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Abstract: We consider the problem of supervised dimension reduction with a partic-
ular focus on extreme values of the target Y ∈ R to be explained by a covariate vector
X ∈ Rp. The general purpose is to define and estimate a projection on a lower dimen-
sional subspace of the covariate space which is sufficient for predicting exceedances of
the target above high thresholds. We propose an original definition of Tail Conditional
Independence which matches this purpose. Inspired by Sliced Inverse Regression (SIR)
methods, we develop a novel framework (TIREX, Tail Inverse Regression for EXtreme
response) in order to estimate an extreme sufficient dimension reduction (SDR) space
of potentially smaller dimension than that of a classical SDR space.We prove the weak
convergence of tail empirical processes involved in the estimation procedure and we
illustrate the relevance of the proposed approach on simulated and real world data.

MSC2020 subject classifications: Primary 62G32, 62H25; secondary 62G08, 62G30.
Keywords and phrases: Dimension reduction, Empirical processes, Extreme events,
Inverse regression, Supervised learning.

1. Introduction

Dimension reduction is a crucial matter in supervised learning problems where the goal is to
predict a dependent variable Y ∈ R or summaries of it, when the dimension p of the covariate
vector X ∈ Rp is large. In this paper we consider dimension reduction for prediction of tail
events, by which we mean events of the kind {Y > y}, for arbitrarily large values of y.
This stylized statistical problem relates to a wide range of practical applications such as
supervised anomaly detection, system monitoring with a large number of sensors, prediction
of extreme weather conditions or financial risk management. For instance, in financial risk
management, a typical concern is to identify risk factors, which will be further used to
explain extreme events such as financial market crashes, see e.g. Fama and French (1993,
2015). Risk factors are often lower dimensional functionals based on a large number of stock
returns. Identifying such risk factors that can predict financial market crashes is therefore
an example of dimension reduction for the problem of predicting tail events.

Our focus on extreme values connects our work with the field of Extreme Value Theory
(EVT) which has been successfully applied to model tail events with potentially catastrophic
impact. Statistical inference in this framework is performed using the most extreme real-
izations of the random variable under consideration. We refer the interested reader to the
monographs Beirlant et al. (2006); De Haan and Ferreira (2007); Resnick (2013, 2007). No-
tice that the curse of dimensionality is particularly troublesome in extreme value analysis
where only a small fraction of the data, reflected by the low probability P (Y > y), is used
for inference. Before proceeding further we remark that the method proposed in this study,
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although motivated by and formulated in an EVT framework, does not rely on the minimal
assumptions typically required in EVT such as a power law decay. It is in fact a local method
related to any small range of Y and as such, it could be easily adapted to tackle the problem
of dimension reduction for prediction of Y within low probability regions of other shapes.
However in view of the importance of applications towards risk management, we concentrate
on this specific tail region.

Dimension reduction in EVT. The subject of dimension reduction for extremes has in-
spired numerous recent works. The vast majority of them are devoted to the unsupervised
setting, i.e. analyzing the extremes of a high dimensional random vector. Such studies can be
divided into the following categories: clustering methods (Chautru (2015); Chiapino et al.
(2020); Janßen and Wan (2020)), support identification, (Goix, Sabourin and Clémençon
(2016); Goix, Sabourin and Clémençon (2017); Chiapino and Sabourin (2016); Chiapino,
Sabourin and Segers (2019); Simpson, Wadsworth and Tawn (2020); Meyer and Winten-
berger (2021)), Principal Component Analysis of the angular component of extremes (Coo-
ley and Thibaud (2019); Jiang, Cooley and Wehner (2020); Drees and Sabourin (2021)), and
graphical models for extremes (Hitz and Evans (2016); Engelke and Hitz (2020); Asenova,
Mazo and Segers (2021)); see also Engelke and Ivanovs (2021) and the references therein.

By contrast, our approach takes place in the supervised setting. Our main informal as-
sumption is that a low dimensional orthogonal projection PX is sufficient for predicting
extreme values of Y . In other words the extreme values of Y can be entirely explained
by a limited number of linear combinations of the components of X. In this setting, the
only existing works are, to our best knowledge, Gardes (2018) and Bousebata, Enjolras and
Girard (2023). In Gardes (2018), the informal assumption emphasized above is made pre-
cise by a specific notion of tail conditional independence, reported in Equation (3.2) below.
Dimension reduction is considered under this condition. Gardes (2018) demonstrates the
usefulness of such a reduction for statistical estimation of large conditional quantiles. Even
though we follow in the footsteps of Gardes (2018) in terms of informal goal, our frame-
work differs significantly from Gardes (2018)’s on several key aspects. First, the specific
definition of tail conditional independence that we propose (See Definition 2 in Section 3)
is not equivalent to Gardes (2018)’s condition (3.2). We carry out an in-depth comparison
of both conditions and we show that neither one of them implies the other, in Section B
from the supplementary material. Second, our assumption is motivated by a downstream
task (predicting the occurrence of a tail event) which is different from, although related to
the one motivating Gardes (2018) (estimation of extreme conditional quantiles). Third, the
statistical guarantees brought by Gardes (2018) are obtained under the assumption that the
dimension reduction space is already known. In the cited reference an estimation method
is indeed proposed for the dimension reduction space, however its statistical properties are
only analyzed via simulations. Instead, we bring statistical guarantees regarding the estima-
tion of a sufficient projection subspace itself. We discuss qualitatively the positive impact
it may have for prediction of tail events in Remark 1. Lastly, the computational cost of
TIREX depends only polynomially on the ambient dimension p, which is not the case with
the current estimation method in Gardes (2018), as discussed in Section 6.

Another study related to our work is the recently published paper Bousebata, Enjolras
and Girard (2023), where the authors adopt a partial least square strategy to uncover the re-
lation between linear combinations of covariates and the extreme values of the target. Their
model assumptions differ from ours substantially: the inverse regression model assumed in
Bousebata, Enjolras and Girard (2023) implies a single-index relationship between extreme
values of the response and the covariates. In addition, the model requires regular variation of
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the dependent variable Y and of the link function. Lastly, the model relies on finite variance
of Y . In contrast, our approach is somewhat ‘free’ from most restrictions on the distribution
of (X,Y ) except from the well-known linearity condition and constant variance condition,
typically needed for SIR. Such conditions concern only the distribution of the covariates.
Since we do not impose regular variation, we can handle not only thin-tailed but also ex-
tremely heavy-tailed dependent variables with no finite variance or even mean.

Sufficient Dimension Reduction and inverse methods. The underlying assumption
of a sufficient linear projection subspace has been formalized under the notion of Sufficient
Dimension Reduction (SDR) space (Cook (2009)). Many classical approaches to supervised
dimension reduction rely on a linear regression model between X and Y . This is the case e.g.
for Principal component regression (Hotelling (1957)), Partial least squares (Wold (1966)),
Canonical correlation analysis (Thompson (1984)) or penalized methods with sparsity in-
ducing regularization such as the Lasso (Jenatton, Audibert and Bach (2011)). Differently,
SDR builds upon a linear dimension reduction assumption: only a small number of linear
combinations of covariates is useful for predicting the dependent variable. In other words,
there exists a linear subspace E (a SDR) of a moderate dimension d ≤ p, such that

P (Y ≤ t | X) = P(Y ≤ t|PX), ∀t ∈ R, almost surely, (1.1)

where P is the orthogonal projector on E, i.e. Y depends on X only through PX ∈ Rd.
This framework relies heavily on the notion of conditional independence Dawid (1979); Con-
stantinou and Dawid (2017): Condition (1.1) characterizes the fact that Y is conditionally
independent from X given PX. One major advantage of this approach is that it strikes
a balance between interpretability of the dimension reduction based on linear operations
and flexibility of the generative model – no assumption is made regarding the dependence
structure between PX and Y .

Under the assumption that there exists a non trivial subspace E such that (1.1) holds,
a natural idea is to estimate such a subspace first, and then use only the variable PX
to predict Y , thus reducing the dimensionality of the regression problem. The estimation
problem based on SDR can also be viewed as a specific case of semi-parametric M-estimation
(Delecroix, Hristache and Patilea (2006)). Alternatively, one may consider derivative based
methods, relying on the fact that the gradient of the regression curve belongs to E (Härdle
and Stoker (1989); Hristache et al. (2001); Xia et al. (2007); Dalalyan, Juditsky and Spokoiny
(2008)). Recently, the framework of Reproducing Kernel Hilbert Spaces (RKHS) has been
employed to estimate SDR spaces by means of covariance operators (Fukumizu, Bach and
Jordan (2004); Fukumizu et al. (2009)).

The family of methods to which our work relates most is the inverse regression paradigm
initiated by Li (1991), including the Sliced Inverse Regression (SIR) strategy and its sec-
ond order variant Sliced Average Variance Estimate (SAVE) (Cook and Weisberg (1991)).
The main idea underlying these methods is that under appropriate assumptions the inverse
regression curve E [X|Y ] and its second moment variant – the columns of the conditional
covariance matrix Var [X|Y ] – almost surely belong to the minimal SDR. Cumulative slicing
estimation (CUME), proposed in Zhu, Zhu and Feng (2010) and further analyzed in Portier
(2016), aims at recovering the largest possible subspace of the minimal SDR. It is achieved
by estimating the conditional expectation and variance of X, conditioning on ‘slices’ of the
target Y , in the form of 1{Y < y}, and then aggregating such conditional expectations and
variances by integration with respect to y.

A well-known restriction of the SIR strategy is that it relies on a so-called linearity con-
dition (LC) regarding the covariates, namely equation (2.1) in the next section, see Hall and
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Li (1993) for a justification. The required condition is satisfied in particular if the covariates
form an elliptical random vector or are independent (Cook (2009); Eaton (1986)). There are
various extensions of SIR permitting to overcome this restriction. Using RKHS, it has been
proposed to transform the data in a way that LC is approximately satisfied (Wu (2008);
Yeh, Huang and Lee (2008)). Another possibility allowing to depart from elliptical covari-
ates is to apply the SIR methodology and its higher order variants to score functions of
the explanatory variables (Babichev et al. (2018)). Finally, the high dimensional case p > n
calls for regularization methods which permit in addition to perform feature selection (Li
and Yin (2008)). All these extensions are out of the scope of the present paper, in which
we restrict ourselves to the original SIR and SAVE methods, thus leaving room for several
improvement in further works. For estimation purposes we consider a variant of CUME.

Contributions and outline. Our contributions are twofold. First, we develop in Section 3
a modified version of Gardes (2018)’s probabilistic setting regarding tail conditional indepen-
dence. In particular we explain in Remark 1 the relevance of our definition for the purpose of
predicting tail events and its connections to the statistical learning framework of imbalanced
classification. We discuss thoroughly the distinctions between the two alternative definitions
for tail conditional independence in Section B where we also provide examples of models sat-
isfying one or the other. Second, we show in Section 4 that our definition permits to extend
inverse regression principles and methods to this extreme values setting (theorems 1, 2). We
derive an asymptotic analysis for our proposed estimation strategy TIREX stemming from
inverse regression, using specific tools from the theory of empirical processes (Section 5).
We illustrate the finite sample performance of TIREX with simulated and real world data
sets in Section 6, in particular we demonstrate empirically the usefulness of TIREX for tail
events prediction. The code developed for TIREX is available online 1 and some technical
proofs and additional comments are deferred to the supplementary material.

