
HAL Id: hal-04032275
https://hal.science/hal-04032275

Submitted on 25 Apr 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Copyright

FPGA Implementation of Numerical P Systems
Zeyi Shang, Sergey Verlan, Gexiang Zhang, Haina Rong

To cite this version:
Zeyi Shang, Sergey Verlan, Gexiang Zhang, Haina Rong. FPGA Implementation of Numerical P Sys-
tems. International Journal of Unconventional Computing, 2021, 16 (2-3), pp.279-302. �hal-04032275�

https://hal.science/hal-04032275
https://hal.archives-ouvertes.fr

FPGA Implementation of Numerical P Systems1

ZEYI SHANG1,2 , SERGEY VERLAN2 , GEXIANG ZHANG1,3?
2

3

1 School of Electrical Engineering, Southwest Jiaotong University, Chengdu4

611756, China5

2 Univ Paris Est Creteil, LACL, F-94010 Creteil, France6

3 College of Information Science and Technology, Chengdu University of7

Technology, Chengdu 610059, China8

Numerical P Systems (NPS) is a variant of P systems using real-9

valued quantities. It was shown that it can successfully be ap-10

plied for different real-world problems, in particular in the area11

of robotic control. In this paper we introduce an extension of12

NPS, called Generalized Numerical P Systems (GNPS) and we13

describe an efficient implementation of GNPS using FPGA hard-14

ware. This allows to build fast controller chips based on (G)NPS15

and interacting directly with the environment. Two test cases are16

presented describing the implementation results of Sobel image17

edge detection algorithm.18

Key words: Membrane Computing, numerical P system, enzymatic nu-19

merical P system, generalized numerical P system, Field Programmable20

Gate Array (FPGA), hardware implementation.21

1 INTRODUCTION

Membrane computing (MC) is a natural computation paradigm abstracted22

from structural and functional features of living cells [29, 24]. Computing23

models in MC are called P Systems. There is an intense theoretic research in24

the area of MC focusing primarily on computability aspects, in particular on25

Turing-computability, see [15] for an overview. There is a huge number of26

? � Corresponding author: Gexiang Zhang, E-mail: zhgxdylan@126.com

1

different variants of P systems, we cite some important variants below: cell-27

like P systems [29, 16], tissue/population-like P systems [19, 1, 8], spiking28

neural P systems [13, 10, 14] and P systems with active membranes [30, 12,29

36].30

Because of the biological background of P systems, they are used as mod-31

eling frameworks for biological and ecological systems, see [5, 18, 20, 23]32

for more details. As for engineering application of P systems, it is a relatively33

new direction in its early stage comparing to biological/ecological modeling34

of P systems. Complex market interactions are modeled by population dy-35

namic P systems in [34]. Several variants of spiking neural P systems are36

used in power system fault diagnosis [37, 32, 27, 45, 33]. Other applications37

can be found in [46, 43, 44].38

Numerical P systems introduced in [31] is a variant of P systems very39

different from the standard model. Instead of objects and rewriting rules it40

features real-valued variables which are updated in discrete time steps using41

a set of equations. This particularity, long time unexplored, is very interesting42

for applications in the area of control theory, as usually a control is described43

using a set of differential equations, which in many cases can be translated to44

the NPS equation set. In order to be applicable to practical case studies NPS45

model was extended to Enzymatic Numerical P systems (ENPS) [25] that al-46

lowed much more complex behaviors in the corresponding equations. This47

in turn lead to the concept of membrane controllers [2] that are ENPS sys-48

tems designed to act as controllers and running in some environment. As49

a test bed the control of differential wheeled robots [2] (motion, obstacle50

avoidance, wall following, robot following) was developed. In [39] a kine-51

matic controller and a proportional-integral-derivative controller are designed52

for wheeled mobile robots. Another interesting application is found in [38]53

where an environment classifier and a novel multi-behaviors control approach54

are proposed to enhance the reactive navigation performance of autonomous55

mobile robots.56

Membrane controllers mentioned above require several ingredients. The57

evolution of a robot in a real or simulated environment requires a program58

that reads/transmits the values of robot’ sensors (usually distance and speed),59

runs the simulation of the controller (given in ENPS form) for one or several60

steps and then updates/transmits the values of actuators (usually robot wheel61

motors). Before running the simulation this program should assign initial62

values for the membrane controller and after the simulation it should retrieve63

corresponding output values from it. The controller itself is simulated using64

a custom simulator [2, 7] or by Matlab code [39, 38]. In some cases [7, 38]65

2

the experiments were carried out in real robot environments. To speed-up66

the simulation in the case of complex controllers [40] the use of graphical67

processing units (GPU) hardware architectures was proposed [11].68

In this article we extend NPS to a new model that we call Generalized Nu-69

merical P systems (GNPS). The main idea behind this extension is to provide70

a theoretical background allowing us to build custom parallel hardware archi-71

tectures using Field-Programmable Gate Array (FPGA) technology. We stud-72

ied what operations can be efficiently performed in hardware and restricted73

the GNPS architecture to be a series of rules that imply that the dynamics of74

the system is described using equations written in Presburger arithmetic. This75

allows in turn a very efficient translation to a hardware description language76

(HDL) used for FPGA circuit design, allowing to run the model at the clock77

speed (108 steps/s) and using a low number of ressources. To assist this trans-78

lation we developed a compiler that translates GNPS to Verilog HDL. This79

allows to simplify the design process and to rapidly develop real hardware80

prototypes. Moreover, it turns out that there is a tight link between GNPS,81

sequential circuits [35], Mealy/Moore automata [21, 22] and synchronous82

programming languages like Esterel and Lustre.83

We considered several test cases and in this paper we present two of them,84

describing implementation results of Sobel image edge detection algorithm85

on Diligent Basis 3 FPGA board, based on Xilinx Artix 7 architecture.86

This paper is organized as follows: Section 2 introduces the definition of87

NPS and ENPS, analyzing their relations with systems of difference equa-88

tions, together with the definition of a normal form of (E)NPS. Section 3 ex-89

tends the original definition of NPS to GNPS. Section4 discusses the FPGA90

implementation of two case studies in detail. Conclusions are drawn in Sec-91

tion 5.92

2 DEFINITIONS

2.1 Numerical P Systems93

Numerical P systems were introduced in [31] as a model for the study of94

economical processes. They have a tree-like structure and each compartment95

contains a set of real-valued variables as well as evolution rules, called pro-96

grams. They are formally defined as follows.97

A numerical P system is the construct98

Π = (m,H, µ, (V ar1, P r1, V ar1(0)), . . . , (V arm, P rm, V arm(0)))

