𝑎𝑎3 → 𝑎𝑎
𝑎𝑎 → 𝑎𝑎
𝑎𝑎2 → 𝜆𝜆

1

3

2

4

𝑎𝑎4 + / 𝑎𝑎3 → 𝑎𝑎

Fig. 3 The spiking neural P system considered in Example 4.

and consider as configuration a vector of dimension n corresponding to the
number of cells in the system. To facilitate the description, we assume that all
the delays are equal to zero. As shown in (Ibarra et al, 2007) such model has
the same computational power. In Section 5.1 we will show how it is possible
to simulate the notion of delay in systems without delay.

Next, a spiking rule E/an → a corresponds to the subtraction of n from
the current neuron and addition of 1 to each connected neuron, if the current
number of spikes belongs to L(E). Because of a single-letter alphabet, L(E)
corresponds to a semilinear set of numbers SE . So, the regular test for the
contents of neuron i, 1 ≤ i ≤ n, can be replaced by the test Ci ∈ SE , where
Ci is the i-th component of the current configuration C.

So, for an SNP system with m neurons, each rule E/an → a can be written
as K/V , where V is a vector of integers (so V ∈ Zm) and K is a vector of
semilinear sets such that n ∈ Ki and SE ⊆ Ki (where SE is the semilinear set
associated to E). Such rule is not linked to a neuron/cell — it describes the
rule action at the global level. To apply a rule r : K/V one has to check that
for the current configuration C and every i that Ci ∈ Ki and then the result
of the application of r is C + V , similar to a vector addition system.

Since, in most of the cases, a spiking rule verifies only the contents of a
single cell, it becomes possible to simplify the notation by omitting semilinear
checking sets for other cells (and that are always equal to N in this case).
Using the convention from above, such a rule is then written as i : Ki/V . A
further simplification might be done by observing that if the number of cells n
is big, there is a high probability for vectors V from rules to be sparse. Hence,
it is possible to use any sparse vector notation to simplify the writing of rules
for such cases. In what follows we have chosen to indicate the component the
value belongs to as an index enclosed in a circle (e.g., 1 3O means value 1 in the
third component).

Example 4 Consider the SNP system depicted on Fig. 3. In Table 2 we give the
different notations for the rules. We also note that the configuration is a vector
of size 4 and that the depicted configuration corresponds to the vector (2, 1, 3, 0).
Finally, we would like to observe that the system functions in min1 mode (like most
of SNP systems) and uses an initial input and a spiking train output.

Springer Nature 2021 LATEX template

10 A Tutorial on the Formal Framework for Spiking Neural P Systems

Table 2 Different notations for rules from Example 4.

spiking NC full NC simplified NC sparse

1 : a2 → a ({2},N,N,N)/(−1, 1, 1, 0) 1 : {2}/(−1, 1, 1, 0) 1 : {2}/ − 1 1O, 1 2O, 1 3O

1 : a → λ ({1},N,N,N)/(−1, 0, 0, 0) 1 : {1}/(−1, 0, 0, 0) 1 : {1}/ − 1 1O

1 : (a4)
+
/a3 → a (S,N,N,N)/(−3, 1, 1, 0) 1 : S/(−3, 1, 1, 0) 1 : S/ − 3 1O, 1 2O, 1 3O

where S = {4n | n ≥ 1}.

2 : a → a (N, {1},N,N)/(1,−1, 1, 0) 2 : {1}/(1,−1, 1, 0) 2 : {1}/1 1O,−1 2O, 1 3O

2 : a2 → λ (N, {2},N,N)/(0,−2, 0, 0) 2 : {1}/(0,−2, 0, 0) 2 : {2}/ − 2 2O

3 : a3 → a (N,N, {3},N)/(0, 1,−3, 1) 3 : {3}/(0, 1,−3, 1) 3 : {3}/ − 3 3O, 1 2O, 1 4O

3 : a → a (N,N, {1},N)/(0, 1,−1, 1) 3 : {1}/(0, 1,−1, 1) 3 : {1}/ − 1 3O, 1 2O, 1 4O

3 : a2 → λ (N,N, {2},N)/(0, 0,−2, 0) 3 : {2}/(0, 0,−2, 0) 3 : {2}/ − 2 3O

We give below first 4 steps of the evolution of the system.

Step C1 C2 C3 C4

0 2 1 3 0
1 2 2 2 1
2 1 1 1 1
3 1 1 1 2
4 1 1 1 3

The exclusive normal form

As shown in (Verlan et al, 2020), any SNP system (and most of its variants)
can be rewritten in the following form (the definition in the paper is stated in
terms of NC).

Definition 1 A spiking neural P system is said to be in the exclusive normal form
(ENF), if for any neuron i, all rules from that neuron have their corresponding regular
expressions either disjoint or equal, i.e., if rules E1/a

k → a and E2/a
m → a belong

to the same neuron, then either L(E1) ∩ L(E2) = ∅, or E1 = E2. Additionally,
the exclusive normal form states that if the regular expression holds, then there are
enough spikes to apply the corresponding rule, i.e., for any x ∈ L(E1), we have
|x| ≥ k.

An important property of a system in the exclusive normal form is that for
any neuron it is possible to partition its rules into several disjoint groups such
that at each time moment, if there are applicable rules, then all of them are
from the same group. We call rules belonging to groups of size 1 independent
rules and the other ones choice rules. Thus, the application of independent
rules is always exclusive — no other rule can be applied in the same neuron,
while the application of choice rules is always subject to a non-deterministic
choice. Moreover, the partition of rules into groups is done based on the syn-
tactic equality of corresponding regular expressions: two rules in the same

Springer Nature 2021 LATEX template

A Tutorial on the Formal Framework for Spiking Neural P Systems 11

neuron E1/a
k → a and E2/a

m → a will belong to the same group if and only
if E1 = E2, which can be very easily checked. We note that the equality of
expressions is checked (E1 = E2) and not of their languages (L(E1) = L(E2)),
which is a bit longer to verify.

Example 5 Consider an SNP system having in some neuron the following two rules:

(a2 + a3)/a → a (a2)∗/a2 → a

The intersection of the two regular expressions is a2, also there is no sense to match
λ. Hence, these two rules can be rewritten to be in ENF as follows.

a2/a → a a2/a2 → a

a3/a → a a4(a2)∗/a2 → a

Finally, we recall that this result is stated in terms of NC and in this
case the regular expressions are replaced by their numerical counterpart —
semilinear sets.