We start-off in Section 2 by recalling the necessary background regarding conditional
independence of random variables, SDR spaces, and inverse regression.

2. Background: dimension reduction space and Sliced Inverse Regression

Conditional independence of random variables Y and V given W is defined e.g. in Con-
stantinou and Dawid (2017) as follows: the conditional distribution of Y given (V,W ) is the
same as the conditional distribution of Y given W , almost surely. Several characterizations
are recalled below, the equivalence of which are proved in Constantinou and Dawid (2017),
Proposition 2.3.

Definition 1 (conditional independence). Let Y, V,W be random variables defined on a
probability space (Ω,F ,P) and taking values in arbitrary measure spaces. The variables Y
and V are called conditionally independent given W , a property denoted by Y ⊥⊥ V |W , if
the equivalent conditions below are satisfied.

(CI-1) For all AY ∈ σ(Y ), P (Y ∈ A | V,W ) = P (Y ∈ A |W ), almost surely.
(CI-2) For all real-valued functions f and g, measurable and bounded,

E [f(Y )g(V ) |W ] = E [f(Y ) |W ]E [g(V ) |W ] , a.s.

(CI-3) For any real-valued function g, measurable and bounded,

E [g(V ) | Y,W ] = E [g(V ) |W ] , a.s.

1https://github.com/anassag/TIREX

https://github.com/anassag/TIREX
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Notice that the existence of regular versions of conditional probability distributions is
not required in Definition 1. However in this paper, Y is real valued, thus the existence
of such a regular version for the conditional distribution of Y given (V,W ) is granted.
As a consequence we may write, without additional precautions, expressions of the kind
‘P (Y ∈ A | V = v,W = w)’. The latter quantity is defined as the value of the conditional
probability kernel at point ((v, w), A).

In the context of supervised dimension reduction, we consider V = X and search for a
projection W = PX of X on a lower dimensional subspace E satisfying the above conditions.
We assume for simplicity that the covariance matrix Σ = Cov [X] is invertible and for ease
of presentation we introduce a standardized covariate vector Z = Σ−1/2(X − m) where
m = E [X]. We consider in the remaining of this paper the problem of regressing Y on Z,
which amounts to assuming that both m and Σ are known, so that the vector Z is observed.
Thus Var [Z] = Ip and E [Z] = 0. A SDR space (Cook (2009); Cook and Ni (2005)) is a
subspace E of Rp such that Y ⊥⊥ Z | PZ where P is the orthogonal projection on E, which
is equivalent to condition (1.1) in the introduction. Our results easily extend to general
covariates X (see e.g. Cook and Weisberg (1991)) at the price of an additional notational
burden, see Section E in the supplementary material. Notice already that in terms of non-
standardized covariates X, a subspace Ẽ of Rp with associated orthogonal projector P̃ is a
SDR space for the pair (X,Y ) if and only if Ẽ = Σ−1/2E where E is a SDR space for Z.

A central space is a SDR subspace Ec for the pair (Z, Y ) of minimal dimension. In our
context of finite dimensional covariates a central space always exists since the ambient space
Rp itself is a SDR space. Uniqueness is not guaranteed in general but holds true under mild
assumptions ensuring that an intersection of SDR spaces is a SDR space (see e.g. Portier and
Delyon (2013), Theorem 1). In such a case one may refer without ambiguity to the central
space.

First and second order inverse methods, respectively named SIR (Li (1991)) and SAVE
(Cook and Weisberg (1991)) are two of many methods to estimate SDR spaces. Both rely
on the fact that under appropriate assumptions detailed below, first and second moments
of the covariate vector, conditioning upon the target, belong to a SDR space. In the sequel,
E is a SDR space, and P denotes the orthogonal projection on E. Then Q = Ip − P is the
orthogonal projection on E⊥, the orthogonal complement of E. The required conditions are
the Linearity Condition (LC):

E [Z | PZ] = PZ a.s. (2.1)

and the additional Constant Conditional Variance (CCV),

Var [Z|PZ] is constant a.s. (2.2)

Under both LC and CCV, we have that E [Var [Z|PZ]] = E
[
ZZT

]
−E

[
PZ(PZ)T

]
= Ip−P

and therefore the constant matrix in (2.2) is necessarily the projection Q = Ip − P on the
orthogonal complement of E.

Notice that LC and CCV depend on an unknown SDR space. Assuming that LC holds
for all orthogonal projectors is in fact equivalent to assuming that the covariate vector Z is
spherically symmetric, i.e. Z = ρU where ρ ⊥⊥ U , ρ is a non negative random variable and
U is uniformly distributed over the unit sphere of Rp, as proved in Eaton (1986). Among
spherical variables with finite second moment, CCV is equivalent to being Gaussian ((Bryc,
2012, Theorem 4.1.4)).

The following proposition in Li (1991) encapsulates the main idea of SIR. We give below
the (classical) proof for the sake of completeness.
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Proposition 1 (SIR principle). If E is an SDR space for which LC (2.1) is satisfied, then
Q(E [Z|Y ]) = 0 a.s., that is, E [Z|Y ] ∈ E a.s.

Proof. By the tower rule from conditional expectation,

E [Z | Y ] = E
[
E
(
Z |Y, PZ

) ∣∣ Y ] = E [E(Z |PA) | Y )]

= E [PZ | Y ] = P E [Z | Y ]

where the second equality comes from conditional independence and the third one follows
from the linearity condition (2.1). Thus QE [Z|Y ] = 0.

The SIR method advocated first by Li (1991) consists in estimating first conditional
expectations Ch = E [Z | Y ∈ I(h)], h = 1, . . . ,H, where I(h), h = 1, . . . ,H are called slices
and form a partition of the sample range of Y (or the support of the density function if
Y is continuous). From Proposition 1, those estimates lie in the vicinity of the SDR space.
Next, performing a Principal Component Analysis (PCA) on the Ch’s, one obtains a good
approximation of E. More precisely, the SIR estimate of E is given by the largest eigenvectors
associated to the SIR matrix,

MSIR =

H∑
h=1

p−1
h ChC

T
h ,

where ph = P (Y ∈ I(h)); see Li (1991). Various estimation procedures of SDR spaces are
proposed in Cook and Ni (2005); Zhu, Zhu and Feng (2010). In the latter reference, the
matrix

MCUME = E
[
m(Y )m(Y )T

]
, (2.3)

with m(y) = E [Z1{Y ≤ y}], is introduced as an alternative to the SIR matrix. One advan-
tage of this approach is that the slicing parameter h is no longer needed. In addition the
estimate of the matrix MCUME benefits from the aggregating effect of the expectation sign
which is typically associated with variance reduction.

A pitfall of SIR is that it is not guaranteed that the Ch’s span the entire space E, so
that SIR may be inconsistent. This may happen in particular when the regression function
E [Y |Z] admits some symmetry properties (Li, 1991, Remark 4.5), a phenomenon referred
to as the SIR pathology. In this case, Li (1991) and Cook and Weisberg (1991) recommend
to use higher order moments such as the conditional variance of Z given Y to obtain a
second order matrix with wider range. This second order method requires that CCV (2.2)
is satisfied in addition to LC, in which case the following result holds. Here and throughout,
span(M) stands for the column space of matrix M .

Proposition 2 (SAVE principle). If E is an SDR space for which LC (2.1) and CCV (2.2)
are satisfied, then

Q
(
E
[
ZZ> |Y

]
− Ip

)
= 0 a.s.,

in other words span
(
E[ZZ> |Y ]− Ip) ⊂ E a.s.

Proof. We reformulate here the arguments of Cook and Weisberg (1991) in our notational
framework for convenience. An immediate consequence of assumptions (2.1) and (2.2) is that
E
[
ZZT |PZ

]
= Q + PZZTP . From a conditioning argument and the conditional indepen-

dence assumption, E
[
ZZT |Y

]
= Q+ PE

[
ZZT |Y

]
P . Rearranging gives E

[
ZZT |Y

]
− Ip =

P (E
[
ZZT |Y

]
− Ip)P , thus Q(E

[
ZZT |Y

]
− Ip) = 0.
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Notice that propositions 1 and 2 together imply that Q(Var [Z | Y ]− Ip) = 0. Finally for
estimation purpose the extension of the CUME method to the second order framework is
termed CUVE (cumulative variance estimation) by Zhu, Zhu and Feng (2010). In the case
of standardized covariates, it consists in estimating the matrix MCUVE = E

[
W (Y )W (Y )>

]
,

where W (y) = Var [Z1{Y ≤ y}]−FY (y)Ip is a second order moments matrix which column

space is included in Ẽ. The latter fact is obtained by a slight modification of the argument
leading to the SAVE principle.

3. Tail conditional independence, Extreme SDR space

3.1. Definition for Tail Conditional Independence

The focus on the largest values of the target variable Y suggests to weaken the classical
definition of conditional independence, so that the equivalent conditions (CI-1)-(CI-3) hold
only for Y exceeding a high threshold tending to its right endpoint. Namely, in a similar (but
different) manner as in Gardes (2018) we define tail conditional independence as a variant of
condition (CI-1) from Definition 1. In the sequel the right endpoint (i.e. the supremum) of
the support of the random variable Y is denoted by y+. The limits as y → y+ as understood
as the limits as y → y+, y < y+. We assume that P (Y > y) −→ 0 as y → y+, in particular
we exclude the case of point masses at y+.

Definition 2 (Tail Conditional Independence (TCI)). Let Y, V,W be random variables de-
fined on (Ω,F ,P). We assume that Y is real valued, Borel measurable, while V and W take
their values in arbitrary measure spaces. We say that Y is tail conditionally independent
from V given W and write Y∞⊥⊥V |W , if

E
∣∣P (Y > y | V,W )− P (Y > y |W )

∣∣
P (Y > y)

−−−−→
y→y+

0. (3.1)

Contrary to conditional independence, tail conditional independence is not symmetric:
Y∞⊥⊥V |W does not imply that V∞⊥⊥Y |W .

In Gardes (2018)’s work, tail conditional independence is defined in a somewhat more
technical manner, see Definition 1 from the cited reference. However a necessary condition
(see Equation (2) in that paper) is the almost sure convergence of the σ(V,W )-measurable
ratio,

P (Y > y | V,W )− P (Y > y |W )

P (Y > y |W )
−−−−→
y→y+

0, a.s. (3.2)

In the sequel we refer to our notion of tail conditional independence defined in (3.1) as TCI,
while we write TCI-G to refer to L. Gardes’ condition (3.2). Both definitions are motivated
by similar but different downstream tasks, namely prediction of extreme values for TCI
in connection to the AM risk criterion (see Remark 1 below), versus estimation of large
conditional quantiles (see Section 3.1 in Gardes (2018)).

In Subsection 3.2 below we work out a generic example where TCI holds and on this oc-
casion, we discuss briefly the differences between TCI and TCI-G. In order not to interrupt
the flow of ideas a more thorough comparison between the two definitions is relegated to the
supplementary material (Section B).