3

where m > 0 is the degree of the system, H is a set of labels, µ is a mem-99

brane structure, V ari, Pri and V ari(0) are the set of variables, programs and100

initial values from compartment i, 1 ≤ i ≤ m. By convention, we will label101

variables with two indices such that V arj = {x1j , . . . , xkjj}.102

A program (rule) Pli ∈ PRi has the following form103

Pli : Fli(x1i, . . . , xkii)→ cl1|v1 + · · ·+ clni
|vni

where variables v1, . . . , vni
belong to membrane i, or to the neighboring ones104

(the parent or the children of i).105

The first part of the rule (function F) is called the production function,106

while the second part (at the right-hand-side of the arrow) is called the repar-107

tition protocol.108

A rule is applied as follows [31]. First the value of the production function109

is computed, based on current values of the variables. Second, each vari-110

able vs, 1 ≤ s ≤ ni from the repartition protocol part receives the fraction111

cls∑ni
t=1 clt

of the computed production function value. If several rules update112

the same variable, then the corresponding amounts are added. Finally, the113

value of a variable at the beginning of each new step is reset to 0 if this vari-114

able was used in a computation of some production function.115

It is not very difficult to observe that a computation in a NPS corresponds116

to a discrete time series, where the value of a variable at some time step is117

a function of the values of several variables at the previous time step. More118

precisely the evolution of the system can be described by the following equa-119

tions:120

xji(t) =
∑

Plk has xji in rhs as vs

Flk(x1k(t), . . . , xrkk(t))
cls∑nk

r=1 clr
+ x̄ji(t) (1)

where x̄ji(t) =

{
xji(t) if xji does not appear in any production function Flk,

0 otherwise.
121

Example 2.1. Consider the following NPS, also depicted in Figure 1, with
two membranes nested as follows: [1[2]2]1. Let V ar1 = {a, b, f}, V ar2 =

{x, y}, V ar1(0) = (0, 1, 3), V ar2(0) = (0, 1). The rules of the system are
defined as follows:

Pr11 : 4(a+ b)→ 1|a+ 1|f + 2|x.
Pr12 : 3(x+ y)→ 1|b+ 1|x+ 1|y.

4

a[0] b[1] f [3]
mem1

Pr11: 3*(x+y)→1|b+1|x+1|y

Pr12: 4*(a+b)→1|a+2|x+1| f

x[0] y[1]
mem2

FIGURE 1
Numerical P system from Example 2.1. The nested (membrane) structure is repre-
sented by a Venn diagram; the variables and the rules are placed in corresponding
locations; the initial value of variables follow them in square brackets.

It is not difficult to observe that the corresponding system can be rewritten122

as following time series with initial conditions a(0) = 0, b(0) = 1, f(0) = 3,123

x(0) = 0, y(0) = 1.124 

a(t+ 1) = a(t) + b(t)

b(t+ 1) = x(t) + y(t)

f(t+ 1) = f(t) + a(t) + b(t)

x(t+ 1) = x(t) + y(t) + 2 (a(t) + b(t))

y(t+ 1) = x(t) + y(t)

(2)

This can be also written in a matrix form as follows125 
a

b

f

x

y

 =


1 1 0 0 0

0 0 0 1 1

1 1 1 0 0

2 2 0 1 1

0 0 0 1 1




a

b

f

x

y

 (3)

In many cases systems of recurrences can be solved analytically using
standard methods. The analytical solution for system defined by Equation (2)
is given below:

a(t) = 2× 3t−2, b(t) = 4× 3t−2, f(t) = 3t−1 + 3,

x(t) = 8× 3t−2, y(t) = 2× 3t−2 + 1, t > 1

5

We would like to notice that by definition it is allowed to have several126

rules in a membrane. In this case, at each step, one of them is chosen and127

applied non-deterministically. However, for practical considerations, most of128

the systems considered in the literature have only one rule per membrane.129

Enzymatic Numerical P systems130

Enzymatic numerical P systems (ENPS), introduced in [25] are an extension131

of NPS that adds a new type of rules (called enzymatic):132

Pli : Fli(x1i, . . . , xkii)(e→)cl1|v1 + · · ·+ clni |vni

The application of this rule is conditioned to the verification of the min-
imality condition between the values of e and x1i, . . . , xkii. Unfortunately,
there is no unique definition for this condition – several papers use different
ones. Here is the list of most used conditions:

e > min(c(x1i), . . . , c(xkii)), in [25]

e > min(x1i, . . . , xkii), in [25]

e > min(|x1i|, . . . , |xkii|), in [26].

The first definition above uses the function c(x), which is the concentration133

of x in the biological sense. For example, for a production function 2x +134

y we obtain c(x) = x/2, c(y) = y, see [25] for more details. As in the135

case of NPS, if there are several applicable rules, one of them is used non-136

deterministically. One can observe that ENPS also yield time series that use137

a conditional operator.138

Example 2.2. Consider the following ENPS, also depicted in Figure 2, with
three membranes nested as follows: [1[2]2[3]3]1. Let V ar1 = {a, b}, V ar2 =

{E}, V ar3 = {c}, V ar1(0) = (0, 3), V ar2(0) = (2n), n > 0, V ar3(0) =

0. The set of rules is defined as follows:

Pr1 : 2b+ 1(E →)1|a,
Pr2 : E − 1→ 1|E,
Pr3 : 2(c+ 1)(E →)1|c+ 1|b.

It is not difficult to observe that the corresponding system can be rewritten

6

a[0] b[0]
mem1

Pr11: 2*b+1(E→)1|a

Pr12: E-1→1|E

E[2n] mem2

Pr13: 2*(c+1)→1|c+1|b

c[0] mem3

FIGURE 2
Enzymatic numerical P system from Example 2.2.

as following time series.

a(t+ 1) = if E(t) > b(t) then 2b(t) + 1 else a(t)

b(t+ 1) = c(t) + 1

c(t+ 1) = c(t) + 1

E(t+ 1) = E(t)− 1

a(0) = 0, b(0) = 0, c(0) = 0, E(0) = 2n

Clearly, we obtain that a(t) =
∑t

i=0 2i+ 1 = t2 (for t ≤ n).139

2.2 Binary normal forms for (E)NPS140

Traditionally, NPS evolve in min1 mode (from each membrane a single pro-141

gram is selected and applied), see [9]. In [17] so called all-parallel mode is142

introduced for (E)NPS, when all applicable rules from a membrane are ap-143

plied at the same step (we remark that contrary to traditional P systems there144

is no competition for symbols/variable values). The advantage of such a mode145

is that the computation becomes deterministic. Another advantage is that the146

system allows a very nice binary normal form.147

Definition 2.1. A (E)NPS is said to be in the binary normal form if all rules

7

are of form

P : F (x1, . . . , xn)→ c|xk + L|λ, or

P : F (x1, . . . , xn)(E →)c|xk + L|λ,

for some n, k > 0; c, L ≥ 0 and where λ is a special dummy variable.148

It is relatively easy to see that any (E)NPS working in all-parallel mode can149

be transformed to an equivalent one in the binary normal form. To achieve150

this, any rule/program151

F (x1j , . . . , xkj)→ c1|v1 + · · ·+ cl|vl

can be replaced by l rules that assign the same proportion of F to each vari-152

able xl153

F (x1j , . . . , xkj)→ cs|vs + (K − cs)|λ, 1 ≤ s ≤ l, K =

l∑
p=1

cp.