Bisimulation with NC and other P system models

We recall an important consequence of the representation of SNP systems
using network of cells. There is a one-to-one correspondence between the con-
figurations of each model and also a one-to-one correspondence between rules
from SNP and NC (which are of a particular type). This combined with min1

derivation mode semantics results in a strong bisimulation between SNP sys-
tems and (a variant of) NC. Consequently, any statement that can be shown
in terms of an SNP system, also holds for the corresponding NC system and
conversely.

The above remark is the strong point of NC and FF, allowing to use a
single model/language for the analysis and comparison of different variants of
SNP and even P systems. Subsequent sections show several examples of the
benefits of such translation.

Moreover, the representation of SNP systems in terms of NC allows to draw
links with other types of models, e.g., with ordinary P systems. For example,
SNP systems where the regular expression for each rule is equal to its left-
hand side (ak/ak → a) and using initial input and total halting are identical
to a subset of purely catalytic P systems (using a single letter different from
the catalyst in the left-hand side of rules). This is obvious, because the NC
representation of both models is the same. We refer to Section 4 for more
details.

Another important point highlighted in (Verlan et al, 2020) is that any SNP
system corresponds to some specific NC working in sequential mode. Hence,
somehow an SNP system corresponds to a sequential device able to perform
semilinear checks on vectors of integers. This might be interesting for the
implementation of such models, as there is no need to handle the parallelism.

Springer Nature 2021 LATEX template

12 A Tutorial on the Formal Framework for Spiking Neural P Systems

3 Understand and analyze models

In this section we give several translations of different variants of SNP to NC
and we show how the usage of NC and FF can help in their understanding
and analysis.

3.1 Extended rules

In the standard model of SNP systems, when a rule is applied, one spike is sent
to each connected neuron. Several extensions allow to modify this behavior
and allow to send more spikes over a connection. Here we concentrate on 3
variants of such extension. In the first variant more than one spike can be
sent over all connections exiting a neuron. The second variant allows to send
different numbers of spikes over the exiting connections, but this number is
fixed in advance. The third variant is the most flexible, as it allows to describe
on a per rule basis the number of spikes sent over each connection.

The first variant, spiking neural P systems with extended rules, was intro-
duced in (Chen et al, 2008). Its definition differs from SNP systems only by the
form and semantics of rules, which are of the form E/am → an. The difference
with an SNP rule E/am → a is that as a result of its execution n spikes are
sent to each connected neuron, see Fig. 4(a). This can obviously be written in
terms of NC by using n instead of 1 in corresponding vector components. More
precisely, a rule E/am → an from a neuron i can be written using the simpli-
fied sparse notation as i : SE/ −m iO, n i1O, . . . , nikO, where (i, ij), 1 ≤ j ≤ k is
an edge in the synapse graph and SE is the semilinear set corresponding to
the regular expression E.

The second variant, spiking neural P systems with weighted synapses, is
considered in (Pan et al, 2012). The difference with SNP systems is the follow-
ing: to each synapse (edge) there is a positive integer associated, the weight.
When a rule is executed, each connected neuron receives the number of spikes
equal to the weight of the corresponding synapse, see Fig. 4(b). The transla-
tion of such rules to NC is not difficult: the value 1 should be replaced by the
synapse weight for corresponding components. So, a rule E/am → a becomes
i : SE/−m iO, n1 i1O, . . . , nkikO, where where (i, ij), 1 ≤ j ≤ k is an edge in the
synapse graph having the weight nj .

The third variant, called extended spiking neural P systems, was considered
in (Alhazov et al, 2006). It features rules of form E/am → (i1, w1) . . . (ik, wk).
When such a rule is applied, each neuron ij , 1 ≤ j ≤ k receives wk spikes.
Even if such rule looks complex, it corresponds directly to the NC rule
i : SE/−m iO, w1 i1O, . . . , wkikO, see the example depicted on Fig. 4(c).

3.2 Multiple type of spikes/colors

Several papers, e.g. (Ionescu et al, 2011; Song et al, 2017), consider SNP sys-
tems that can have multiple types of spikes, by using symbols different from a.
Sometimes, these different types are referred as colors as it is custom to do in
the area of Petri nets. In this case the simplification of the notation operated

Springer Nature 2021 LATEX template

A Tutorial on the Formal Framework for Spiking Neural P Systems 13

𝐸𝐸/𝑎𝑎𝑚𝑚 → 𝑎𝑎𝑛𝑛

1

2

3

𝑎𝑎𝑛𝑛

𝑎𝑎𝑛𝑛
𝐸𝐸/𝑎𝑎𝑚𝑚 → 𝑎𝑎

1

2

3

𝑎𝑎𝑛𝑛

𝑎𝑎𝑘𝑘

𝒏𝒏

𝒌𝒌
𝐸𝐸/𝑎𝑎𝑚𝑚 → (2,𝑛𝑛)(3, 𝑘𝑘)

1

2

3

𝑎𝑎𝑛𝑛 or 𝑎𝑎𝑝𝑝

𝐸𝐸/𝑎𝑎𝑚𝑚 → (2, 𝑝𝑝)(3, 𝑞𝑞)
𝑎𝑎𝑘𝑘 or 𝑎𝑎𝑞𝑞

SE/(−m,n, n) SE/(−m,n, k) SE/(−m,n, k)

SE/(−m, p, q)

(a) (b) (c)
Fig. 4 Different extended spiking rules and their translation to the simplified network of
cells notation: (a) extended rules (sending an over all synapses); (b) weights on synapses
(sending ak over the synapse with weight k); (c) extended SNP (allow for choosing different
amounts of spikes to be sent over specified synapses, may even depend on the applied rule).
In all cases SE is the semilinear set of numbers corresponding to E.

in Section 2 cannot be performed anymore: the configuration should be treated
as a vector of multisets and the rules should be considered in the generic form
as two vectors of multisets and a vector of semilinear sets. The translation
to NC still remains straightforward, as spiking rules (even with several sym-
bols) correspond to a subset of arbitrary NC rules (that verifies the context
condition only in a single cell).