In practice TCI allows for an extension of the SIR framework to handle extreme values
(Section 4). Whether it is possible to obtain a similar extension with TCI-G is an open
question. We conjecture a negative answer because our Tail Inverse Regression principles
theorems 1, 2 rely on a specific consequence of TCI, namely Property (iii) from Proposition 3
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below. In spirit our definition for TCI and the subsequent Tail inverse regression framework
developed in Section 4 below is compatible with the main notions underlying graphical
models for extremes (Engelke and Hitz (2020)) and One component regular variation (Hitz
and Evans (2016)). These connections are further detailed in Remarks 5 and 6 from Section 4.

Meanwhile the next remark sheds light on the relevance of the proposed definition of TCI
for statistical learning applications.

Remark 1 (TCI and Imbalanced Classification). Predicting exceedances over arbitrarily
high thresholds y may be viewed as a family of binary classification problems indexed by y.
Indeed for fixed y, consider the binary target T = 1{Y > y} with marginal class probability
π = πy = P (Y > y). The goal is thus to predict T , by means of the covariate vector
X = (V,W ) where V ∈ Rp−d,W ∈ Rd. As y → y+, πy → 0. This is a typical instance of
class imbalance, a well documented potential issue in binary classification which has been
the subject of several works in the statistical learning literature, see e.g. the recent papers
Menon et al. (2013) or Xu et al. (2020) and the references therein. A classifier is a binary
function h defined on Rp. Given a family of candidate classifiers h ∈ H the goal is to select a
‘good’ candidate based on a training set and an appropriate notion of a theoretical risk and
its empirical counterpart. When π is so close to zero that the probability of a classification
error P (h(X) 6= T, T = 1) is negligible compared with P (h(X) 6= T, T = 0), the traditional
0 − 1 risk R(h) = P (h(X) 6= T ) is driven by the latter term and tends to favor the trivial
classifier h ≡ 0. One standard approach aiming at granting more importance to the minority
class when required by the application context (e.g. if the event {T = 1}, although rare, has
an overwhelming impact) is to consider the Arithmetic Mean Risk (AM risk in short), see
e.g. Menon et al. (2013),

RAM(h) =
1

2

[
P (h(X) = 1 | T = 0) + P (h(X) = 0 | T = 1)

]
. (3.3)

Generalizations to arbitrary weight vectors are considered in Xu et al. (2020). In a dimension
reduction context consider the classes

H = {h : Rp → {0, 1}, measurable w.r.t. B(Rp)} ,
HW = {h ∈ H : ∀(v, w) ∈ Rp−d × Rd, h(v, w) = h̃(w), h̃ is measurable w.r.t. B(Rd)}.

Let us refer to the classification problem attached respectively to H and HW as the full
problem and the reduced problem. The Bayes classifier for each problem are respectively
minimizers of the AM risk over the full family H and the reduced one HW ,

h∗ ∈ arg min
h∈H

RAM(h) ; h∗W ∈ arg min
h∈HW

RAM(h).

The main ingredient of the subsequent analysis are the regression functions η(x) = P (T = 1 | X = x)
and ηW (w) = P (T = 1 |W = w) . A modification of standard arguments (see the supple-
mentary material, Section A) yields explicit expressions for the Bayes classifiers h∗(x) =
1{η(x) > π}, h∗W (x) = 1{ηW (w) > π}. In addition the Bayes risks are

RAM(h∗) = E
[
min

(η(X)

π
,

1− η(X)

1− π

)]
;

RAM(h∗W ) = E
[
min

(ηW (W )

π
,

1− ηW (W )

1− π

)]
.

(3.4)

Because HW ⊂ H we must have RAM(h∗W ) ≥ RAM(h∗). The difference between the two
may be seen as a bias term: the price to pay for dimension reduction. Indeed for any random
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choices ĥ ∈ H, ĥW ∈ HW , which are typically the outputs of a statistical learning algorithm
applied respectively to the full covariate space and the reduced one, the excess risk for the
reduced problem decomposes as

RAM(ĥW )−RAM(h∗) = RAM(ĥW )−RAM(h∗W )︸ ︷︷ ︸
A

+RAM(h∗W )−RAM(h∗)︸ ︷︷ ︸
B

.

The first term (A) in the right-hand side is the excess risk stemming from the particular
choice of the learning algorithm, which typically increases with the dimension of the input
W . In particular when p − d is large, the excess risk term A will be typically less than its
counterpart in the full problem RAM(ĥ)−RAM(h∗). The second term (B) is the bias term
above mentioned. The bias-variance compromise is in favour of dimensionality reduction via
projection on the second variable W whenever A+B ≤ RAM(ĥ)−RAM(h∗).

We now derive an upper bound on the bias term B which is closely connected to our
definition of TCI. Notice that for any finite set X and any pair of real functions (f, g) it
holds that |minx∈X f(x)−minx∈X g(x)| ≤ maxx∈X |f(x)− g(x)|. This, combined with (3.4)
above and Jensen inequality, implies that

B = RAM(h∗W )−RAM(h∗) ≤ E
∣∣∣min

(ηW (W )

π
,

1− ηW (W )

1− π

)
−min

(η(X)

π
,

1− η(X)

1− π

)∣∣∣
≤ E

{
max

(η(X)− ηW (W )

π
,

(1− η(X))− (1− ηW (W ))

1− π

)}
= E

∣∣∣η(X)− ηW (W )

π

∣∣∣, (3.5)

where the latter identity holds whenever π ≤ 1/2. Now, with T = 1{Y > y},

E
∣∣∣η(X)− ηW (W )

π

∣∣∣ =
E
∣∣∣P (Y > y | V,W )− P (Y > y |W )

∣∣∣
P (Y > y)

.

One recognizes the TCI criterion in the latter expression. Thus TCI means that the bias
term B vanishes as y → y+, so that projection on W is relevant for the problem of predicting
the rare event {Y > y}, for large values of y. The cut-off value y above which RAM(ĥW ) ≤
RAM(ĥ), that is A + B ≤ RAM(ĥ) − RAM(h∗) (in expectation or with high probability),
depends on two main factors: (i) the rate of convergence of By to zero and (ii) the sensitivity
of the learning algorithm to the curse of dimensionality for a given sample size. Indeed both
excess risks RAM(ĥ) −RAM(h∗) and RAM(ĥW ) −RAM(h∗W ) typically converge to zero (in
expectation or in probability) with the sample size, at a different rate which depends on the
respective dimensions p, d. Precise quantification of this cut-off point for specific learning
algorithms and finite sample sizes is outside the scope of the present paper and left for future
research.

3.2. Examples and discussion

In this section we provide a generic example based on a mixture model where the TCI
condition (3.1) is satisfied under mild assumptions. We discuss an alternative additive model
in Remark 2. We consider several particular instances of the generic mixture model and
on this occasion we discuss the similarities and differences between TCI and the TCI-G
condition (3.2) proposed in Gardes (2018). Some technical proofs are deferred to Section B in
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the supplementary material, as well as additional comments, examples and counter-examples
allowing for a better understanding of the differences between the two definitions.

Our leading example is constructed as follows: Let the target Y be distributed according
to a mixture

Y = BY1 + (1−B)Y2 ,

where B is a Bernoulli variable with parameter θ ∈ (0, 1), and Y1, Y2 are real variables
defined through their conditional survival functions

S1(y, V ) = P (Y1 > y | V ) , S2(y,W ) = P (Y2 > y |W ) .

Here, the covariate variables V,W are respectively valued in Rp−d and Rd with marginal
distributions that we denote by PV and PW . The full covariate vector is X = (V,W ) ∈ Rp.
We assume that the variables (B, V,W ) are independent. Notice that independence between
V and W ensures that the Linearity Condition and Constant Conditional Variance condition
are automatically satisfied. In this context, straightforward calculations (as detailed in the
supplementary material, Section B) show that

|P (Y > y | V,W )− P (Y > y |W )|
P (Y > y)

=
θ(S1(y, V )− S1(y))

θS1(y) + (1− θ)S2(y)
.

The TCI condition is that the expectancy of the above ratio vanishes as y → y+ and it is
not difficult to imagine several models for (Y1, V ) and (Y2,W ) for which it is the case, as
exemplified below.

Remark 2 (Variant: additive model). The mixture model described here is by no means
the only option to construct examples of variables(Y, V,W ) satisfying the TCI assumption.
Another natural example is an additive model Y = Y1 +Y2, where Y1 and Y2 are respectively
driven by V and W , while Y1 has lighter tails than Y2. The mathematical derivations are
somewhat more intricate because convolutions are involved instead of sums of distribution
functions. However special cases can be worked out. In the supplementary material we
consider Y1 = V ∈ R, Y2 = Wζ ∈ R where ζ is heavy-tailed and V,W have a compact
support which is bounded away from 0 and we show that TCI holds. More general statements
might be obtained using results regarding sums of regularly varying random variables (Jessen
and Mikosch (2006)). We leave this question to further works.

As an example in the generic mixture model described above, consider the case where Y1

and Y2 are themselves defined as multiplicative mixtures

Y1 =

p−d∑
i=1

M
(1)
i Viεi , Y2 =

d∑
j=1

M
(2)
j Wjζj , (3.6)

whereM1 = (M1
1 , . . . ,M

1
p−d) is a multinomial vector with weight parameter π1 = (π1

1 , . . . , π
1
p−d),

that is
∑p−d
i=1 M

1
i = 1 and P(M1

i = 1) = π1
i ; M2 is as well a multinomial variable with pa-

rameter π2 = (π2
1 , . . . , π

2
d); and the variables εi, i ≤ p − d and ζj , j ≤ d are multiplicative

noises, with different tail behaviour. Assume for simplicity that all εj ’s (resp. ζj ’s) share the
same survival function Sε (resp. Sζ) and that for all s, t > 0,

lim
y→∞

Sε(s
−1y)/Sζ(t

−1y) = 0. (3.7)

Condition (3.7) is satisfied e.g. with Pareto noises, Sε(y) = y−α1 , Sζ(y) = y−α2 with α1 >
α2 > 0, or with Exponential versus Pareto noises, Sε(y) = e−α1y, Sζ(y) = y−α2 , α1, α2 > 0.
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The random vectors M1,M2, ε, ζ, V,W are independent. Finally the covariate vectors V
and W are made of independent components Vi,Wj , with nonnegative, bounded support
included in an interval [a, b] with 0 ≤ a < b <∞.

In this generic example, Y1 has a lighter tail than Y2, so that it is the main risk factor
regarding large values of Y , and it is intuitively desirable for a formal definition of tail
conditional independence to be such that Y is tail conditionally independent from V given
W here.

We now consider two special cases regarding the marginal distributions of the covariates
Vj ,Wj . recall that [a, b] contains the support of each Vi and each Wj .

(i) As a first go assume that a > 0. Then both TCI and TCI-G hold. The proof is
deferred to the supplementary material, Section B.4.

(ii) Assume now that a = 0, more specifically that each variable Vj ,Wj follows a binary
Bernoulli distribution with parameter τ ∈ (0, 1) (the choice of a common τ merely
simplifies the notations). In Section B.5 from the supplementary material we show
that TCI-G does not hold, while TCI does.

Notice that the difference between the two cases concerns only the marginal distribution
of the covariate, namely whether P (Wj = 0) > 0 is key. This seemingly minor variation
results in fact in potential failure of TCI-G, while TCI remains true. The main conclusions
of our comparison between the two definitions (TCI and TCI-G) in the supplementary
material, Section B, may be summarized as follows.