We remark that when l = 1, then L = K − cs = 0, so there is no variable154

λ introduced in the rule.155

A similar transformation can be done with enzymatic programs.156

Moreover, if we relax the condition that variables of the production func-157

tion should be from the same membrane, then it is possible to obtain a stronger158

result. This allows to combine all rules related to a single variable into one159

rule by choosing appropriate coefficients. In this case several programs of160

type161

Fn(x1j , . . . , xkj)→ cn|x+ zn|λ

can be combined as162

n∑
p=1

cp
cp + zp

Fp(x1j , . . . , xkj)→ 1|x. (4)

(E)NPS having only rules of the above type is said to be in unary normal163

form. It is easy to observe that Equation (4) corresponds to the following time164

series165

x(t+ 1) =

n∑
p=1

cp
cp + zp

Fp(x1j(t), . . . , xkj(t)) + x̄(t). (5)

which is exactly the Equation (1).166

8

3 GENERALIZED NUMERICAL P SYSTEMS

In this section we introduce a generalization of (E)NPS, called Generalized167

Numerical P System (GNPS), which has some interesting properties helpful168

for the hardware implementation of the model. As a starting point we take the169

notion of the membrane controller [2], hence from the beginning we assume170

to be interested not in the final result of the computation, but in the dynamics171

of the model. This naturally leads to the inclusion of the concept of dedicated172

input and output variables. The functioning of the system supposes that input173

variables are read-only and can be updated by an external entity at each step.174

The output variables are write-only and an external entity may use their values175

at each step. Such a definition allows to effectively build controllers based on176

GNPS, without using any additional tools or mechanisms to pass the values177

and start/stop the computation.178

From the structural point of view we use a structural abstraction interme-179

diate between a tree-based structure and a flattened system (more precisely180

a hypergraph structure), being the equivalent of the network of cells [9] in181

NPS. This allows to have the notion of the locality (useful for hardware im-182

plementation as it can trigger the use of neighbor cells), but does not impose183

the strong restriction of a tree structure — some examples of membrane con-184

trollers spend an enormous amount of time for the data propagation because185

of the imposed tree structure. Concretely, this allows production functions186

to contain variables defined in a different membrane and also the repartition187

protocol may involve variables from any combination of membranes.188

The main difference of GNPS with respect to previous models is a new189

type of rules that generalize all previous ones. This comes from the obser-190

vation that rules of ENPS are rather limited (and also have a poorly defined191

semantics). The ENPS simulator PeP [6] already proposed to use some sim-192

ple arithmetic predicates to control the applicability of the rules. With GNPS193

we propose to go further and to use conditional rules of form (we separate by194

a semicolon local variables from the other ones):195

P (x1, . . . , xk;E1, . . . , Em);F (x1, . . . , xk)→ c1|v1, . . . , cn|vn, (6)

where P is predicate in Presburger arithmetic (we recall that this is the first-196

order theory of the natural numbers with addition, i.e. one can use compar-197

isons, Boolean operations, additions, subtractions and constant multiplica-198

tions in expressions). Moreover, in the basic variant of the definition we will199

restrict production functions F to be Presburger as well. However, in order to200

accommodate real-case scenarios we will allow the usage of a finite algebraic201

9

signature (a set of functions that can be used in addition to the operations in202

Presburger arithmetic) for both production functions and predicates.203

Example 3.1. We can consider the following predicate for a rule204

P (x, y, z;E,F) = E > x ∧ (F > y ∗ 2 + 3 ∗ z).

If we consider an algebraic signature containing the ordinary multiplication205

operation (σ = {×}), then it would be possible to write the following predi-206

cate207

P (x, y, z;E,F) = E > x ∧ ((F > y ∗ 2 + 3 ∗ z) ∨ (E + F > x× y + z)).

Finally, in order to obtain a deterministic evolution of the system, we as-208

sume that GNPS works in all-parallel mode, i.e. all applicable rules are ap-209

plied at each step. This allows to greatly simplify the design of the hardware210

implementations.211

Formally, we define a GNPS as the following tuple212

Π = (m, I,O, (V ar1, V ar1(0)), . . . , (V arm, V arm(0)), P r, σ),

where m, V ari and V ari(0) have the same meaning as in NPS (the number213

of cells/membranes, the vectors of internal variables and their initial values).214

The rules are no more specific to some membrane, so they are all collected in215

the set Pr. Each rule is of form (6). In the case of an always true predicate, it216

can be omitted. Used variables in each rule induce a dependency hypergraph.217

When this hypergraph is a tree, we may use a Venn diagram notation and place218

rules in corresponding cells/membranes. The input (resp. output) variables219

are given by the set I (resp. O). The algebraic signature σ contains the220

list of additional functions used (with respect to the addition/subtraction and221

constant multiplication). If σ = ∅ then it may be omitted from the definition.222

We recall that the evolution of the system is performed in all-parallel mode,223

i.e. all applicable rules are applied in parallel at each step.224

4 FPGA IMPLEMENTATION

According to the discussion in Section 2.2 and the fact that Presburger arith-
metic is recursive, any GNPS system can be rewritten as the following time
series (whereX(t), Y (t) andQ(t) are the vectors of input, output and internal
variables, respectively, at time t):

Q(t+ 1) = F (Q(t), X(t)) (7)

Y (t+ 1) = G(Q(t), X(t)) (8)