We would like to notice that the obtained NC translation is extremely close
to a translation of transitional or tissue P systems. If the regular expression
check is not taken into account, then corresponding spiking model is just a
tissue P system where the result of a rule is sent to all connected membranes
(this can be expressed in terms of rules of tissue P systems). Hence, by using
several types of spikes very powerful models, generalizing tissue P systems, can
be obtained. Therefore, it is important to add additional restrictions to such
models, otherwise there is no point of introducing them in the SNP framework.
For example, in (Ionescu et al, 2011) only a single spike of some type can
be obtained. However, in our opinion it is more logical to study such models
directly in P systems framework.

3.3 Communication on request

In this section we analyse the model called spiking neural P systems with
communication on request introduced in (Pan et al, 2017). In this model the
rules do not produce spikes to be distributed among neurons, but rather request
a number of spikes from some other neuron. Such rules are written as E/Qw,
where w = (an1 , i1), . . . , (a

nk , ik). We remark that the original paper considers
several types of spikes, but here we use a single one in order to simplify the
presentation. A rule as above has the following semantics: if the contents of
neuron i belongs to E, then request anj spikes from neuron ij , 1 ≤ j ≤ k. It is
clear that corresponding neurons shall contain at least the requested number
of spikes for the rule to be applicable. If nj = ∞, then all spikes from the
corresponding neuron are requested. A particular semantic condition is also
checked when several rules are applied. In fact, the request values for each

Springer Nature 2021 LATEX template

14 A Tutorial on the Formal Framework for Spiking Neural P Systems

neuron should match: it is not possible for a rule to request 4 spikes from
neuron 2 and for another rule to request 3 spikes from the same neuron. Also,
if several rules request the same amount of spikes n from a neuron j, then the
neuron j loses only n spikes, while the other neurons get n spikes each. This
is called spike replication and it is necessary in order to increase the number
of spikes in the system.

Let us first discuss the case when there are no rules that request all spikes
and we also suppose that any pair of applicable rules does not contain requests
for the same neuron. In such case a rule E/Q(an1 , j1), . . . , (a

nk , jk) from neuron
i (for a system of m neurons) can be written in NC as the following general
rule (we denote by SE the semilinear set corresponding to E):

(S1, . . . , Sm)/(V1, . . . , Vm), where

Sl =

{n ∈ N | n ≥ nj} if l = jk,

SE if l = i,

N otherwise.

Vl =

−nj if l = jk,

n1 + · · ·+ nk if l = i,

0 otherwise.

Now consider the case when the replication is allowed. This means that
several rules can contain requests to the same neuron. It is not difficult to see
that the above construction does not work anymore. The only way to handle
such a condition is to adapt the method used to transform any SNP system
to a sequential NC model as described in (Verlan et al, 2020). This means to
consider all combinations of rules (taking a single rule from a neuron) and to
associate to each combination of matching rules (those that request same value
from a neuron) a single rule that will perform the regular expression check
for every neuron and that will compute the overall effect taking into account
the replication. For example, rules E1/Q(a2, 3), E2/Q(a2, 3) E3/Q(a, 1) in
neurons 1, 2 and 3 respectively (in a system having 3 neurons) become the rule

(E1 ∪ {x ∈ N | x ≥ 1}, E2, E3 ∪ {x ∈ N | x ≥ 2})/(1, 2,−1)

Hence, when the replication is used, the corresponding system is checking
conditions in several neurons at the same time and then adds a vector whose
sum of values is strictly positive.

In the case of the “all” request, the situation cannot be modeled in a simple
manner, as rules such as above can only take into account a fixed amount
of spikes. In order to simulate the unbounded transfer, either an unbounded
derivation mode should be used (e.g., maximally parallel), or a sequential
simulation should be performed, but this would require an unbounded number
of steps, which does not allow to construct a bisimulation.

So, we can deduce that the analyzed model can be seen as a collection
of 3 different models. The first one (without replication), corresponds to a
standard NC where it is possible to check context conditions in several neurons
at a time. The second variant (with replication), cannot be directly described
by an NC. Instead, it can be simulated by an appropriate NC step by step.

Springer Nature 2021 LATEX template

A Tutorial on the Formal Framework for Spiking Neural P Systems 15

The third model either changes the derivation mode to an unbounded one, or
requires a potentially unbounded simulation by NC. So, the overall definition
corresponds to a hybrid model that at each step functions in one of the ways
described above.

4 Relate models by bisimulation

In this section we consider two models of SNP systems and we show that their
translation to NC is the same, which implies that these two models can be
related using a bisimulation.

The first model, called Spiking neural P systems with multiple channels
(SNPSMC), was introduced in Peng et al (2017). The second model, called
Spiking neural P systems with target indications (SNPSTI), was considered
in Wu et al (2021). Both models have definitions very close to SNP, the only
difference being the form and the semantics of their rules. In both cases the
computation follows min1 derivation mode, an initial input and a spike train
output are considered.

The definition of the first model has the following differences with the
standard model of SNP:

� Synapses (graph edges) are labelled by labels from a fixed set of labels L
(we assume also the existence of the function lab that returns a label for an
edge).

� Each non-forgetting rule of neuron i is of form E/ac → ap(l), with l ∈ L
and c ≥ p ≥ 0.

The semantics of the above rule is that if the contents of the corresponding
neuron satisfies E, then c spikes would be removed from the current neuron
(i) and p spikes will be added to all neurons connected by synapses (edges)
whose label is equal to l. So, in terms of NC such rule can be written as
i : SE/−c iO, p i1O, . . . , pikO, where {(i, ij) = l | 1 ≤ j ≤ k} is the set of all
outgoing egdes from i labelled by the label l.

The definition of the second model has the following difference with the
standard model of SNP:

� Each non-forgetting rule of neuron i is of form E/ac → ap(tar), where
tar ⊆ {1, . . . ,m} (m is the number of neurons) and c ≥ p ≥ 0.

The semantics of the above rule is that if the contents of the corresponding
neuron satisfies E, then c spikes would be removed from the current neuron (i)
and p spikes will be added to all neurons listed in the set tar. So, in terms of NC
such rule can be written as i : SE/−c iO, p i1O, . . . , pikO, where tar = {i1, . . . , ik}.