1. Neither condition implies the other in general, except for discrete covariates where
TCI-G implies TCI.

2. TCI-G criterion concerns the additional information brought by V regarding the prob-
ability of the event Y > y, after conditioning on W . The criterion is satisfied if the
additional information is negligible, for all possible values W = w, even those values
such that the conditional distribution of Y given W = w is shorter tailed than the
marginal distribution of Y . Indeed TCI-G is primarily designed for quantile regres-
sion, and the focus is not on the tail of Y ’s distribution, but instead on the tails of the
conditional distributions of Y given W . This is the informal reason why TCI-G is not
satisfied in the example above, Case (ii).

3. In constrast TCI is designed for prediction of extreme values of Y . It is an integrated
version of TCI-G with respect to the variable (V,W ), with a weight function granting
more importance to w’s such that the ratio P (Y > y |W = w) /P (Y > y) is large as
y → y+. In words, TCI is comparatively more sensitive to values w such that the
conditional probability given W = w of an exceedance Y > y is large.

3.3. Technical consequences of TCI, parallel with traditional conditional
independence

Definition 2 implies equivalent weak formulations of the traditional conditions (CI-1,CI-2,CI-
3) reviewed in the background section.

Proposition 3. If Y∞⊥⊥V |W in the sense of Definition 2, then the following equivalent
conditions (i), (ii), (iii) hold.

(i) For any real-valued functions g and h, measurable and bounded, we have

E
[
g(V )h(W )

(
P (Y > y | V,W )− P (Y > y |W )

)]
P (Y > y)

−−−−→
y→y+

0.
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(ii) For any real-valued functions g and h, measurable and bounded, we have

E
[
h(W )

(
E [1{Y > y}g(V ) |W ]− E [1{Y > y} |W ]E [g(V ) |W ]

) ]
P (Y > y)

−−−−→
y→y+

0.

(iii) For any real-valued functions g and h, measurable and bounded, we have

E
[
h(W )1{Y > y}

(
E [g(V ) | Y,W ]− E [g(V ) |W ]

) ]
P (Y > y)

−−−−→
y→y+

0.

Remark 3 (Relevance of Proposition 3 for our purpose). From a technical perspective, Prop-
erty (iii) in Proposition 3 is key to obtain the tail analogues of the SIR and SAVE principles
(Theorems 1, 2 in Section 4). This is not surprising insofar as the traditional condition (CI-3)
for conditional independence in Definition 1 is central to prove the SIR/SAVE principles.

Whether the converse implication from Proposition 3 holds true in general, i.e. whether
Conditions (i), (ii), (iii) imply TCI remains an open question which is not directly relevant
for our purposes and thus left for future works.

Proof of Proposition 3. We first show the equivalence (ii)⇔(iii) by proving that the left-hand
sides of the two conditions are identical. Indeed if g and h are bounded and measurable,
then

E
[
h(W )1{Y > y}E [g(V ) | Y,W ]

]
=E
[
h(W )1{Y > y}g(V )

]
=E
[
h(W )E [1{Y > y}g(V ) |W ]

]
,

while

E
[
h(W )1{Y > y}(E [g(V ) |W ])

]
=E
[
h(W )E [1{Y > y} |W ]E [g(V ) |W ]

]
.

To show that (ii)⇒(i), note that

E
[
g(V )h(W )E [1{Y > y} | V,W ]

]
= E

[
g(V )h(W )1{Y > y}

]
= E

[
h(W )E [g(V )1{Y > y} |W ]

]
= E

[
h(W )E [g(V ) |W ]E [1{Y > y} |W ]

]
+ r1(y)

= E
[
g(V )h(W )E [1{Y > y} |W ]

]
+ r1(y),

where limy→y+ r1(y)/P (Y > y) = 0 by Condition (ii).
The argument for the converse implication (ii)⇐(i) is similar:

E [h(W )1{Y > y}g(V )] = E
[
h(W )E [1{Y > y} | V,W ] g(V )

]
= E

[
h(W )E [1{Y > y} |W ] g(V )

]
+ r2(y),

where limy→y+ r2(y)/P (Y > y) = 0 under condition (i).
Finally we show that Property (i) from Proposition 3 is satisfied under the TCI as-

sumption from Definition 2. Let g, h be bounded, measurable functions defined on V,W
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respectively and let ‖g‖∞ and ‖h‖∞ denote their supremum norm. By Jensen’s inequality,

P (Y > y)
−1
∣∣∣E[g(V )h(W )

(
P (Y > y | V,W )− P (Y > y |W )

)]∣∣∣
≤ ‖g‖∞‖h‖∞P (Y > y)

−1 E
∣∣∣P (Y > y | V,W )− P (Y > y |W )

∣∣∣ ,
where the right hand side tends to zero under Condition (3.1) from Definition 2.

3.4. Extreme dimension reduction spaces

In the context of statistical regression, we now define extreme sufficient dimension reduction
subspaces in a similar fashion to the usual SDR spaces.

Definition 3 (Extreme SDR space and extreme central space).

• An extreme SDR space for the pair (Z, Y ) is a subspace Ee of Rp such that Y∞⊥⊥Z | PeZ ,
where Pe is the orthogonal projection on Ee. In other words Ee is called an extreme
SDR space whenever

E
∣∣∣∣P(Y > y|Z)− P(Y > y|PeZ)

P (Y > y)

∣∣∣∣ −−−−→
y→y+

0. (3.8)

• An extreme central space Ee,c for the pair (Z, Y ) is an extreme SDR space of minimum
dimension.

Investigating sufficient conditions ensuring uniqueness of an extreme central space is
left for future studies. Instead, in the present paper we shall consider an extreme SDR
space Ee and we shall show that under appropriate assumptions, inverse extreme regression
objects, namely limits of conditional expectations E [Z | Y > y] (Theorem 1) and second
order variants (Theorem 2) belong to Ee. In particular they belong to any extreme central
space.

Remark 4 (Relationship between the central space and its extreme counterpart). Because
Equation (3.8) holds true for any y ∈ R when Ee is chosen as a (non extreme) SDR space for
the pair (Z, Y ), any SDR space for (Z, Y ) is an extreme SDR space. Thus, upon uniqueness
of the central space Ec and the extreme central space Ee,c, it holds that Ee,c ⊂ Ec. Examples
of other dimension reduction subspaces more specific than Ec but not related to the extreme
value of Y include the central mean subspace (Cook and Li, 2002) and the central quantile
subspace Christou (2020).

4. Tail Inverse Regression

In the sequel, we consider an extreme SDR space Ee ⊂ Rp for the pair (Z, Y ) in the sense
of Definition 3. That is, we assume that Y∞⊥⊥Z | PeZ as in Definition 2, where Pe is the
orthogonal projection on Ee. Also we define Qe = Ip−Pe. In order to adapt the SIR strategy
to this tail conditional independence framework, we show the following result which is a ‘tail
version’ of the SIR principle (Proposition 1). In the remainder of this paper let ‖ · ‖ denote
any norm on a finite dimensional vector space.

Theorem 1 (TIREX1 principle). Assume the following conditions regarding the pair (Z, Y )
and the extreme SDR space Ee.
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1. (Uniform integrability):
The random variables g1,A(Z) = ‖Z‖1{‖Z‖ > A}, g2,A(Z) = E [‖Z‖1{‖Z‖ > A} | PeZ]
indexed by A ∈ R satisfy

lim
A→∞

lim sup
y→y+

E [gk,A(Z) | Y > y] = 0, k = 1, 2 ; (4.1)

2. (LC) The standardized vector Z satisfies the linearity condition (2.1) relative to Pe;
3. (Convergence of conditional expectations) For some ` ∈ Rp,

E [Z | Y > y] −−−−→
y→y+

`. (4.2)

Then ` ∈ Ee.

Proof. We need to show that Qe` = 0. By continuity of the projection operator Qe it is
enough to show that QeE [Z | Y > y] → 0 as y → y+. On the other hand the linearity
condition (LC) (2.1) ensures that QeE [Z | PeZ] = QePeZ = 0 almost surely. Thus letting
py = P(Y > y) one may write

QeE [Z | Y > y] = p−1
y QeE [Z1{Y > y}]

= p−1
y E

[(
QeE [Z|PeZ, Y ]−QeE [Z | PeZ]

)
1{Y > y}

]
,

because the second term of the difference inside the expectation of the second line is zero.
Let A > 0 and consider separately the case when Z ≤ A and Z > A, so that

QeE [Z1{Y > y}]

= QeE
[(
E [Z1{‖Z‖ ≤ A} | PeZ, Y ]− E [Z1{‖Z‖ ≤ A} | PeZ]

)
1{Y > y}

]
+QeE

[(
E [Z1{‖Z‖ > A} | PeZ, Y ]− E [Z1{‖Z‖ > A} | PeZ]

)
1{Y > y}

]
.

For the first term of the above display, using Condition (ii) of Proposition 3 with h = 1 and
g(Z) = Z1{‖Z‖ < A}, we obtain that

p−1
y QeE

[(
E [Z1{‖Z‖ ≤ A} | PeZ, Y ]− E [Z1{‖Z‖ ≤ A} | PeZ]

)
1{Y > y}

]
−−−−→
y→y+

0.

(4.3)

For the second term corresponding to Z > A, we use that ‖Qez‖ ≤ ‖z‖, the Jensen inequality
and the triangular inequality, which yields∥∥∥QeE[(E [Z1{‖Z‖ > A} | PeZ, Y ]− E [Z1{‖Z‖ > A} | PeZ]

)
1{Y > y}

]∥∥∥
≤ E

(
{E [‖Z‖1{‖Z‖ > A} | PeZ, Y ] + E [‖Z‖1{‖Z‖ > A} | PeZ]}1{Y > y}

)
= E [g1,A(Z)1{Y > y}] + E [g2,A(Z)1{Y > y}]

By (4.3) and the previous decomposition, we have shown that

lim sup
y→y+

‖QeE [Z|Y > y] ‖ ≤ lim sup
y→y+

E [g1,A(Z) | Y > y] + lim sup
y→y+

E [g2,A(Z)|Y > y] .

By further letting A → ∞, by Assumption (4.1), the right-hand side is arbitrarily small.
This shows that limy→y+ QeE [Z | Y > y] = 0 and the proof is complete.
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Remark 5 (special case: Tail conditional distribution). A particular framework justifying
the existence of the limit ` (Condition (E.5) in the statement of Theorem 1) is the following.
Assume that the covariate Z admits a tail conditional distribution given Y , in the sense that
the distribution of Z conditional to Y > y converges as y → y+. In other words assume that
there is a probability distribution µ, that we may call the tail conditional distribution of Z
given Y , such that for all bounded, continuous function g defined on Rp,

E [g(Z) | Y > y] −−−−→
y→y+

µ(g) :=

∫
Rp

g dµ.

By virtue of proposition 2.20 in Van der Vaart (1998), if the uniform integrability condition
(4.1) is satisfied regarding the functions g1,A and if Z admits a tail conditional distribution
µ relative to Y , then it holds that

E [Z | Y > y] −−−−→
y→y+

mµ :=

∫
zdµ(z),

so that condition (E.5) automatically holds with ` = mµ.