10

These equations are the generalization (using real numbers instead of Boolean225

values) of equations used in switching algebra [35] for the definition of the226

concept of Mealy automaton [21], which together with Moore automaton [22]227

form the basis of modern synchronous circuit design. Since from the imple-228

mentation point of view real numbers should be encoded using a fixed bit size,229

it appears that GNPS are very similar to vector Moore/Mealy machines. This230

in turn allows a straight implementation using hardware FPGA technology.231

For implementation efficiency we considered following restrictions for232

GNPS:233

• Real values are replaced by their approximation using a fixed-point bi-234

nary representation.235

• The production functions are linear.236

• The predicates are Presburger-definable.237

The above restrictions allow to relatively easy obtain the Mealy/Moore238

machine in form of Equation (7). The corresponding functions F and G are239

linear enriched with conditional statements as it is shown in Example 4.1.240

Remark 4.1. In the basic case we consider an empty signature σ as this al-241

lows a straight translation to Verilog. For more complex computations, corre-242

sponding functions should be implemented additionally as Verilog modules.243

This can induce a delay, as in many cases it is not possible to compute corre-244

sponding functions in one clock step.245

Remark 4.2. In the case of fixed-point encoding, it is possible to easily im-246

plement the multiplication operation working in one time step. This can be247

done either directly (by using multiplication code dependent on the width of248

the encoding), or using a special component of FPGA called DSP slice that249

allows to perform multiplication operations in one step (up to 48-bit width).250

Remark 4.3. Contrary to multiplication, it is not easy to implement the divi-251

sion operation in one time step. However, the division by a constant c can be252

seen as the multiplication by c−1.253

Example 4.1. Consider the system depicted on Fig. 3. It has two input, two254

output and two internal variables. The system computes the average value of255

its inputs and also indicates if this value changed by more than 0.1% on the256

previous step. We recall that all rules are executed in parallel.257

The set of equations corresponding to this system is the following (a(0) =

11

FIGURE 3
P system from Example 4.1.

b(0) = out1(0) = out2(0) = 0).

a(t+ 1) =
in1(t) + in2(t)

2

b(t+ 1) = a(t)

out1(t+ 1) = a(t)− b(t)
out2(t+ 1) = if |a(t)− b(t)| < 0.001 then 0 else 1

It can be directly transformed to Verilog as follows (we assume a fixed point258

encoding of real numbers over 32 bits and using 12 bits for the fractional part).259

In the below listing the fixed-point (constant) multiplication is performed by260

the function _mult (recall that 2048 is 0.5 in the chosen fixed-point encod-261

ing).262

263
module A #(parameter WIDTH = 32 , parameter BPPOS = 12)264

(output [WIDTH: 0] out1 , output [WIDTH: 0] out2 ,265

input [WIDTH: 0] in1 , input [WIDTH: 0] in2 ,266

input c l k267

) ;268

reg [WIDTH: 0] a = 0 ;269

reg [WIDTH: 0] b = 0 ;270

reg [WIDTH: 0] c = 0 ;271

reg [WIDTH: 0] d = 0 ;272

273

always @(posedge c l k) begin274

a <= m u l t (i n 1 + in2 , 2 0 4 8) ;275

b <= a ;276

ou t1 <= a−b ;277

ou t2 <= a−b < 4 && a−b > −4 ? 0 : 4096 ;278

end279

endmodule280281

The synthesis of this circuit using Vivado tools uses 87 logic cells.282

It can be seen that the translation is rather straightforward. A compiler283

FPNtoVerilog was developed in order to assist in this translation. As in-284

put it takes the GNPS model in form of Equations (7) and (5) and produces285

12

as output behavioral Verilog code implementing the corresponding Mealy/-286

Moore automaton.287

The compiler performs the following steps:288

1. Parse the input file.289

2. Identify input and output symbols.290

3. Flatten the obtained system.291

4. Perform constant propagation.292

5. Convert all constants to fixed-point real number representation.293

6. Write Verilog output.294

These steps are performed using standard compiling techniques. The last295

step is straightforward as a sequential Boolean (switching) function/circuit296

can be directly translated to Verilog. As a result a file containing the syn-297

thesizable (in FPGA) Verilog module whose code simulates each step of the298

GNPS at each clock tick is generated. Two case studies are designed as target299

models and their FPGA implementation process is detailed to elucidate how300

a GNPS can be implemented in a FPGA. Since the algorithm we implement301

is making use of the square root function, we consider that the signature of302

the system is σ = {
√
·}.303

Our target development board is Digilent BASYS 3 equipped with a Xilinx304

Artix-7 XC7A35T-1CPG236C FPGA as core component. The FPGA devel-305

oping environment is Xilinx Vivado 2019.1 and Verilog is used as HDL. A306

Dell Latitude outfitted with a Intel Core i7-7820HQ and 16 GB RAM is the307

host computer.308

4.1 Case study 1309

The GNPS model (called GNPS1 for simplicity) of case study 1 is illustrated310

in Figure 4. It corresponds to Sobel image edge detection algorithm. GNPS1311

only has a skin membrane, without any inner membranes. A program is ap-312

plicable if its conditional rule ca be met. Variable e is assigned a big enough313

value so that the 4 programs can be executed at the same time. We employ314

fixed-point number format to represent real values. Specifically, every vari-315

able is assigned a 20-bit register in which the first bit designates the sign316

bit, the following 8-bit denoting integer part and the rest of 11-bit presenting317

fraction part of a real number. We also use the signature σ = {x2,
√
·}.318

13

a1[6.7] a21[5.03] a31[4.31]

a41[2.28] a51[1.92] a61[0.85]

11 1 21 31 41 51 61

11 1 21 31 41 51 61 1

min(, , , , ,)

Pr : 2 2 1|

P e a a a a a a

a a a a a a b

 


     

e[7]

a2[2.43] a22[1.71] a3[0.94]

a4[-3.07] a24[5.46]

θ[0.2]

b1[0] b2[0]

b3[0] b31[0] b4[0] b41[0]

21 2 22

2 2

21 2 22 2

min(,)

Pr : 1|

P e a a

a a b

 


 

31 3

31 3 31Pr : 2 (3) 1| 1|

P e a

a b b

 


   

41 4 24

41 4 24 41 4

min(,)

Pr : 2 1| 1|

P e a a

a a b b

 


  

Skin

FIGURE 4
GNPS model for case study 1. It implements the core computations of Sobel image
edge detection algorithm. GNPS1 has a skin membrane containing 4 programs and 19
real-value variables. The predicate for each program is taken to a separate line before
it. All the programs execute in parallel if their conditional rules are satisfied. Input
variables are a1, a2, a3, a4 (highlighted in red). Output variables are b1, b2, b3, b4
(highlighted in blue). Others are intermediate variables.