We observe that the representation of both types of rules is very similar. We
shall argue now that it is possible to transform a rule of one type to the other
one. For a neuron i let tarl = {ik | lab(i, ik) = l}. Then a rule E/ac → ap(l)
of SNPSMC is equivalent a rule E/ac → ap(tarl) in SNPSTI (their NC rep-
resentation is the same). Conversely, for 1 ≤ i ≤ m let si1, . . . , s

i
2m−1−1 be the

Springer Nature 2021 LATEX template

16 A Tutorial on the Formal Framework for Spiking Neural P Systems

SNP systems
with multiple

channels

SNP with
target

indications

Network of cells +
formal framework

for P systems
bisimulation bisimulation

Fig. 5 The bisimulation relation between spiking neural P systems with multiple channels
and spiking neural P systems with target indications is obtained via a translation to NC
where it can be seen that corresponding rules yield the same translation.

set of non-empty subsets of {1, . . . ,m} \ {i}. Consider the set of labels li,j ,
1 ≤ i ≤ m, 1 ≤ j ≤ 2m−1 − 1. To each set sij we associate the label li,j . Then,
a rule E/ac → ap(tar) of SNPSTI is equivalent to a rule E/ac → ap(li,j),
tar = sij , in SNPSMC (as again, their NC representation is the same).

Hence, for any SNPSMC Π it is possible to construct SNPSTI Π′ such
that they have the same configurations and any step in Π corresponds to a
step in Π′ and conversely. Hence, there exists a bisimulation relation between
the above two models and that they are equivalent, see Fig. 5. This means
that in some sense the models are “the same” — any affirmation about the
computation in one model is also true for the other one. There is also a direct
link between the descriptional complexity parameters of both models.

Catalytic P systems

Consider a SNP system Π where the regular expression for any rule is equal to
its left-hand side: an/an → a (in such case the rule is simply written an → a).
In this case, the regular expression check is not necessary in order to apply the
rule, it suffices to verify that there are enough copies of a. Hence, such a rule
translates to NC asm-dimensional vector having−n in position i and 1 for each
position j1, . . . , jk, corresponding to a connected neuron: i : −n iO, 1j1O, . . . , 1jkO.
Now let’s interpret the configuration of Π as a multiset over some alphabet
O = {a1, . . . , am} of cardinality m. In this case, the NC rule above corresponds
to a multiset rewriting rule ani → aj1 . . . ajk .

Hence, an SNP system as above corresponds to a context-free multiset
rewriting. We remark that in order to obtain a bisimulation the multiset rewrit-
ing (as well as the NC model) should use the same semantics as SNP systems,
i.e., they should be executed in min1 derivation mode, where each partition
groups all rules with same ai in the left-hand side. As shown in (Verlan, 2013)
such systems correspond to purely catalytic P systems (Păun, 2002) with m
catalysts working in maximally parallel derivation mode and having rules of
form cia

n
i → w, w ∈ O∗, |w|ai

= 0 and |w|a ≤ 1, for all a ∈ O.
So, we obtain that any SNP system with rules of type an → a (and of

course an → λ) is equivalent to a purely catalytic P system with m catalysts
having rules of form cia

n
i → w, w ∈ O∗.

5 Extend models

In this section we discuss how the representation using networks of cells can
give ideas and help in the extension of spiking-based models.

Springer Nature 2021 LATEX template

A Tutorial on the Formal Framework for Spiking Neural P Systems 17

5.1 Delays

First, we show how to implement delays. Of course, the delays are a part of the
definition of the basic model of SNP systems. However, there is an important
question: for a given SNP system with delays Π how to construct an equivalent
system without delays, or at least a system that simulates Π (i.e., yields same
results for the same inputs). Since systems without delays are computationally
complete (Ibarra et al, 2007), it is always possible to construct a simulating
system, but this affirmation is non-constructive. So, for a given SNP system
with delays it might be not trivial to construct a system without delays and
having the same behavior.

In what follows, we will try to make a simple construction in order to
simulate the delays at the expense of using a different type of rules. First,
we recall the semantics of the model when a rule with a delay is applied. Let
r = E/an → a; d be such a rule, located in neuron i. If r is applied, then
n spikes are removed from neuron i and the neuron emits 1 spike to each
connected neurons after d computational steps (if d = 0 then the spike is
emitted immediately). During this time the neuron is “closed”, i.e., any spike
sent to it during this period is lost. In order to simulate such a behavior we will
implement the notion of the state of a neuron. For SNP we will use only two
states: open and closed. However, the proposed construction is also applicable
for more states, e.g., corresponding to neuron polarisations. In order to do
this, we will adapt the method used to add the state notion to a membrane
in P systems, described in (Verlan, 2013). First, we associate to every neuron
i a new neuron statei. Now, a single spike in neuron statei encodes that the
neuron i is open and two spikes in neuron statei mean that neuron i is closed.

Next, for any rule r = i : S/ − n iO, 1 i1O, . . . , 1ikO; d (the NC equivalent of
E/an → a; d) using a delay d > 0 we consider an additional neuron counteri,r
that will contain the delay counter for the corresponding rule. Consider now
following rules (see also Fig. 6). Since the labels of neurons become large, in
what follows, we use a different sparse notation: instead of m iO we will write
(i,m).

Neuron i:

i : SE/(i,−n), (statei, 1), (counteri,r, d), if d > 1

i : SE/(i,−n), (statei, 2), (counteri,r, 1), if d = 1

Neuron statei:

statei : {2}/(statei,−1)

Neuron counteri,r:

counteri,r : {3, . . . , d}/(counteri,r,−1)

counteri,r : {2}/(counteri,r,−1)(statei, 1)

counteri,r : {1}/(counteri,r,−1)(i1, 1), . . . , (ik, 1)

Springer Nature 2021 LATEX template

18 A Tutorial on the Formal Framework for Spiking Neural P Systems

𝑖𝑖: 𝑆𝑆𝐸𝐸/(𝑖𝑖, -𝑛𝑛), (𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑒𝑒𝑖𝑖 , 1), (𝑐𝑐𝑐𝑐𝑐𝑐𝑛𝑛𝑠𝑠𝑒𝑒𝑟𝑟𝑖𝑖,𝑟𝑟 ,𝑑𝑑)
𝑑𝑑 > 1:

𝑖𝑖: 𝑆𝑆𝐸𝐸/(𝑖𝑖, -𝑛𝑛), (𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑒𝑒𝑖𝑖 , 2), (𝑐𝑐𝑐𝑐𝑐𝑐𝑛𝑛𝑠𝑠𝑒𝑒𝑟𝑟𝑖𝑖,𝑟𝑟 , 1)
𝑑𝑑 = 1:

𝑖𝑖: 𝑆𝑆𝐸𝐸/ 𝑖𝑖, -𝑛𝑛 , 𝑖𝑖1, 1 , … , (𝑖𝑖𝑘𝑘, 1)
𝑑𝑑 = 0:

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑒𝑒𝑖𝑖: {2} / (𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑒𝑒𝑖𝑖 , -1)
𝒂𝒂

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑒𝑒𝑖𝑖

𝑖𝑖

𝑐𝑐𝑐𝑐𝑐𝑐𝑛𝑛𝑠𝑠𝑒𝑒𝑟𝑟𝑖𝑖,𝑟𝑟: {3, … , 𝑑𝑑} / (𝑐𝑐𝑐𝑐𝑐𝑐𝑛𝑛𝑠𝑠𝑒𝑒𝑟𝑟𝑖𝑖,𝑟𝑟 , -1)

𝑐𝑐𝑐𝑐𝑐𝑐𝑛𝑛𝑠𝑠𝑒𝑒𝑟𝑟𝑖𝑖,𝑟𝑟

𝑐𝑐𝑐𝑐𝑐𝑐𝑛𝑛𝑠𝑠𝑒𝑒𝑟𝑟𝑖𝑖,𝑟𝑟: 2 / 𝑐𝑐𝑐𝑐𝑐𝑐𝑛𝑛𝑠𝑠𝑒𝑒𝑟𝑟𝑖𝑖,𝑟𝑟 , -1 , (𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑒𝑒𝑖𝑖 , 1)

𝑐𝑐𝑐𝑐𝑐𝑐𝑛𝑛𝑠𝑠𝑒𝑒𝑟𝑟𝑖𝑖,𝑟𝑟: 1 / 𝑐𝑐𝑐𝑐𝑐𝑐𝑛𝑛𝑠𝑠𝑒𝑒𝑟𝑟𝑖𝑖,𝑟𝑟 , -1 , 𝑖𝑖1, 1 , … , (𝑖𝑖𝑘𝑘, 1)

…
𝑖𝑖1 𝑖𝑖𝑘𝑘

Fig. 6 The simulation of delays by rules without delays. The part of the system allowing
to simulate an NC rule i : SE/(i,−n), (i1, 1), . . . , (ik, 1); d corresponding to a spiking rule
i : E/an → a; d. The used sparse vector notation represents a value v in the i-th component
of the vector by (i, v).

Finally, all existing rules (including the rules we added above) should be
adapted to take into account the fact that the neuron can be closed. To simplify
the writing we will consider as example the rule r = j : S/ − n jO, 1 iO. We
replace this rule by two rules that check cells j and statei at the same time.
The first rule will verify that the contents of statej is equal to one, and then
will act as r. The second rule will check if statej is equal to two and if this
is the case, it will just decrease the value from cell j. More formally, this can
be rewritten as follows (where p is the total number of neurons in the system
after the addition of the abovementioned ones).

(E1, . . . , Ep)/(v1, . . . , vp), (E′
1, . . . , E

′
p)/(v

′
1, . . . , v

′
p)

where

El =

S if l = j

{1} if l = statei

N otherwise

E′
l =

S if l = j

{2} if l = statei

N otherwise

vl =

−n if l = j

1 if l = i

0 otherwise

vl =

{
−n if l = j

0 otherwise

It is clear that any rule can be replaced in this manner by several rules
that add additional checks for the state corresponding target neurons. This can
lead to a combinatorial explosion as the number of introduced rules depends
exponentially on the number of target neurons.

Now we would like to conclude by the remark that the above transfor-
mation is rather complex and needs several strong ingredients like extended
rules and checking for regular expressions in several neurons at the same time.
This suggests that the delay feature is a very complex contextual mechanism
that potentially needs to verify the contents of all neurons before making a
decision. This is “hidden” in the definition of SNP systems by the sentence

Springer Nature 2021 LATEX template

A Tutorial on the Formal Framework for Spiking Neural P Systems 19

explaining that a closed neuron does not accept any spike. So, in our opinion,
there is a huge difference in the functioning between SNP systems with and
without delays and we suggest to consider them as completely different models
(although having the same computational power).

5.2 Derivation modes and probabilities

Another possible extension is to consider different derivation modes. We recall
that, by definition, SNP systems work in min1 mode. Using NC and FF it
becomes trivial to investigate the functioning of SNP in other modes, e.g., the
maximally parallel or set-maximal (thus allowing to apply several rules in the
same neuron at the same time).

Another interesting topic is the integration of the probabilistic evolution
for SNP systems. The first idea is to associate probability values or stochas-
tic/kinetic constants to each rule and to chose a rule from each neuron based
on the corresponding normalized probability. More precisely, if in a neuron i
containing n spikes at some time t there are k applicable rules r1, . . . , rk having
probabilities p1, . . . , pk, then the probability to chose a rule j is defined by:

p(rj , n) =
pj∑n
l=1 pl

, rl is applicable to n.

In this case each neuron behaves independently from the other ones and
the rule probability depends only on the contents of each neuron.

Another possibility is to explore the idea of the groupwide probability as
developed in (Verlan, 2013) for NC models. The main idea is to assign differ-
ent probabilities for groups of applicable rules (from the set Appl(R, C)). In
order to compute the probability of joint application of a set of rules R for a
configuration C, p(R,C), we rely on the propensity function f : 2R×Nm → R,
where R is the set of rules of the system having m neurons. This function
associates a real value for a set of rules with respect to a configuration. Hence
the value f(R,C) depends not only on the set of rules R, but also on the con-
figuration C. We remark that the construction from (Verlan, 2013) considered
multisets of rules, which are reduced here to sets because of the functioning in
min1 derivation mode.

Then, the probability to choose a set R ∈ Appl(R, C) is defined as the
normalization of corresponding probabilities:

p(R,C) =
f(R,C)∑

R′∈Appl(R,C) f(R
′, C)

(1)

Among different propensity functions discussed in (Verlan, 2013) we cite
those adapted to the case of SNP systems.