Remark 6 (relationships with graphical models for extremes). The above notion of tail con-
ditional distribution reveals a connection between the present work and graphical modeling
approaches in EVT. Namely, assuming a tail conditional distribution of Z given Y , and
requiring in addition that the random variable Y is regularly varying, is equivalent to as-
suming one-component regular variation of the pair (Y,Z), a concept first introduced by
Hitz and Evans (2016). See in particular their Theorem 1.4, where the pair (X,Y ) plays the
role of the pair (Y,Z) in the present work.

The notion of conditional independence at extreme levels also plays an important role in
Engelke and Hitz (2020). However our work departs significantly from the latter, in so far
as the general context in the cited reference is that of unsupervised learning. All considered
variables play a symmetric role –there is no target variable nor covariate –, and they rely on
an assumption of joint multivariate regular variation of the considered random vector which
is by no means necessary in our context.

Remark 7 (Special case: extreme central space). Upon uniqueness of the extreme central
space Ee,c, under the assumptions of Theorem 1 we obtain that ` ∈ Ee,c.
Remark 8 (Sufficient condition for uniform integrability). Using the fact that for any ε > 0,
1{‖Z‖ > A} ≤ ‖Z‖ε/Aε, a sufficient condition for the uniform integrability condition (4.1)
is that

lim sup
y→y+

E
[
‖Z‖1+ε 1{Y > y}

]
P (Y > y)

<∞,

for some ε > 0.

A natural strategy in view of Theorem 1 is to consider empirical counterparts of the
conditional expectations E [Z | Y > y] for large values of y so as to estimate the limit value `,
which belongs to any extreme SDR space. Asymptotic statistical guarantees for this approach
are derived in Section 5. However an obvious limitation of Theorem 1 is that it recovers a
single direction within an extreme SDR space, namely the line {t`, t ∈ R} in the case where
` 6= 0. If a unique extreme central space exists and if this subspace is one dimensional, then
indeed the generated line and the extreme central space coincide. To consider situations
where the minimum dimension of an extreme SDR space is greater than one, we develop an
extreme analogue of the SAVE framework by considering conditional second order moments.
The main result justifying this approach is encapsulated in Theorem 2 below.
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Theorem 2 (TIREX2 principle). Assume (Z, Y ) and the extreme SDR space Ee satisfy the
assumptions of Theorem 1 and that in addition,

1. (second order uniform integrability):

lim
A→∞

lim sup
y→y+

E [hk,A(Z) | Y > y] = 0, k = 1, 2 , (4.4)

where h1,A(Z) = ‖Z‖21{‖Z‖ > A} and h2,A(Z) = E
[
‖Z‖21{‖Z‖ > A}

∣∣ PeZ] for
A ∈ R;

2. (CCV) The standardized vector Z satisfies the constant variance condition (2.2) rel-
ative to Pe;

3. (Convergence of conditional expectations) For some S ∈ Rp×p,

E
[
ZZ> |Y > y

]
−−−−→
y→y+

S + ``>. (4.5)

Then span(S − Ip) ⊂ Ee, i.e. Qe(S − Ip) = 0.

Notice that the existence of ` = limE [Z | Y > y] is part of the assumptions of Theo-
rem 1 and that in the latter framework, Qe``

> = 0. Thus condition (E.7) is equivalent
to requiring that Var [Z | Y > y] converges to some limit variance S as y → y+ and the
conclusion can be rephrased as Qe(E[ZZ> |Y > y ] − Ip ) → 0 as y → y+, or equivalently
Qe(Var [Z|Y > y]−Ip)→ 0. The technique of the proof is similar to that for Theorem 1. The
key is to observe that the Constant Conditional Variance assumption allows to introduce
a difference (E[ZZ> |PeZ, Y ] − E[ZZ> |PeZ] )1{Y > y} which is asymptotically negligi-
ble because of the TCI assumption. The details are gathered in the supplement material,
Section C.

5. Estimation

This section is devoted to the statistical implementation of our main results from Section 4.
Theorems 1 and 2 show that the quantities ` and S in the limits of the two statements
are key to estimate the extreme SDR space, because ` ∈ Ee and span(S − Ip) ⊂ Ee. A
natural first idea would be to use as an estimate an empirical version of the quantities
E[Z |Y > y ] or E[ZZ> |Y > y ] for a high threshold y growing with the sample size n. A
typical choice of such a threshold is the quantile of Y at a probability level 1− k/n, where
k = k(n) is an intermediate sequence such that k(n)→∞ and k(n)/n→ 0 as n→∞. Here
we propose a refinement of this strategy integrating out the latter quantities over varying
quantiles at probability levels 1− uk/n for u ∈ (0, 1). Such a refinement follows the proven
approaches based on the CUME and CUVE matrices described in the background section 2.
For this purpose we introduce and prove the asymptotic normality of the empirical processes
associated with the first and second order method, that are respectively the specialisation
of the SIR/CUME and the SAVE/CUVE processes to extreme regions of the target Y .

Even though the first order method is potentially less fruitful than the second order one
since the limit ` in Theorem 1 is a single vector, it helps build the intuition about the
statistical theory for both the first order and second order methods. In addition, the first
order method turns out to be more stable in some of our experiments.

Some notations are introduced in Section 5.1. We provide asymptotic theory for the first
and second order empirical processes in Section 5.2. Section 5.3 summarizes the methods we
suggest for estimating Ee.
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5.1. Framework and notations

For any right-continuous cumulative distribution function H (be it empirical or not), we
shall denote by H− the left-continuous inverse of H, H−(u) = inf{x ∈ R : H(x) ≥ u}.
Recall that with these conventions, for u ∈ [0, 1] and x ∈ R, we have

H(x) ≥ u ⇐⇒ x ≥ H−(u). (5.1)

For any i.i.d. sample (Ti)i≤n associated with a real random variable T with cumulative
distribution H, we use the standard definition of the empirical distribution function,

Ĥ(x) = n−1
n∑
i=1

1{Ti ≤ x}. (5.2)

For notational and mathematical convenience we shall work with the negative target
Ỹ = −Y and denote the c.d.f. of Ỹ as F , which we assume to be continuous in the remainder
of this paper. For simplicity we write k instead of k(n) for the intermediate sequence defined
at the beginning of this section, as is customary in extreme value statistics. Consider the
first order and second order inverse regression functions Cn(u), Bn(u),

Cn(u) =
n

k
E
[
Z1{Ỹ < F−(uk/n)}

]
, (5.3)

Bn(u) =
n

k
E
[
(ZZ> − Ip)1{Ỹ < F−(uk/n)}

]
. (5.4)

The empirical versions of (5.3) and (5.4) based on an independent sample (Zi, Yi) identically
distributed as the pair (Z, Y ) are

Ĉn(u) =
1

k

n∑
i=1

Zi1{Ỹi ≤ F̂−(uk/n)} , (5.5)

B̂n(u) =
1

k

n∑
i=1

(ZiZ
>
i − Ip)1{Ỹi ≤ F̂−(uk/n)}. (5.6)

Extensions to the more realistic situation where the pair (X,Y ) is observed with the mean
and covariance of X unknown are gathered in Section E from the supplementary material.

5.2. Main result

The remainder of this section aims at establishing the weak convergence of the (tail) em-
pirical processes associated with TIREX, respectively

√
k(Ĉn(u)−Cn(u)) and

√
k(B̂n(u)−

Bn(u)) in the space of bounded functions `∞([0, 1]). This is achieved in Corollary 1.
A key point of our analysis, which follows from the continuity of F , is that the functions

Cn(u), Bn(u) and their estimates Ĉn(u), B̂n(u) are invariant under the transformation U =
F (Ỹ ). More precisely, with the latter notation, we have the following identities

Cn(u) =
n

k
E
[
Z1{U < uk/n}

]
, Bn(u) =

n

k
E
[

(ZZ> − Ip)1{U < uk/n} ],

and the processes Ĉn(u), B̂n(u) remain the same when constructed from the initial sample
(Xi, Ỹi) or when constructed from the uniformized sample (Xi, Ui). Indeed for u ∈ [0, 1], it
holds that

1{Ỹi ≤ F̂−(uk/n)} = 1{Ui ≤ F̂−U (uk/n)}, a.s.,
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where F̂U is the empirical distribution function associated with the uniform sample U1, . . . , Un,
see Fact D.1 in the supplementary material for a short proof. These facts are a known feature
of rank based estimators; see for instance Fermanian, Radulovic and Wegkamp (2004) in the
copula estimation context and Portier (2016) in the standard SIR context.

We now state our main result which is formulated in terms of a generic random pair
(V, Y ), an i .i .d . sample thereof (Vi, Yi), i ≤ n, and a measurable function h : Rr → Rq,
where Y is the response variable as above, the covariate V is a random vector of size r ∈ N∗
and h is such that the random vector h(V ) has finite second moments. Define

Dn(u) =
n

k
E
[
h(V )1{Ỹ < F−(uk/n)}

]
,

D̂n(u) =
1

k

n∑
i=1

h(Vi)1{Ỹi ≤ F̂−(uk/n)}.

Weak convergence of the TIREX1 and TIREX2 processes (Corollary 1) is obtained upon
setting V = Z and respectively hC(z) = z and hB(z) = vec(zz>− Ip), where for any matrix
M ∈ Rr×s, vec(M) denotes the vector of size r × s obtain by concatenating the columns of
M .

Theorem 3 (Tail empirical process for a generic pair (V, Y ) ). Suppose that the distribution
function F of Ỹ = −Y is continuous and that, letting U = F (Ỹ ), it holds that

1. for any j ∈ {1, . . . , q}, the functions u 7→ E [h(V )j1{U ≤ u}] and u 7→ E
[
h(V )2

j1{U ≤ u}
]

are differentiable on (0, 1) with a continuous derivative at 0,
2. for all M ≥ 0, S(M) := limδ→0 E

[
h(V )h(V )>1{‖V ‖ ≥M}

∣∣ U ≤ δ] exists and is
such that limM→∞ S(M) = 0,

3. as δ → 0, E [h(V ) | U ≤ δ] converges to a limit ν ∈ Rq.