14

After inputting GNPS1 to our FPNtoVerilog compiler, the output is319

a behavioral model that specifies the behavior of GNPS1. We also provided320

the implementations of the functions from the signature σ (square root and the321

square function). Next, this model is translated to register transfer level (RTL)322

using Vivado tools. The upper-most level of GNPS1 schematic generated by323

Vivado is depicted in Figure 5. Before proceeding to the next processing324

step, RTL model should be evaluated to verify that it dose possess required325

functions/behaviors. A test file named testbench is designed to perform such326

verification work. In the testbench, a model should be instantiated at first.327

Then input data/impulse to its input ports of the model and analyze outcomes328

represented in the form of timing waveforms. It is notable that outcomes329

are simulated by software (Vivado for our case, this simulation process is330

called Behavioral Simulation in Vivado.) instead of FPGA. In this research,331

two case study models are constructed as sequential circuits, namely clock is332

involved as a metronome to synchronize operations. Rising edge of clock is333

the trigger signal, i.e., operations can only be carried out after a rising edge334

and variables hold their values until next rising edge. The period of clock is335

set to 10 ns in the test bench.336

Behavioral simulation omits any gate delays and data path delays, which337

means that results are output instantaneously, at the same time of trigger edge338

for sequential circuits [3] and the change instant of signals for combinational339

circuits. GNPS1’s behavioral simulation timing waveform is shown in Figure340

6, from which we can see that b1, b3, b4 get their outcomes after the first ris-341

ing edge of clock. While the result of b2 arises after the second rising edge,342

for the sum of two operands should be computed in the first period of clock343

and during that time the initial value for variable to be radicated is zero. Here344

we resort to corresponding Vivado IP core to compute the square root [42].345

Apparently, behavioral simulation suggests that four programs of GNPS1 ex-346

ecute simultaneously and output variables emit results 20 ns later. As stated347

above, behavioral simulation neglects any delays so the waveform cannot re-348

flect the real timing situation. Post implementation timing simulation which349

can only be conducted after implementation operation can provide more reli-350

able timing waveform.351

As the platform for design & validation of prototype circuits [4], the essen-352

tial task of FPGA implementation is to obtain circuits. Synthesis procedure353

bridges the gap between RTL models and circuits. Models can be synthesized354

after behavioral simulation if it behaves as expected behaviors. There are two355

important tasks should be done after synthesizing target model: setting con-356

straints and debug cores. Constraints include timing constraints and physical357

15

FIGURE 5
Block diagram of GNPS1 RTL model. After the design of a model, the corresponding
schematic can be drawn automatically by Vivado. The schematic characterizes the
same functions/behaviors as RTL model representing by HDL.

16

FIGURE 6
Behavioral simulation of GNPS1. The first rising edge of clock is at 5 ns. b2 gets its
result at 15 ns and other three variables get their results at 5 ns since all the delays
are neglected. This is not the reality but a simplification for assessing the behaviors of
target model.

constraints. In timing constraints, the period of the clock and input/output358

delays are set, while physical constraints specify I/O configurations, mapping359

ports of model to pins of FPGA. The clock period is set 10 ns in the two case360

studies. To save pins, only b3 and b4 are set as output ports for GNPS1. All361

the constraints are written in constraint file (.xdc) in the format of industry362

standard Synopsys Design Constraints (SDC) [41]. The variables to be de-363

bugged in hardware debug procedure can be marked and set after synthesis.364

The subsequent procedure of Synthesis is Implementation, which performs365

plan & route of the synthesized circuits and other vital operations such as366

power and hardware resource consumption analysis, real timing analysis. As367

mentioned above, behavior simulation ignores any delays so the timing situ-368

ation cannot be evaluated from its waveform. Nevertheless, gate delays and369

data path delays of a model are taken into account after implementation so370

the timing of a design can be revealed by post implementation timing simula-371

tion, as shown in Figure 7. According to design timing summary provide by372

Vivado, the worst negative slack (WNS) is 3.97 ns, worst hold slack (WHS)373

0.058 ns and worst pulse width slack (WPWS) 3.75 ns.374

For the sake of comparing the computing speed of FPGA hardened GNPS375

and software simulation of GNPS, speedup is defined as the ratio of elapsed376

time of two methods. A software called PeP which dose not have a GUI dedi-377

17

FIGURE 7
Post implementation timing simulation of GNPS1. Port b1, b3 and b4 obtain their
steady output value after the eleventh rising edge of clock, indicating it costs 110 ns to
get results. For b1, its steady output value emerges after sixteenth rising edge, costing
160 ns to compute outcome.

FIGURE 8
Software simulation of GNPS1. It is assumed that GNPS1 evolves one step to stop.
Here we can see that there is no one-to-one correspondence between a clock cycle and
a GNPS step. For complex arithmetic computations, one step of GNPS requires more
than one clock cycle.

cates to emulate (E)NPS [6]. For the sake of simulating other types P systems,378

one can resort to P-Lingua [28]. GNPS1 is transformed to its ENPS counter-379

part and emulated by PeP, which outputs results and elapsed time to com-380

pute the results, as shown in Figure 8. Then the speedup of FPGA hardened381

GNPS1 is calculated in Equation 9. The maximum error of output variables382

is computed in Equation 10.383

5.651× 106

160
= 3.5319× 104 (9)

∣∣∣∣3.92− 3.92480469

3.92

∣∣∣∣× 100% ≈ 1.225765× 10−3 (10)

The estimated power consumption is reported after implementation, shown384

in Figure 9 (a). Because the function of GNPS1 and GNPS2 is not complicate,385

the dynamic power merely shares 13% to 14% of total power and clock power386

makes up more than 70% of dynamic power.387

18

(a) Power consumption of GNPS1 is
0.078 w.

(b) Power consumption of GNPS2 is 0.08
w.

FIGURE 9
Total power consumption is the sum of device static power and dynamic power. Power
consumption of the two cases are nearly the same, although GNPS1 works in all par-
allel and GNPS2 works in sequential.

After implementation of a model, its Place & Route planning is also per-388

formed. Vivado provides powerful view check feature so the place and route389

can be zoomed in to see each path clearly. Hardware resource cost for GNPS1390

is listed in Table 1.391

If design objectives are satisfied after implementation, one can proceed392

to generate bitstream which contains design specifications and program de-393

vice that download bitstream to FPGA to carry out physical plan & route.394

The real computing results of FPGA cannot be observed straightforwardly,395

but requires a particular procedure called hardware debug. The variables to396

be debugged should be marked in Verilog codes or marked in the net list.397

We mark b3 and b4 in Verilog codes as debug signals. After programing de-398

vice, the integrated logic analyzer window open automatically. Debug signals399

should be added into the window manually, then run debug to exhibit values400

computed by FPGA, shown in Figure 10.401

4.2 Case study 2402

In practical applications such as image processing and robot path planning,403

computation process comprises several sequential procedures. In each pro-404

cedure, multiple functions may be performed in all parallel mode, like the405

way GPNS1 works. In this subsection, we modify GNPS1 from all parallel406

19

Resource Used Available Utilization %

Slice 680 8150 8.34
LUT 1309 20800 6.29
LUTRAM 159 9600 1.66
FF 2126 41600 5.11
BRAM 1.5 50 3.00
IO 41 106 38.68
BUFG 2 32 6.25

TABLE 1
Hardware resources utilization of GNPS1

FIGURE 10
Hardware debug of GNPS1. Input variables cannot be debugged so there is no clock
signal. Values are represented in hexadecimal, 01f66 is 8038 in decimal. 8038÷211 =
3.9248046875, which is the value of b4. 005eb is 1515 in decimal, 1515 ÷ 211 =
0.73974609375, which is the value of b3.