Springer Nature 2021 LATEX template

20 A Tutorial on the Formal Framework for Spiking Neural P Systems

Constant strategy: each rule r from R has a constant contribution to f and
equal to cr:

f(R,C) =
∏
r∈R

cr (2)

Concentration-dependent strategy: this strategy originating from the mass-
action law states that each rule r from R has a contribution to f proportional
to a stochastic constant cr that only depends on r and hr(C), the number of
ways it is possible to pick up the needed number of spikes from C by considering
them as distinct objects (by

(
a
b

)
we denote the binomial function):

hr(C) =

(
Ci

n

)
, where r = i : E/an → a

f(R,C) =
∏
r∈R

crhr(C)

Gillespie strategy: each rule r from R has a contribution to f that depends on
the order in which it was chosen and it is equal to cr · hr(C

′), where C ′ is the
configuration obtained by applying all rules that were chosen before r.

We remark that the concentration-dependent strategy is not equal to Gille-
spie strategy. More precisely, in a Gillespie run the probability to choose a
new rule depends on the objects consumed and produced by previously chosen
rules. We can consider a Gillespie run as a sequence of sequential (single-rule)
applications using the concentration-dependent strategy.

We would like to remark that in the area of SNP systems, often stochastic
evolution is considered. In this case, the time needed for the rule execution
is determined by some probability distribution. When considering a discrete
time, this can be somehow rephrased as follows: instead of a single rule, there
are copies of this rule, but using different delays. Each such copy has a prob-
ability, whose value is driven by the desired probability distribution. E.g., if
the uniform distribution is considered and the rule can fire the spike on steps
0 to 4 after it was executed, then this corresponds to having 5 copies of the
original rule, with delays from 0 to 4 and where the probability of each rule is
the same. Thus, in the discrete time case it is somehow possible to reduce a
stochastic evolution to a probabilistic one.

5.3 Non-integer values

Another interesting extension idea comes from the observation that the con-
figuration of SNP systems can be represented as vectors of integer numbers
(over N) and rules as semilinear sets (which are also over N) combined with
vectors over Z. The computation can be seen as a membership query followed
by an addition.

So, a natural idea is to replace N by a different set allowing the above oper-
ations, e.g., Z, R or even an arbitrary group. The paper (Freund et al, 2015)

Springer Nature 2021 LATEX template

A Tutorial on the Formal Framework for Spiking Neural P Systems 21

investigated such replacements in the framework of NC with finite context
conditions. We discuss below what are the particularities of such approach for
SNP-like systems.

First we recall that SNP systems evolve in min1 derivation mode. As dis-
cussed in the aforementioned paper, bounded derivation modes allow to define
a consistent semantics for an arbitrary abelian group. As for the context
conditions, it is possible to use group operations to define a similar notion.

Let A be an abelian group. Consider v, v1, . . . , vm ∈ A. We define a linear
combination of v, v1, . . . , vm the set

S = v +

m∑
i=1

λivi, where λi ∈ N

We observe that since A is a vector space, the formula above can be seen
as the set of linear combination of vectors v, v1, . . . , vm.

A semilinear combination is a finite union of linear combinations. We will
denote by SL(A) the set of all semilinear combinations of elements from an
abelian group A.

Now, by taking an abelian group A, it is possible to extend an SNP system
by considering that its configuration is the vector An and its rules are of type
S/V , where S ∈ SL(A)n and V ∈ An.

In the area of SNP systems several models using supports other than N were
considered. For example, the model with anti-spikes (Song et al, 2018) consid-
ers Z and the model from (Wang et al, 2010) uses R as a support. However,
while the above papers concentrated on the replacement of the configuration
and value vector, the extension of the context condition was minimal (none in
the case of anti-spikes and only by threshold sets R<T = {x ∈ R | x < T} in
the second case).

In our opinion, a particular attention deserves the variant using real-
numbers as support, which is interesting for many real-world applications.
The interesting point is that any Boolean combination of (real) intervals is
a semilinear combination, hence it is possible to use complex rules using any
Presburger arithmetic-like syntax. For example, one can have the following
rule.

(P, P,Q)/(−1.5, 1,−0.5), where

P = {x ∈ R | x < 10} and

Q = {x ∈ R | (x ≥ 5.5 ∨ x < 10) ∧ (x > 0 ∨ x ≤ 1.1)}.

A next step can be done by considering that the base of the configuration
and rules is defined by a Boolean fuzzy set, so corresponding elements become
fuzzy truth values. The paper (Wang et al, 2013) implicitly considers such
a variant. As context conditions fuzzy cuts are used. By applying the same
reasoning as above for R it is possible to have richer conditions that can be
useful for different practical applications.

Springer Nature 2021 LATEX template

22 A Tutorial on the Formal Framework for Spiking Neural P Systems

6 Conclusion

In this paper we presented a tutorial aiming to help persons willing to better
understand the model of network of cells and the formal framework in the
context of SNP systems. We would like to highlight that the presented tools do
not aim to replace the existing (and future) syntax and definitions of models
related to SNP systems. The main idea is to use the description provided by
NC and FF as a complement to already existing research. We stress that NC
and FF provide a powerful tool allowing to better analyse, compare and extend
existing models and, in our opinion, it should be considered only with this
goal. At the same time, we suggest to use this tool on a regularly basis as our
experience shows that this might provide important insight about the existing
research and suggest future research ideas.

Beside topics discussed in this tutorial it might be interesting to con-
sider the adaptation of the FF to the case of dynamical structures, i.e., when
the number of neurons/cells can also evolve during the computation. Such
demand is regularly observed in applications related to machine learning. The
paper (Freund et al, 2013) gives some ideas how to handle such cases, how-
ever corresponding constructions are much more complex than for the case of
a static structure.

Another interesting topic is to consider non-semilinear conditions and vec-
tor operations. As shown in (Alhazov et al, 2015; Shang et al, 2021) more
powerful conditions allow to express in a simpler (and shorter) way a desired
complex behavior.

Declarations

Funding:

The work of GZ was supported by the National Natural Science Foun-
dation of China (61972324) and Sichuan Science and Technology Program
(2021YFS0313, 2021YFG0133).

Competing interests:

The authors have no financial or proprietary interests in any material discussed
in this article.