Then we have as n→∞, k →∞, k/n→ 0,{√
k(D̂n(u)−Dn(u))

}
u∈[0,1]

 {W (u)}u∈[0,1] ,

where W is a Gaussian process with mean zero and covariance function

(s, t) 7→s ∧ t
(
Ξ− νν>

)
, (5.7)

with ν as in the 3textrd Condition of the statement and

Ξ = S(0) = lim
δ→0

E
[
h(V )h(V )>

∣∣ U ≤ δ] ∈ Rq×q. (5.8)

Corollary 1 (Weak convergence of the TIREX1 and TIREX2 processes). By choosing the
pair (V, Y ) = (Z, Y ) and assuming that the function hC(z) = z ( resp. hB(z) = vec(zz>−Ip))
satisfies the assumptions of Theorem 3, the TIREX1 process

√
k(Ĉn(u)−Cn(u)) ( resp. the

TIREX2 process
√
k(B̂n(u)−Bn(u)) converges weakly in `∞(0, 1) to a tight Gaussian process

WC ( resp. WB) with covariance function given by (5.7) with V = Z and h = hC ( resp.
h = hB)

Proof of Theorem 3. Consider the pseudo-empirical version of Dn(u),

D̃n(u) = k−1
n∑
i=1

h(Vi)1{Ui ≤ uk/n} = k−1
n∑
i=1

h(Vi)1{Ỹi ≤ F−(uk/n)} . (5.9)
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Notice that D̃n is not observed but serves as an intermediate quantity through the following
key identity:

D̂n(u) = D̃n

(n
k
F̂−U (uk/n)

)
,

where F̂U is the empirical c.d.f. associated with the sample (Ui, i ≤ n). Introducing the
process

Γ̃(u) =
√
k
(
D̃n(u)−Dn(u)

)
, u ∈ [0, 1], (5.10)

we have the following decomposition

√
k(D̂n(u)−Dn(u)) = Γ̃

(n
k
F̂−
(
uk/n

))
+
√
k
(
Dn

(n
k
F̂−U
(
uk/n

))
−Dn(u)

)
. (5.11)

In the remainder of the proof, we show that the first term can be replaced by Γ̃(u), while the
second term can be replaced by −νγ̂1(u) where γ̂1 is the tail empirical process for uniform
random variables,

γ̂1(u) =
√
k
(n
k
F̂U (uk/n)− u

)
. (5.12)

Finally we show that the process (γ̂1(u), Γ̃(u))u∈[0,1] converges jointly to a Gaussian pro-
cess.

Intermediate results, uniform tail processes

The main tools that we use in our proof of Theorem 3 concern the weak convergence of
the tail empirical (quantile) process associated with a uniform response variables. Many
approaches have been considered to handle the behavior of such processes, see Csorgo et al.
(1986) for general empirical processes and Einmahl and Mason (1988) for the tail version.
For the sake of completeness we provide in the supplementary material (Section D.3) a
different, direct proof of Lemma 1 below, relying on ‘classes of function changing with n’
(Van Der Vaart and Wellner (2013))

Lemma 1. Under the assumptions of Theorem 3, the process Γ̃ defined in (5.10) converges

weakly in `∞(0, 1) to a tight Gaussian process W̃ with covariance function

(u1, u2) 7→ (u1 ∧ u2)Ξ ,

where Ξ is defined in (5.8)

An immediate consequence of Lemma 1, obtained upon setting V = Z and h(V ) = 1, is
the weak convergence of the tail empirical process for uniform random variables introduced
in 5.12.

Corollary 2. As n→∞, k →∞, and k/n→ 0, the uniform tail empirical process (5.12)
weakly converges to a standard Brownian motion W1.

Combining Corollary 2 and an appropriate variant of Vervaat’s lemma (see Section D.2
from the supplementary material) we obtain in Section D.4 from the same supplement, the
following result.

Lemma 2. As n→∞, k →∞,

sup
u∈(0,1]

∣∣∣√k (n
k
F̂−U (uk/n)− u

)
+ γ̂1(u)

∣∣∣ = oP(1).
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Separate and joint convergence in Decomposition (5.11)

We now show the following three relations: as n→∞,

sup
u∈(0,1]

∣∣∣Γ̃(n
k
F̂−U
(
uk/n

))
− Γ̃(u)

∣∣∣ = oP(1), (5.13)

sup
u∈(0,1]

∣∣∣√k (Dn

(n
k
F̂−U
(
uk/n

))
−Dn(u)

)
+ ν γ̂1(u)

∣∣∣ = oP(1), (5.14)(
γ̂1(u)

Γ̃(u)

)
 W ′(u), (5.15)

where W ′ is a centered Gaussian process on (0, 1] with covariance function (s, t) 7→ s∧ t Ξ′.
Here Ξ′ = S′(0) is the limit second moment matrix from Lemma 1 applied to h′(V ) =
(1, h(V )). More specifically, with this choice of h′, we have

Ξ′ =

(
1 ν>

ν Ξ

)
∈ R(q+1)×(q+1)

where Ξ = limδ→0 E [h(V )h(V )> |U ≤ δ ].

We first prove (5.13). From Lemma 1, the process Γ̃ is tight, whence asymptotically
equi-continuous, meaning that

lim
δ↓0

lim sup
n

P
(

sup
|s−t|≤δ

|Γ̃(s)− Γ̃(t)| > ε
)

= 0.

Also, from Lemma 2 and Corollary 2, supu∈(0,1] |(n/k)F̂−U (uk/n) − u| = oP(1). Combining
the two yields (5.13).

To prove (5.14), we apply the mean value theorem to get that
√
k
{
Dn

(n
k
F̂−U
(
uk/n

))
−Dn(u)

)}
=

n√
k

{
E
[
h(V )1{U ≤ un}

]
un=F̂−

U (uk/n)
− E

[
h(V )1{U ≤ uk/n}

]}
=

n√
k
g̃(Ũu,n)

{
F̂−U
(
uk/n

)
− uk/n

}
=
√
k g̃(Ũu,n)

{n
k
F̂−U
(
uk/n

)
− u
}
,

where g̃(x) is the derivative of x 7→ E [h(V )1{U ≤ x}] at point x and Ũu,n lies on the line

segment between F̂−U (uk/n) and uk/n. Lemma 2 and Corollary 2 imply that Ũu,n → 0 in

probability uniformly over u ∈ [0, 1], thus by continuity of g̃ at 0, g(Ũu,k) = g̃(0) + oP(1).
We can further calculate g̃(0) based on assumption 3 in Theorem 3 as follows,

g̃(0) = lim
u→0

E [h(V )1{U ≤ u}] /u = lim
u→0

E [h(V ) | U ≤ u] = ν.

Therefore, the relation (5.14) is proved by applying Lemma 2, and the Slutsky’s lemma.
Finally, (5.15) follows from applying Lemma 1 to the function h′(V ) = (1, h(V )).

Conclusion

By combining the decomposition in (5.11) with the relations (5.13)-(5.15), we obtain that,
as n→∞, {√

k
(
D̂n(u)−Dn(u)

)}
u∈[0,1]

 W := (−ν, Iq) W ′
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which is a Gaussian process with covariance function

Σ(s, t) = s ∧ t (−ν, Iq)
(

1 ν>

ν Ξ

)(
−ν>
Iq

)
= s ∧ t

(
Ξ− νν>

)
.

5.3. Proposed estimation method

This section summarizes the main steps of the first and second order methods that we pro-
pose based on the processes Ĉn and B̂n. We first introduce TIREX1 and TIREX2 matrices
in parallel with the matrix MCUME defined in (2.3) in our framework, following the integral
based methods proposed by Zhu, Zhu and Feng (2010), see also Portier (2016). In line with
the CUME (2.3) matrix, we define

MTIREX1 =

∫ 1

0

Cn(u)Cn(u)> du ,

MTIREX2 =

∫ 1

0

Bn(u)Bn(u)> du ,

(5.16)

where Cn and Bn are defined in (5.3) and (5.4) respectively. We omit the dependency of
the matrices on n, k for convenience. An easy but important observation which underlies our
strategy for estimating an extreme SDR space is the following lemma.

Lemma 3 (Consistency of the TIREX matrices).
(i) Under the assumptions of Theorem 1,

MTIREX1 −→
1

3
``> as n→∞.

(ii) Under the assumptions of Theorem 2,

MTIREX2 −→
1

3
(S − Ip + ``>)2 as n→∞.

Proof. Under the assumptions of the first statement, for fixed u, Cn(u)Cn(u)> → u2``> as
n → ∞. The result follows by dominated convergence on (0, 1), which applies by virtue of
Condition (4.1). Indeed this uniform integrability assumption ensures that for some constant
A > 0, for n large enough, for all u ∈ (0, 1),

‖Cn(u)‖ =
∥∥∥uE[Z | Ỹ < F−(uk/n)

] ∥∥∥
≤ u(A+ E

[
‖Z‖1{‖Z‖ > A} | Ỹ < F−(uk/n)

]
≤ u(A+ 1).

The argument for the second statement is similar, up to a call to Condition (4.4) instead
of (4.1).

As a consequence of Lemma 3, both column spaces of MTIREX1 and MTIREX2 are asymp-
totically included in Ee. The column space of MTIREX1 has dimension one while that of
MTIREX2 can be of any dimension not higher than that of Ee. We propose the following
estimation procedures based respectively on the processes Ĉn and B̂n.
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TIREX1

1. Choose k � n and 1 ≤ d ≤ p.
2. Compute the estimated TIREX1 matrix, M̂TIREX1 =

∫ 1

0
Ĉn(u)Ĉ>n (u) du using the

identity given in (6.1).

3. Perform an eigen decomposition of M̂TIREX1 and keep the first d eigenvectors (ei, i ≤
d).

4. ouptut: Êe = span({ei, i ≤ d}).

Choosing d > 1 is not immediately justified because the limit of MTIREX1 is a rank one
matrix ``>/3 as indicated in Lemma 3. However, empirical evidence suggests that allowing
d > 1 can be useful to recover more components among the extreme central subspace basis.
This is why we include this option in the algorithm.

TIREX2

1. Choose k � n and 1 ≤ d ≤ p.
2. Compute the estimated TIREX2 matrix, M̂TIREX2 =

∫ 1

0
B̂n(u)B̂>n (u) du using the

identity given in (6.2).

3. Perform an eigen decomposition of M̂TIREX2 and keep the first d eigenvectors (ei, i ≤ d)
associated with the highest eigen values.

4. ouptut: Êe = span({ei, i ≤ d})

We make the following remarks regarding the relationships between our main theoretical
result Corollary 1 and the proposed estimation methods TIREX1 and TIREX2.

Remark 9 (Asymptotic normality of the TIREX matrices). The asymptotic normality of

the random matrices
√
k(M̂TIREX1 − MTIREX1) and

√
k(M̂TIREX2 − MTIREX2) could be

obtained as a further consequence of Corollary 1 with straightforward calculations. This can
be achieved by using the Delta-method as in the proof of Portier (2016), Proposition 5. For
the sake of conciseness we leave the detailed proof to interested readers.

Remark 10 (Bias term). Notice that the TIREX matrices MTIREX are deterministic but
subasymptotic quantities which depend on the the choice of the ratio k/n. The ultimate

goal in view of Lemma 3 would be to obtain the limit distribution of
√
k(M̂TIREX1 − 1

3``
>)

and
√
k(M̂TIREX2− 1

3 (S−Ip+``>)). An obvious way to do so is to assume that the bias terms√
k(MTIREX1 − 1

3``
>) and

√
k(MTIREX2 − 1

3 (S − Ip + ``>)) converge to zero in probability,
and use Slutsky’s lemma.

Remark 11 (Principal Component Analysis of the TIREX matrices). The output of the
TIREX methods is the eigen spaces of the estimated TIREX matrices. An important final
step is to show that such eigen spaces converges to the space spanned by the limits 1/3``>

and 1/3(S − Ip + ``>). A possible starting point would be to use results from perturbation
theory, see e.g. (Zwald and Blanchard, 2005, Theorem 3) where the Frobenius norm of the
error is controlled by the inverse of a spectral gap.Since this problem is left aside even in
the traditional inverse regression literature we leave this question to further research while
demonstrating the performance of the TIREX algorithms by numerical experiments.