20

to sequential mode, resulting GNPS2, depicted in Figure 11. Conditional rule407

of membrane 1 is met at beginning, so program Pr11 and Pr21 take place408

simultaneously. Other conditional rules are not met for the initial value of409

conditional variables are zeros. After Pr21 modifying the value of e2 from 0410

to 3, programs in membrane 2 are triggered to execute. So does membrane411

3 and 4. It is worth to note that Pr21 and Pr22 consume e1 and e2 so each412

program can only execute once. In short, a train-type ignition method is used413

to control the execution sequence of programs.414

Input GNPS2 to FPNtoVerilog obtaining the RTL model. The block415

diagram of GNPS2 RTL model is illustrated in Figure 12. Edge detection416

is used as the trigger signal to impel the next membrane to execute. By this417

way, the train-type ignition is realized. According to Figure 7 reflecting actual418

timing condition of each program, program Pr11, Pr13, Pr14 cost 11 clock419

cycles to compute while Pr12 needs 16 clock cycles. The testbench designed420

for GNPS2 conforms to these delays and the behavioral simulation is shown421

in Figure 13, in which variable cout1 is the edge detection signal that can422

detect the rising edge of cont. Be ware that bi (i = 1, 2, 3, 4) gets value423

instantly for the neglect of delays in behavioral simulation.424

Synthesize GNPS2 and open the synthesized model, complete constraints425

design and debug core set as that of GNPS1, then implement GNPS2. Run426

post implementation timing simulation to check the timing situation, as shown427

in Figure 14. PeP simulation of GNPS2 shown in Figure 15, so the speedup428

of FPGA implementation is computed in Equation 11. Power consumption429

of GPNS2 is given in Figure 9 (b).430

9.306× 106

480
≈ 1.9388× 104 (11)

Hardware consumption for GNPS2 is summarized in Table 2. It can be431

seen that GNPS2 utilizes a little bit more resources than GNPS1 for its more432

complicate logic. At last, perform hardware debug to verify that FPGA hard-433

ened GNPS2 obtained correct outcomes, shown in Figure 16.434

Finally, the last tests were performed using an autonomous execution of435

the system without output and using distributed read-only memory data stor-436

age for the input. Under this setup the speed of 100Mhz (corresponding to437

the system clock) was achieved. This means that a GNPS model can be sim-438

ulated at a speed of 108 steps per second. We would like to remark that in439

real-use cases the reaction speed will be dependent on the input/output de-440

lay. It is pointed out that the input/output circuits are not system-specific and441

can be reused for different simulations. However, at the present state they442

21

FIGURE 11
GNPS model for case study 2 is numbered as GNPS2. The equations inside are the
core computations of Sobel image edge detection algorithm. GNPS2 has 5 membranes
and evolves 4 steps to reach halt condition. Programs in each membrane compute
concurrently while each membrane execute serially.

22

FIGURE 12
Block diagram of GNPS2 RTL model. Each membrane is modeled in Verilog basic
functional unit, module. The bug icons indicate variables to be debugged in Hardware
Debug procedure.

FIGURE 13
Behavioral simulation of GNPS2. At a rising edge of clock, if couti = 1, execute
programs in the next membrane. Three edge detection signal appears at 105 ns, 265
ns and 375 ns respectively and lasts 10 ns.

23

(a) Variable b1 gets its value in the 11th cycle, while b2 obtains its value in the 25th cycle.

(b) Variable b3 gets its value in the 38th cycle, while b4 obtains its value in the 49th cycle.

FIGURE 14
Post implementation timing simulation of GNPS2. The real timing of b2 and b3is a
little different than expected.

FIGURE 15
Software simulation of GNPS2. It is assumed that GNPS1 evolves four steps to stop.
CPU of the host computer costs 0.009306 s to get results.

24

Resource Used Available Utilization %

Slice 744 8150 9.13
LUT 1327 20800 6.38
LUTRAM 156 9600 1.63
FF 2150 41600 5.17
BRAM 1.50 50 3.00
IO 41 106 38.68
BUFG 2 32 6.25

TABLE 2
Hardware resources utilization of GNPS2

(a) Hardware debug of b1 (connect to b11) and b2 (connect to b12).

(b) Hardware debug of b3 and b4.

FIGURE 16
Hardware debug of GNPS2. Values are represented in hexadecimal, 070cd is 28877
in decimal. 28877÷ 211 = 14.10009765625, which is the value of b1. 17c5 is 6085
in decimal, 6085÷ 211 = 2.97119140625, which is the value of b2.

25

need to be integrated manually in the final hardware design. At this moment,443

the development of FPNtoVerilog continues in order to integrate the au-444

tomatic generation of input/output modules. This will allow a generation of445

a hardware circuit directly from the GNPS specification, without any user446

intervention.447

5 CONCLUSIONS

In this work we provide an efficient custom FPGA-based hardware architec-448

ture design for the implementation of generalized numerical P systems. This449

allows a high-speed simulation of the corresponding system as well as a di-450

rect on-chip handling of input and output data. This architecture has a solid451

theoretical basis based on GNPS systems and consumes a low number of452

ressources. However, at the moment a manual intervention during the design453

process is still necessary and we concentrate our future effort on the complete454

authorization of the design. In perspective, this will allow to create custom455

chips performing a control function and handling their input/output in an au-456

tomated manner, without having any hardware programming knowledge.457

Another important point is to test the obtained chips by using them to458

directly perform the robot control. Input/output from serial ports, leds and459

switches on the BASYS 3 board were tested to build data transmission chan-460

nels. We have made several preliminary investigations showing the possi-461

bility to acquire sensor data and to send control signals to the Pioneer 3462

DX wheeled robot from the GNPS controller. A further development would463

need to design the corresponding interface and accompanying functions in the464

compiler. We have also shown that the underlying model is extremely close465

to well known circuit design abstractions based on Mealy/Moore automata.466

This can give a new research direction investigating the links between GNPS467

and synchronous programming languages.468

The method for FPGA implementation of GNPS is proposed and veri-469

fied. Results show that it is feasible to implement GNPS on FPGA to exploit470

their parallelism to speedup computations. Comparing to software simula-471

tion of GNPS, the speedup achieved is an order of 104. Obviously, the hard-472

ware architecture of GNPS is a parallel one. However, the fact that programs473

and membranes worked as processing units to handle tasks inspires us that a474

FPGA hardened GNPS seems to be a heterogeneous multicore processor for475

different programs and membranes working in parallel have different func-476

tions. As a consequence, this heterogeneous architecture defined by P systems477

differing from current architectures can be applied in computation intensive478

26

fields such as image/video processing, robot path planning, big data, etc.479

ACKNOWLEDGMENTS

This work is supported by the National Natural Science Foundation of China480

(61972324, 61672437, 61702428), by Beijing Advanced Innovation Center481

for Intelligent Robots and Systems (2019IRS14), Artificial Intelligence Key482

Laboratory of Sichuan Province (2019RYJ06) and the Sichuan Science and483

Technology Program (2018GZDZX0043, 2018GZ0185, 2018GZ0086).484

REFERENCES

[1] Francesco Bernardini and Marian Gheorghe. (2004). Population P systems. Journal of485