References

Adorna HN (2020) Computing with SN P systems with I/O mode. Journal of
Membrane Computing pp 1–16

Alhazov A, Freund R, Oswald M, et al (2006) Extended spiking neural P
systems. In: Hoogeboom HJ, Păun Gh, Rozenberg G, et al (eds) Mem-
brane Computing, 7th International Workshop, WMC 2006, Leiden, The

Springer Nature 2021 LATEX template

A Tutorial on the Formal Framework for Spiking Neural P Systems 23

Netherlands, July 17-21, 2006, Revised, Selected, and Invited Papers, Lec-
ture Notes in Computer Science, vol 4361. Springer, pp 123–134, https:
//doi.org/10.1007/11963516 8

Alhazov A, Freund R, Verlan S (2015) Bridging deterministic P systems and
conditional grammars. In: Rozenberg G, Salomaa A, Sempere JM, et al
(eds) Membrane Computing - 16th International Conference, CMC 2015,
Valencia, Spain, August 17-21, 2015, Revised Selected Papers, Lecture Notes
in Computer Science, vol 9504. Springer, pp 63–76, https://doi.org/10.1007/
978-3-319-28475-0 5

Battyányi P, Vaszil G (2020) Description of membrane systems with time Petri
nets: promoters/inhibitors, membrane dissolution, and priorities. Journal of
Membrane Computing pp 1–14

Chen H, Ionescu M, Ishdorj TO, et al (2008) Spiking neural P systems with
extended rules: Universality and languages. Natural Computing 7(2):147–
166. https://doi.org/10.1007/s11047-006-9024-6

Csuhaj-Varjú E, Gheorghe M, Leporati A, et al (2021) Membrane Comput-
ing Concepts, Theoretical Developments and Applications, World Scientific,
chap 8, pp 261–339. https://doi.org/10.1142/9789811235726 0008

Dong J, Zhang G, Luo B, et al (2022) A distributed adaptive optimization
spiking neural P system for approximately solving combinatorial optimiza-
tion problems. Information Sciences 596:1–14. https://doi.org/https://doi.
org/10.1016/j.ins.2022.03.007

Freund R, Verlan S (2007) A formal framework for static (tissue) P systems.
In: Eleftherakis G, Kefalas P, Paun G, et al (eds) Membrane Computing, 8th
International Workshop, WMC 2007, Thessaloniki, Greece, June 25-28, 2007
Revised Selected and Invited Papers, Lecture Notes in Computer Science, vol
4860. Springer, pp 271–284, https://doi.org/10.1007/978-3-540-77312-2 17

Freund R, Pérez-Hurtado I, Riscos-Núñez A, et al (2013) A formalization
of membrane systems with dynamically evolving structures. International
Journal of Computer Mathematics 90(4):801–815. https://doi.org/10.1080/
00207160.2012.748899

Freund R, Ivanov S, Verlan S (2015) P systems with generalized multisets over
totally ordered abelian groups. In: Rozenberg G, Salomaa A, Sempere JM,
et al (eds) Membrane Computing - 16th International Conference, CMC
2015, Valencia, Spain, August 17-21, 2015, Revised Selected Papers, Lecture
Notes in Computer Science, vol 9504. Springer, pp 117–136, https://doi.org/
10.1007/978-3-319-28475-0 9

https://doi.org/10.1007/11963516_8
https://doi.org/10.1007/11963516_8
https://doi.org/10.1007/978-3-319-28475-0_5
https://doi.org/10.1007/978-3-319-28475-0_5
https://doi.org/10.1007/s11047-006-9024-6
https://doi.org/10.1142/9789811235726_0008
https://doi.org/https://doi.org/10.1016/j.ins.2022.03.007
https://doi.org/https://doi.org/10.1016/j.ins.2022.03.007
https://doi.org/10.1007/978-3-540-77312-2_17
https://doi.org/10.1080/00207160.2012.748899
https://doi.org/10.1080/00207160.2012.748899
https://doi.org/10.1007/978-3-319-28475-0_9
https://doi.org/10.1007/978-3-319-28475-0_9

Springer Nature 2021 LATEX template

24 A Tutorial on the Formal Framework for Spiking Neural P Systems

Ibarra OH, Păun A, Păun Gh, et al (2007) Normal forms for spiking neural P
systems. Theoretical Computer Science 372(2-3):196–217. https://doi.org/
10.1016/j.tcs.2006.11.025

Ionescu M, Păun Gh, Yokomori T (2006) Spiking neural P systems. Funda-
menta Informaticae 71(2–3):279–308

Ionescu M, Păun Gh, Pérez Jiménez MdJ, et al (2011) Spiking neural P systems
with several types of spikes. In: Proceedings of the Ninth Brainstorm-
ing Week on Membrane Computing, 183-192. Sevilla, ETS de Ingenieŕıa
Informática. Fénix Editora, https://doi.org/10.15837/ijccc.2011.4.2092

Minsky M (1967) Computations: Finite and Infinite Machines. Prentice Hall,
Englewood Cliffts, NJ

Orellana-Mart́ın D, Riscos-Núñez A (2020) Seeking computational efficiency
boundaries: the păun’s conjecture. Journal of Membrane Computing pp 1–9

Pan L, Zeng X, Zhang X, et al (2012) Spiking neural P systems with weighted
synapses. Neural Processing Letters 35(1):13–27. https://doi.org/10.1007/
s11063-011-9201-1

Pan L, Paun Gh, Zhang G, et al (2017) Spiking neural P systems with
communication on request. Int J Neural Syst 27(8):1750,042:1–1750,042:13.
https://doi.org/10.1142/S0129065717500423

Pan L, Păun G, Zhang G (2019) Foreword: Starting JMC. Journal of Mem-
brane Computing 1(1):1–2. https://doi.org/10.1007/s41965-019-00010-5,
URL https://doi.org/10.1007/s41965-019-00010-5

Păun G (2000) Computing with membranes. Journal of Computer
and System Sciences 61(1):108–143. https://doi.org/https://doi.org/10.
1006/jcss.1999.1693, URL https://www.sciencedirect.com/science/article/
pii/S0022000099916938

Peng H, Yang J, Wang J, et al (2017) Spiking neural P systems with multiple
channels. Neural Networks 95:66–71. https://doi.org/10.1016/j.neunet.2017.
08.003

Păun Gh (2002) Membrane Computing: An Introduction. Natural computing
series, Springer, https://doi.org/10.1007/978-3-642-56196-2