Remark 12 (Choices of d, k). The choice of the intermediate sequence k of extreme order
statistics is a standard issue in extreme value statistics. In our experiments (Section 6) we
propose to choose k by cross-validation. Theoretical investigation regarding this strategy is
beyond the scope of this paper. Similarly, the choice of d in the PCA decomposition of the
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matrix M̂TIREX2 is a recurrent question in the PCA literature, which is also left to further
research. In practice a natural and widely used strategy is an elbow method applied to
the plot of the estimated eigen values. In the supervised learning context, we recommend
to choose d by cross-validation. More generally (outside the supervised learning context),
testing for the rank of the underlying matrix is a convenient method to infer the value of d.
Such an approach has been succcessfully employed in the SDR literature (Portier and Delyon,
2014) where the test statistics are usually based on the eigenvalues amplitude. Finally recall
that the limit of the matrix MTIREX1 has rank one, so that the default choice of d = 1 in the
first order method is legitimate. Investigating theoretical guarantees for choosing the value
of d in the TIREX context is beyond the scope of this paper and left for future work.

6. Experiments

This section focuses on the practical usefulness of TIREX for finite sample sizes based on
simulated and real data. We first give some details about the implementation of TIREX (Sec-
tion 6.1) and discuss its computational complexity. We discuss the improvement brought by
TIREX over the estimation method proposed by Gardes (2018). Second, with synthetic
datasets of various dimensions, we explore the estimation performance of TIREX1 and
TIREX2 for various values of k, as measured by a distance between the estimated and true
extreme SDR spaces (Section 6.2). On this occasion we compare the estimation performance
of TIREX with that of its closest alternatives, namely Gardes (2018)’s method, CUME and
CUVE. Finally in Section 6.3 we compare TIREX with several existing dimension reduction
tools for predicting tail events on several real data sets of relatively high dimension.

6.1. TIREX implementation

In a preliminary step common to all our experiments, the covariates are empirically stan-
dardized and we set Ẑi = Σ̂−1/2(Xi − m̂) with m̂ = n−1

∑n
i=1Xi and Σ̂ = n−1

∑n
i=1(Xi −

m̂)(Xi−m̂)T . Working with empirically standardized covariates to estimate an extreme SDR
space Ee is equivalent to working with raw covariates to estimate Ẽe = Σ−1/2Ee up to re-
mainder terms of order OP(1/

√
n), see Section E.3 in the supplementary material. By abuse

of notation we use the same symbols in the present section to denote both the empirical
processes constructed with the Ẑi’s and the Zi’s.

We start off by deriving an explicit, computationally efficient formula for the matrices
M̂TIREX1, M̂TIREX2. Let (Ẑ(1), Y(1)), (Ẑ(2), Y(2)), . . . , (Ẑ(n), Y(n)) be such that Y(1) ≥ · · · ≥
Y(n). From the definition of Ĉn, we have Ĉn(u) = 1

k

∑dkue
i=1 Ẑ(i). This implies that Ĉn is

piece-wise constant, more precisely for j ∈ {1, . . . , n}, whenever u ∈ ((j − 1)/k, j/k], we

have kĈn(u) =
∑j
i=1 Ẑ(i) := Ŝj . Since M̂TIREX1 =

∑k
j=1

∫ j/k
(j−1)k

Ĉn(u)Ĉn(u)>du, it follows

that

M̂TIREX1 =
1

k3

k∑
j=1

ŜjŜ
>
j . (6.1)

Evaluating the latter display requires O(n log(n)) operations for sorting the Y ’s values; kd
operations to compute the Ŝj , j = 1, . . . , k (because Ŝj can be deduced from Ŝj−1 with one

operation); and O(kd2) operations to compute the matrix M̂TIREX1. The overall cost is then

of order n log(n) + kd2. Similar arguments regarding the second order matrix M̂TIREX2 lead
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to the expression

M̂TIREX2 =
1

k3

k∑
j=1

T̂j T̂
T
j , (6.2)

with Tj =
∑j
i=1(Ẑ(i)Ẑ

T
(i) − Ip).

The final step is to perform an eigen-decomposition of the estimated matrix M̂TIREX1

(resp. M̂TIREX2). Given the alleged dimension d of Ee, the vector space generated by the
d eigen vectors associated to the d largest eigenvalues of the matrix (with multiplicities,
assuming uniqueness of the corresponding eigen space for simplicity) constitutes the TIREX

estimate Êe. The non standard SDR space can be estimated by multiplying the obtained
directions by Σ̂−1/2.

Computational complexity.

Evaluating (6.1) requires O(n log(n)) operations for sorting the Y ’s values; kp operations to
compute the Ŝj , j = 1, . . . , k (because Ŝj can be deduced from Ŝj−1 with one operation);

and O(kp2) operations to compute the matrix M̂TIREX1. The overall cost is then of order

n log(n) + kp2. Similarly the overall cost for M̂TIREX2 is of order n log(n) + kp4. Finally the
eigen-decompostion based on SVD requires O(p3) operations.

In contrast the estimation procedure proposed in Gardes (2018) relies on an optimization
strategy over a p−d-dimensional grid where d is the reduced dimension, and has an important
computational cost when d > 1 according to the author (see Sections 3.2 and 4.1 of the cited
reference). The existing implementation of Gardes (2018)’s method is restricted to d = 1
and the experiments conducted in that paper are limited to p = 4. Whether it is possible to
bypass the curse of dimensionality in Gardes (2018)’s framework remains an open question.
For these reasons we limit our comparison with Gardes (2018)’s method in our experiments
to low dimensional examples, Models A,C, introduced below.

6.2. Performance for tail SDR estimation, synthetic data

We consider three particular instances of the mixture model presented in Section 3.2. The
heavy tailed noise variables ζj , j ≤ d follow identical Pareto distributions, P (ζj > t) = t−α2

with α2 = 10. The short-tailed noise variables εj , j ≤ p − d are exponentially distributed,
P (εj > t) = e−α1t, t > 0, with rate parameter α1 = 10. The variables (ζj , j ≤ d; εj , j ≤ p−d)
are independent.
Model A. We consider Case (i) from the generic example (continuous covariates) with
θ = 0.5, a = 1, b = 10. For simplicity we take all covariate variables uniformly distributed
over the interval [a, b] = [1, 10]. Recall that in this context, both TCI and TCI-G hold. Then
according to both definitions the d-dimensional subspace of Rp generated by the canonical
basis vectors (ep−d+1, . . . , ep) is an extreme SDR space. We set p = 2, d = 1.
Model B. Here we set p = 30, d = 5, all other setup remains unchanged comparing with
Model A.
Model C. We use the distribution described in Case (ii) from Section 3.2, where the
covariates are Bernoulli variables. In this context, TCI holds but TCI-G does not. We set
the Bernoulli parameter to τ = 0.5. To maintain the comparability between TIREX and
Gardes (2018) we set p = 2, d = 1.
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Experimental setting.

The sample size is set to n = 104 for Models A and C, and to n = 105 for Model B. The
TIREX matrices following (6.1) and (6.2) are computed for 150 different values of k within
the range Jn/100, nK. The orthogonal projection on the subspace generated by their first d
eigen vectors constitutes our estimates P̂e. In other words we consider for simplicity that d
is known by the user, as discussed in Remark 12. The quality of the estimator is measured
by the squared Frobenius norm of the error, ‖P̂e − Pe‖2F . We evaluate the squared bias

‖Pe − E[P̂e]‖2F , the variance E[‖P̂e − E[P̂e]‖2F ], and the MSE E[‖P̂e − Pe‖2F ] using TIREX,
based on N = 200 repetitions. Thus the maximum relative error of the MSE estimate, i.e.
the maximum standard deviation of the estimate divided by the estimate itself, over all
models and all values of k, is 0.11, which is sufficiently small for a qualitative interpretation
of the results.

In addition we compare the relative performances of TIREX1 and Gardes (2018)’s method
for Models A and C. We leave TIREX2 outside the comparison because our results (Figure 1)
show that TIREX1 is a better option in this setting. To alleviate the computational cost we
perform only N = 100 repetitions and we estimate the projectors for two values of k, namely
k = n2/3 ≈ 464 as recommended in Gardes (2018) and k = 2000 which is close to the value
minimizing the MSE with TIREX1 for both models, considering our results below.

Results. Figure 1 displays the squared bias, variance and MSE for TIREX1 and TIREX2
as a function of k. The curves illustrate the typical bias-variance trade-off in Extreme Value
Analysis regarding the choice of k, and confirm the findings of Corollary 1. Small values
of k are associated with large variance, while large values result in a large bias. Notice
that choosing k = n with TIREX1 (resp. TIREX2) amounts to applying the standard SIR
method CUME (resp. CUVE). Our results show that the MSE in this case is typically much
larger (due to the bias) than with moderate k’s, namely with k ≈ 2000 for n = 104 and
k ≈ 15000 for n = 105.

In some cases, comparatively larger variances occur for k ≈ n/2. We interpret this as an
unstable transitional regime between two extremal behaviors: On the one hand, for small
values of k, only the very largest values of Y are selected. These are mostly generated by the
second component Y2 of the mixture model, the heavy-tailed one. On the other hand when
k is large, both components Y1, Y2 are equally involved in the computation of MTIREX.

The variance attached to the second order method TIREX2 tends to be larger than
that of the first order method TIREX1. However, when the dimension of the extreme SDR
space is greater than one (Model B), TIREX1 fails to recover more than one direction, and
TIREX2 is preferable. This fact illustrates the conclusion of Theorem 1, see also Lemma 3,
where a single vector (or a rank-one matrix) is identified in the limit. TIREX2 does not
suffer from this flaw since the associated limit in Lemma 3 is a matrix offering potentially
more than one direction in the SDR space. As a conclusion, one should definitely prefer
TIREX1 over TIREX2 when the extreme values of Y are known to be explained by a single
linear combination of Z1, . . . , Zp. Otherwise it is necessary to resort to TIREX2 to discover
additional directions, even though the estimates may have a higher variance.

Table 1 displays the results of the comparison with Gardes (2018)’s method in terms
of MSE and execution time. In Model A where Gardes (2018)’s assumptions are satisfied,
Gardes (2018)’s method performs better than TIREX for the two values of k considered.
However its execution time, even in this low dimensional setting is several orders of magni-
tude higher than that of TIREX. In Model C, as suggested by the theory, Gardes (2018)’s
method fails to recover the tail SDR space (in the sense of TCI, not TCI-G). By contrast,
TIREX can recover the tail SDR space within very short execution time.
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Fig 1. Performance in terms of Frobenius norm of the error, as a function of k, with TIREX1 (solid line)
and TIREX2 (dotted line), in Models A,B,C. Mean squared error, bias and variance computed over 100
repetitions.

Model A, TIREX1 Model A, Gardes (2018) Model C, TIREX1 Model C, Gardes (2018)

k = 464 2.10−3 (2 s) 4.10−4 (6h) 4.10−3 (2.3 s) 1 (4.3h)
k = 2000 5.10−4 (1.7 s) 5.10−5 (6.5h) 9.10−4 (3.2 s) 0.8 (8.5h)

Table 1
MSE for TIREX and Gardes (2018)’s method in Models A and C, 100 replications. Execution times on a

standard laptop are in brackets, with h and s indicating hour and second respectively.