Universal Computer Science, 10(5):509–539.486

[2] Cătălin Buiu, Cristian Ioan Vasile, and Octavian Arsene. (2012). Development of mem-487

brane controllers for mobile robots. Information Sciences, 187:33–51.488

[3] Joseph Cavanagh. (2016). Sequential Logic and Verilog HDL Fundamentals. CRC Press.489

[4] Pong P. Chu. (2008). FPGA Prototyping by Verilog Examples. John Wiley & Sons, Inc.490

[5] Gabriel Ciobanu, Mario J. Pérez-Jiménez, and Gheorghe Puaun, editors. (2006). Applica-491

tions of Membrane Computing. Natural Computing Series. Springer.492

[6] Andrei George Florea and Cătălin Buiu. GitHub—PeP: (Enzymatic) Numerical P System493

simulator. https://github.com/andrei91ro/pep.494

[7] Andrei George Florea and Cătălin Buiu. (June 2017). Modelling multi-robot interactions495

using a generic controller based on numerical p systems and ros. In 2017 9th International496

Conference on Electronics, Computers and Artificial Intelligence (ECAI), pages 1–6.497

[8] Rudolf Freund, Gheorghe Păun, and Mario J. Pérez-Jiménez. (2005). Tissue P systems498

with channel states. Theoretical Computer Science, 330(1):101–116.499

[9] Rudolf Freund and Sergey Verlan. (2007). A formal framework for static (tissue) P500

systems. In Membrane Computing, 8th International Workshop, WMC 2007, Thessaloniki,501

Greece, June 25-28, 2007, volume 4860 of Lecture Notes in Computer Science, pages 271–502

284. Springer.503

[10] Marc Garcı́a-Arnau, David Pérez, Alfonso Rodrı́guez-Patón, and Petr Sosı́k. (2009). Spik-504

ing Neural P Systems: Stronger Normal Forms. International Journal of Unconventional505

Computing, 5(5):411–425.506

[11] Manuel Garcı́a-Quismondo, Luis F. Macı́as-Ramos, and Mario J. Pérez-Jiménez. (2013).507

Implementing Enzymatic Numerical P Systems for AI Applications by Means of Graphic508

Processing Units, pages 137–159. Springer, Berlin, Heidelberg.509

[12] Zsolt Gazdag and Gábor Kolonits. (2019). A new method to simulate restricted variants510

of polarizationless P systems with active membranes. Journal of Membrane Computing,511

1(4):251–261.512

[13] Mihai Ionescu, Andrei Păun, Gheorghe Păun, and Mario J. Pérez-Jiménez. (2006). Com-513

puting with spiking neural P systems: Traces and small universal systems. In DNA Com-514

puting, 12th International Meeting on DNA Computing, DNA12, Seoul, Korea, June 5-9,515

2006, volume 4287 of Lecture Notes in Computer Science, pages 1–16. Springer.516

27

https://github.com/andrei91ro/pep

[14] Yun Jiang, Yansen Su, and Fen Luo. (2019). An improved universal spiking neural P517

system with generalized use of rules. Journal of Membrane Computing, 1(4):270–278.518

[15] Shankara Narayanan Krishna. (2011). An overview of membrane computing. In Dis-519

tributed Computing and Internet Technology - 7th International Conference, ICDCIT 2011,520

Bhubaneshwar, India, February 9-12, 2011, volume 6536 of Lecture Notes in Computer521

Science, pages 1–14. Springer.522

[16] Shankara Narayanan Krishna and Raghavan Rama. (2001). P systems with replicated523

rewriting. Journal of Automata, Languages and Combinatorics, 6(3):345–350.524

[17] Alberto Leporati, Antonio E. Porreca, Claudio Zandron, and Giancarlo Mauri. (2013).525

Improved Universality Results for Parallel Enzymatic Numerical P Systems. International526

Journal of Unconventional Computing, 9(5-6):385–404.527

[18] Vincenzo Manca, Luca Bianco, and Federico Fontana. (2005). Evolution and oscillation in528

p systems: Applications to biological phenomena. In Membrane Computing, pages 63–84,529

Berlin, Heidelberg. Springer.530

[19] Carlos Martı́n-Vide, Gheorghe Păun, Juan Pazos, and Alfonso Rodrı́guez-Patón. (2003).531

Tissue P systems. Theoretical Computer Science, 296(2):295–326.532

[20] Miguel A. Martı́nez-del-Amor, Luis F. Macı́as-Ramos, Luis Valencia-Cabrera, and Mario J.533

Pérez-Jiménez. (2016). Parallel simulation of population dynamics P systems: updates534

and roadmap. Natural Computing, 15(4):565–573.535

[21] G. H. Mealy. (Sept 1955). A method for synthesizing sequential circuits. The Bell System536

Technical Journal, 34(5):1045–1079.537

[22] Edward F. Moore. (1956). Gedanken-experiments on sequential machines. Automata538

studies, pages 129–153.539

[23] Anthony Nash and Sara Kalvala. (2019). A P system model of swarming and aggregation540

in a Myxobacterial colony. Journal of Membrane Computing, 1(2):103–111.541

[24] Linqiang Pan, Gheorghe Păun, and Gexiang Zhang. (2019). Foreword: Starting jmc.542

Journal of Membrane Computing, 1(4):1–2.543

[25] Ana Pavel, Octavian Arsene, and Cătălin Buiu. (2010). Enzymatic numerical P sys-544

tems - a new class of membrane computing systems. In Fifth International Conference545

on Bio-Inspired Computing: Theories and Applications, BIC-TA 2010, Changsha, China,546

September 23-26, 2010, pages 1331–1336. IEEE.547

[26] Ana Brândusa Pavel, Cristian Ioan Vasile, and Ioan Dumitrache. (2012). Robot localization548

implemented with enzymatic numerical P systems. In Biomimetic and Biohybrid Systems -549