Păun Gh, Rozenberg G, Salomaa A (eds) (2010) The Oxford Handbook of
Membrane Computing. Oxford University Press, Oxford, England

https://doi.org/10.1016/j.tcs.2006.11.025
https://doi.org/10.1016/j.tcs.2006.11.025
https://doi.org/10.15837/ijccc.2011.4.2092
https://doi.org/10.1007/s11063-011-9201-1
https://doi.org/10.1007/s11063-011-9201-1
https://doi.org/10.1142/S0129065717500423
https://doi.org/10.1007/s41965-019-00010-5
https://doi.org/10.1007/s41965-019-00010-5
https://doi.org/https://doi.org/10.1006/jcss.1999.1693
https://doi.org/https://doi.org/10.1006/jcss.1999.1693
https://www.sciencedirect.com/science/article/pii/S0022000099916938
https://www.sciencedirect.com/science/article/pii/S0022000099916938
https://doi.org/10.1016/j.neunet.2017.08.003
https://doi.org/10.1016/j.neunet.2017.08.003
https://doi.org/10.1007/978-3-642-56196-2

Springer Nature 2021 LATEX template

A Tutorial on the Formal Framework for Spiking Neural P Systems 25

Rong H, Wu T, Pan L, et al (2018) Spiking Neural P Systems: Theoretical
Results and Applications, Springer International Publishing, Cham, pp 256–
268. https://doi.org/10.1007/978-3-030-00265-7 20

Shang Z, Verlan S, Zhang G, et al (2021) FPGA implementation of
numerical P systems. International Journal of Unconventional Com-
puting 16(2-3):279–302. URL https://www.oldcitypublishing.com/
journals/ijuc-home/ijuc-issue-contents/ijuc-volume-16-number-2-3-2021/
ijuc-16-2-3-p-279-302/

Song T, Rodŕıguez-Patón A, Zheng P, et al (2017) Spiking neural P systems
with colored spikes. IEEE Transactions on Cognitive and Developmental
Systems 10(4):1106–1115. https://doi.org/10.1109/tcds.2017.2785332

Song X, Wang J, Peng H, et al (2018) Spiking neural P systems with multi-
ple channels and anti-spikes. BioSystems 169-170:13–19. https://doi.org/10.
1016/j.biosystems.2018.05.004

Valencia-Cabrera L, Pérez-Hurtado I, Mart́ınez-del Amor MÁ (2020) Simula-
tion challenges in membrane computing. Journal of Membrane Computing
pp 1–11

Verlan S (2013) Using the formal framework for P systems. In: Alhazov A,
Cojocaru S, Gheorghe M, et al (eds) Membrane Computing - 14th Inter-
national Conference, CMC 2013, Chişinău, Republic of Moldova, August
20-23, 2013, Revised Selected Papers, Lecture Notes in Computer Science,
vol 8340. Springer, pp 56–79, https://doi.org/10.1007/978-3-642-54239-8 6

Verlan S, Freund R, Alhazov A, et al (2020) A formal framework for spiking
neural P systems. Journal of Membrane Computing 2:355–368. https://doi.
org/10.1007/s41965-020-00050-2

Wang J, Hoogeboom HJ, Pan L, et al (2010) Spiking neural P systems with
weights. Neural Computation 22(10):2615–2646. https://doi.org/10.1162/
NECO a 00022

Wang J, Shi P, Peng H, et al (2013) Weighted fuzzy spiking neural P systems.
IEEE Trans Fuzzy Syst 21(2):209–220. https://doi.org/10.1109/TFUZZ.
2012.2208974

Wu T, Zhang L, Pan L (2021) Spiking neural P systems with target indications.
Theor Comput Sci 862:250–261. https://doi.org/10.1016/j.tcs.2020.07.016

Zhang G, Pérez-Jiménez M, Gheorghe M (2017) Real-life applications with
membrane computing. Springer

https://doi.org/10.1007/978-3-030-00265-7_20
https://www.oldcitypublishing.com/journals/ijuc-home/ijuc-issue-contents/ijuc-volume-16-number-2-3-2021/ijuc-16-2-3-p-279-302/
https://www.oldcitypublishing.com/journals/ijuc-home/ijuc-issue-contents/ijuc-volume-16-number-2-3-2021/ijuc-16-2-3-p-279-302/
https://www.oldcitypublishing.com/journals/ijuc-home/ijuc-issue-contents/ijuc-volume-16-number-2-3-2021/ijuc-16-2-3-p-279-302/
https://doi.org/10.1109/tcds.2017.2785332
https://doi.org/10.1016/j.biosystems.2018.05.004
https://doi.org/10.1016/j.biosystems.2018.05.004
https://doi.org/10.1007/978-3-642-54239-8_6
https://doi.org/10.1007/s41965-020-00050-2
https://doi.org/10.1007/s41965-020-00050-2
https://doi.org/10.1162/NECO_a_00022
https://doi.org/10.1162/NECO_a_00022
https://doi.org/10.1109/TFUZZ.2012.2208974
https://doi.org/10.1109/TFUZZ.2012.2208974
https://doi.org/10.1016/j.tcs.2020.07.016

Springer Nature 2021 LATEX template

26 A Tutorial on the Formal Framework for Spiking Neural P Systems

Zhang G, Shang Z, Verlan S, et al (2020) An overview of hardware implemen-
tation of membrane computing models. ACM Computing Surveys 53(4):38.
https://doi.org/10.1145/3402456

Zhang G, Pérez-Jiménez M, Riscos Núñes A, et al (2021a) Membrane
Computing Models: Implementations. Springer

Zhang G, Rong H, Paul P, et al (2021b) A complete arithmetic calculator
constructed from spiking neural P systems and its application to information
fusion. International Journal of Neural Systems 31(01):2050,055. https://
doi.org/10.1142/S0129065720500550

https://doi.org/10.1145/3402456
https://doi.org/10.1142/S0129065720500550
https://doi.org/10.1142/S0129065720500550

	Introduction
	Network of cells, formal framework and SNP systems
	Network of cells and the formal framework
	Spiking neural P systems case

	Understand and analyze models
	Extended rules
	Multiple type of spikes/colors
	Communication on request

	Relate models by bisimulation
	Extend models
	Delays
	Derivation modes and probabilities
	Non-integer values

	Conclusion