First International Conference, Living Machines 2012, Barcelona, Spain, July 9-12, 2012,550

volume 7375 of Lecture Notes in Computer Science, pages 204–215. Springer.551

[27] Hong Peng, Jun Wang, Jun Ming, Peng Shi, Mario J. Pérez-Jiménez, Wenping Yu, and552

Chengyu Tao. (2018). Fault Diagnosis of Power Systems Using Intuitionistic Fuzzy553

Spiking Neural P Systems. IEEE Transactions on Smart Grid, 9(5):4777–4784.554

[28] Ignacio Pérez-Hurtado, David Orellana-Martı́n, Gexiang Zhang, and Mario J. Pérez-Jiménez.555

(2019). P-lingua in two steps: flexibility and efficiency. Journal of Membrane Computing,556

1(2):93–102.557

[29] Gheorghe Păun. (2000). Computing with membranes. Journal of Computer and System558

Sciences, 61(1):108–143. First circulated as TUCS Research Report No 208 (November559

1998).560

[30] Gheorghe Păun. (2001). P systems with active membranes: Attacking np-complete561

problems. Journal of Automata, Languages and Combinatorics, 6(1):75–90.562

28

[31] Gheorghe Păun and Radu A. Păun. (2006). Membrane Computing and Economics:563

Numerical P Systems. Fundamenta Informaticae, 73(1-2):213–227.564

[32] Haina Rong, Mianjun Ge, Gexiang Zhang, and Ming Zhu. (2018). A novel approach565

for detecting fault lines in a small current grounding system using fuzzy reasoning spik-566

ing neural P systems. International Journal of Computers, Communications & Control,567

13(4):521–536.568

[33] Haina Rong, Kang Yi, Gexiang Zhang, Jianping Dong, Prithwineel Paul, and Zhiwei569

Huang. (2019). Automatic Implementation of Fuzzy Reasoning Spiking Neural P Systems570

for Diagnosing Faults in Complex Power Systems. Complexity, 2019:Article ID 2635714,571

16 pages.572

[34] Eduardo Sánchez-Karhunen and Luis Valencia-Cabrera. (2019). Modelling complex573

market interactions using pdp systems. Journal of Membrane Computing, 1(1):40–51.574

[35] Claude E. Shannon. (Jan 1949). The synthesis of two-terminal switching circuits. The575

Bell System Technical Journal, 28(1):59–98.576

[36] Manca Vincenzo. (2019). From biopolymer duplication to membrane duplication and577

beyond. Journal of Membrane Computing, 1(4):292–303.578

[37] Tao Wang, Gexiang Zhang, Junbo Zhao, Zhenyou He, Jun Wang, and Pérez-Jiménez. (May579

2015). Fault diagnosis of electric power systems based on fuzzy reasoning spiking neural580

p systems. IEEE Transactions on Power Systems, 30(3):1182–1194.581

[38] Xueyuan Wang, Gexiang Zhang, Xiantai Gou, Prithwineel Paul, Ferrante Neri, Haina582

Rong, Qiang Yang, and Hua Zhang. (2020). Multi-behaviors coordination controller583

design with enzymatic numerical P systems for robots. Integrated Computer-Aided Engi-584

neering, 27:in press.585

[39] Xueyuan Wang, Gexiang Zhang, Ferrante Neri, Tao Jiang, Junbo Zhao, Marian Gheorghe,586

Florentin Ipate, and Raluca Lefticaru. (2016). Design and implementation of membrane587

controllers for trajectory tracking of nonholonomic wheeled mobile robots. Integrated588

Computer-Aided Engineering, 23(1):15–30.589

[40] Xueyuan Wang, Gexiang Zhang, Haina Rong, Prithwineel Paul, and Hua Zhang. (2018).590

Multi-behaviors coordination controller design with enzymatic numerical P systems for au-591

tonomous mobile robots in unknown environments. In Michael J. Dinneen and Radu Nico-592

lescu, editors, Proceedings of the Asian Branch of International Conference on Membrane593

Computing (ACMC2018), volume 530, pages 257–287. Centre for Discrete Mathematics594

and Theoretical Computer Science, Auckland, New Zealand.595

[41] Xilinx. Vivado design suite user guide: Using constraints. https:/ / www.xilinx.596

com/support/documentation/sw_manuals/xilinx2019_2/ug903-viv597

ado-using-constraints.pdf.598

[42] Xilinx. Xilinx cordic v6.0 logicore ip product guide. https://www.xilinx.com/s599

upport/documentation/ip_documentation/cordic/v6_0/pg105-cor600

dic.pdf.601

[43] Gexiang Zhang, Jixiang Cheng, Marian Gheorghe, and Qi Meng. (2013). A hybrid ap-602

proach based on differential evolution and tissue membrane systems for solving constrained603

manufacturing parameter optimization problems. Applied Soft Computing, 13(3):1528–604

1542.605

[44] Gexiang Zhang, Marian Gheorghe, Linqiang Pan, and Mario J. Pérez-Jiménez. (2014).606

Evolutionary membrane computing: A comprehensive survey and new results. Information607

Sciences, 279:528–551.608

[45] Gexiang Zhang, Mario J. Pérez-Jiménez, and Marian Gheorghe. (2017). Real-life appli-609

cations with membrane computing. Springer.610

29

https://www.xilinx.com/support/documentation/sw_manuals/xilinx2019_2/ug903-vivado-using-constraints.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2019_2/ug903-vivado-using-constraints.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2019_2/ug903-vivado-using-constraints.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2019_2/ug903-vivado-using-constraints.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2019_2/ug903-vivado-using-constraints.pdf
https://www.xilinx.com/support/documentation/ip_documentation/cordic/v6_0/pg105-cordic.pdf
https://www.xilinx.com/support/documentation/ip_documentation/cordic/v6_0/pg105-cordic.pdf
https://www.xilinx.com/support/documentation/ip_documentation/cordic/v6_0/pg105-cordic.pdf
https://www.xilinx.com/support/documentation/ip_documentation/cordic/v6_0/pg105-cordic.pdf
https://www.xilinx.com/support/documentation/ip_documentation/cordic/v6_0/pg105-cordic.pdf

[46] Gexiang Zhang, Haina Rong, Ferrante Neri, and Mario J. Pérez-Jiménez. (2014). An Opti-611

mization Spiking Neural P System for Approximately Solving Combinatorial Optimization612

Problems. International Journal of Neural Systems, 24(5):Article No. 1440006, 16 pages.613

30

	Introduction
	Definitions
	Numerical P Systems
	Enzymatic Numerical P systems

	Binary normal forms for (E)NPS

	Generalized Numerical P Systems
	FPGA implementation
	Case study 1
	Case study 2

	Conclusions