6.3. Predicting tail events with TIREX on real datasets

We now investigate the relevance of TIREX as a dimension reduction tool for predicting un-
usually large values of Y . As explained in Remark 1, this may be viewed as a classification
task: predict an exceedance {Y > y} with the help of p covariates X ∈ Rp. Reducing the
dimension allows to escape the curse of the dimensionality using the projected covariates,
however it generally induces a bias which may influence the (weighted) risk of an error. The
most important observation in Remark 1 is that, if Y∞⊥⊥X | PeX , the bias term vanishes
in the limit y → y+. Since TIREX aims precisely at estimating Pe such that Y∞⊥⊥X | PeX ,
a reasonable hope is that it would generally perform better than other dimension reduc-
tion algorithms targeting different reduction subspaces P 6= Pe that would not enjoy this
property.

Experimental setting.

We follow a two-steps procedure: first, run a dimension reduction algorithm (TIREX or
another existing method) and project the covariates Xi on the estimated SDR space; second
apply a classification algorithm to predict the event Yi > y with the help of the projected
covariates. For all dimension reduction methods entering the comparison, the dimension of
the reduced subspace is set to d = 2.

Throughout our experiments the second step is fixed: We use a nearest neighbors algo-
rithm with a number of neighbors set to 5. In the end the performance of the competing
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dimension reduction methods is measured in terms of the AM risk (3.3) and the AUC (Area
under the ROC Curve) of the nearest neighbors classifier trained on the reduced covariates.
The number of observations k in TIREX is selected based on 5-fold cross-validation with
the AUC criterion.

Competitors.

TIREX is compared with several alternative methods using the full dataset for estimation,
not only the subset associated with the largest values of the target. Namely we consider
in a supervised setting the standard SDR estimates obtained with the CUME and CUVE
methods introduced in Section 2. In an unsupervised setting we consider routinely used meth-
ods available in the Python Scikit-learn package Pedregosa et al. (2011), namely Principal
Component Analysis (PCA), Singular Value Decomposition (SVD) which is a non-centered
version of PCA, Locally Linear Embedding (LLE), and Isomap (IMP). The latter two meth-
ods are non-linear generalizations of of PCA (Roweis and Saul (2000), Tenenbaum, Silva
and Langford (2000), see also Chojnacki and Brooks (2009); Bengio et al. (2003)) which
are widely applied in many contexts such as data visualization Elgammal and Lee (2004);
Tenenbaum, Silva and Langford (2000), or classification Vlachos et al. (2002), among others.
Considering the dimensions p ∈ J18, 103K of the datasets described below, Gardes (2018)’s
method for dimension reduction could not be included in the comparison for the algorithmic
complexity reasons described above.

Data sets.

Eight datasets are used. Three of them come from the UCI repository2: Residential (372
apartment sale prices, with 103 covariates); crime (1994 per capita violent crimes with 122
socio-economic covariates); Parkinsons (5875 voice recordings along with 25 attributes). Three
other datasets come from the Delve repository3: Bank (8192 rejection rates of different banks,
with 32 features each); CompAct (8192 CPU’s times with 27 covariates); PUMA32 (8192 an-
gular accelerations of a robot arm, with 32 attributes). Finally, two other data are obtained
from the LIACC repository4: Ailerons (13750 control action on the ailerons of an aircraft
with 40 attributes) and Elevator (16559 control action on the elevators of an aircraft with
18 attributes).

Results.

For all datasets, y is chosen equal to the 0.98-quantile of the target (Yi)i=1,...,n except for
Residential where the 0.90-quantile has been used to counterbalance the small sample size.
The results in terms of AM risk and AUC are summarized in Tables 2 and 3 respectively.
In the vast majority of cases, TIREX1 or TIREX2 performs better than the other methods.
On these examples, TIREX1 is often superior to TIREX2, which indicates that the added
flexibility introduced by the second order moments does not compensate for the increased
variance.

2https://archive.ics.uci.edu
3http://www.cs.toronto.edu/~delve/data/datasets.html
4https://www.dcc.fc.up.pt/~ltorgo/Regression/DataSets.html

https://archive.ics.uci.edu
http://www.cs.toronto.edu/~delve/data/datasets.html
https://www.dcc.fc.up.pt/~ltorgo/Regression/DataSets.html
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TIREX1 TIREX2 CUME CUVE PCA SVD LLE IMP
Bank 0.434 0.378 0.42 0.392 0.418 0.474 0.486 0.432
Crime 0.412 0.5 0.471 0.47 0.502 0.469 0.47 0.5
CompAct 0.208 0.279 0.287 0.313 0.242 0.243 0.271 0.253
Residential 0.158 0.353 0.421 0.447 0.479 0.479 0.49 0.49
Parkinsons 0.252 0.346 0.268 0.346 0.469 0.469 0.455 0.47
Puma32 0.492 0.501 0.5 0.5 0.5 0.5 0.501 0.49
Elevators 0.446 0.446 0.471 0.463 0.5 0.5 0.5 0.5
Ailerons 0.307 0.329 0.314 0.33 0.498 0.499 0.498 0.501

Table 2
AM risk of the nearest neighbors classifier with reduced covariates obtained with different dimension

reduction methods.

TIREX1 TIREX2 CUME CUVE PCA SVD LLE IMP
Bank 0.771 0.696 0.698 0.684 0.736 0.689 0.608 0.65
Crime 0.666 0.67 0.616 0.686 0.678 0.773 0.672 0.661
CompAct 0.893 0.887 0.899 0.871 0.876 0.874 0.868 0.885
Residential 0.902 0.827 0.674 0.745 0.667 0.659 0.666 0.694
Parkinsons 0.901 0.818 0.852 0.82 0.742 0.753 0.743 0.748
Puma32 0.711 0.578 0.616 0.515 0.587 0.577 0.537 0.547
Elevators 0.686 0.694 0.615 0.672 0.528 0.537 0.514 0.514
Ailerons 0.853 0.834 0.828 0.832 0.502 0.515 0.514 0.525

Table 3
AUC of the nearest neighbors classifier with reduced covariates obtained with different dimension

reduction methods.

Supplementary Material

The supplementary material placed below the bibliography contains proofs, additional ex-
amples and discussions regarding existing notions of Tail Conditional Independence, and
extensions to non-standardized covariates.
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Tail Inverse Regression: dimension reduction

for prediction of extremes.
Supplementary material.

This supplement contains proofs, additional examples and discussions regarding existing
notions of Tail Conditional Independence, and extensions to non-standardized covariates.
Section and equation numbers in the supplement start with a letter, to distinguish them
from those in the paper.

Appendix A: Proofs for Remark 1

In this section, for the sake of completeness, we prove two facts regarding classification with
the AM risk in the full problem defined in Remark 1 from the main paper. First the classifier

h∗(x) = 1{η(x) > π} (A.1)

is a minimizer of the AM risk ; Second, the associated Bayes risk is given by

RAM(h∗) = E
[
min

(η(X)

π
,

1− η(X)

1− π

)]
. (A.2)

We introduce the AM loss function

`AM(t̂, t) =
1

1− π
1{t̂ = 1, t = 0}+

1

π
1{t̂ = 0, t = 1}

so that for any classifier, RAM(h) = E [`AM(h(X), T )]. Consider now the conditional AM
risk

R̃AM(h, x) = E [`AM(h(X), T ) | X = x] ,

thus RAM(h) = E
[
R̃AM(h,X)

]
. We also have

R̃AM(h, x) =
1

1− π
1{h(x) = 1}(1− η(x)) +

1

π
1{h(x) = 0}η(x)

=
1− η(x)

1− π
+ 1{h(x) = 0}

[η(x)

π
− 1− η(x)

1− π

]
. (A.3)

Also, the classifier in (A.1) may be written equivalently as h∗(x) = 1
{
η(x)
π > 1−η(x)

1−π

}
. Thus

for any classifier h, we may write the difference in conditional risks as

R̃AM(h, x)− R̃AM(h∗, x) =
η − π

π(1− π)

[
1{h(x) = 0} − 1{h∗(x) = 0}

]
=

∣∣∣∣ η − π
π(1− π)

∣∣∣∣1{h(x) 6= h∗(x)}

The latter display is nonnegative, which shows that h∗ defined in (A.1) indeed minimizes
the AM risk. Turning to our second claim, notice that we may write, using (A.3),

R̃AM(h∗, x) =

{
η(x)/π if η(x)/π > (1− η(x))/(1− π)

(1− η(x))/(1− π) otherwise

= min
(η(x)

π
,

1− η(X)

1− π

)
.
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This proves (A.2).

Appendix B: Proofs for Section 3.2 and additional comments

In this section we provide the full proofs regarding our examples and counter-examples from
Section 3.2 regarding the generic mixture model. On this occasion we conduct a thorough
comparison between the two definitions of tail conditional independence TCI and TCI-
G, see Equations 3.1 and 3.2 in the main paper. For convenience write S(y) = P(Y >
y);S(y,W ) = P(Y > y|W );S(y,W, V ) = P(Y > y|W,V ). The relevant quantities are re-
spectively the ratios

R(y, V,W ) =
S(y, V,W )− S(y,W )

S(y)
, and R̃(y, V,W ) =

S(y, V,W )− S(y,W )

S(y,W )
. (B.1)

The TCI condition is that E|R(y, V,W )| → 0 as y → y+, whereas TCI-G means that
R̃(y, V,W ) → 0 as y → y+, almost surely. Notice already that our criterion (3.1) is an
integrated version of (3.2), with a weight function

ρ(y,W ) = S(y,W )/S(y), (B.2)

such that ρ(y,W ) ≥ 0 and E [ρ(y,W )] = 1 for all y. Namely, TCI means that

E
∣∣∣R̃(y, V,W )ρ(y,W )

∣∣∣ −−−−→
y→y+

0 (B.3)

B.1. Additional notations regarding the generic mixture model from
Section 3.2

We introduce in the context of Section 3.2 from the main paper the additional notations

S1(y) = P(Y1 > y) =

∫
S1(y, v) dPV (v) , S2(y) = P (Y2 > y) =

∫
S2(y, w) dPW (w).

With these notations, using the independence assumption regarding the pair (V,W ) we may
write

S(y, v, w) = θS1(y, v) + (1− θ)S2(y, w) ; S(y, w) = θS1(y) + (1− θ)S2(y, w) ;

S(y) = θS1(y) + (1− θ)S2(y).

Thus, the ratios R, R̃ defined at the beginning of this section and involved in TCI and
TCI-G write respectively

R(y, v, w) =
θ(S1(y, v)− S1(y))

θS1(y) + (1− θ)S2(y)
, R̃(y, v, w) =

θ(S1(y, v)− S1(y))

θS1(y) + (1− θ)S2(y, w)
. (B.4)

Notice already that

|R(y, v, w)| ≤ θ

1− θ
S1(y, v) + S1(y)

S2(y)
, (B.5)

|R̃(y, v, w)| ≤ θ

1− θ

(
S1(y, v)

S2(y, w)
+

∫
S1(y, v′)

S2(y, w)
dPV (v′)

)
. (B.6)
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Finally, specializing to the case where Y1 and Y2 follow the mixture model described in
the same section of the main paper, the conditional survival functions for Y1, Y2 are, for
y > b,

S1(y, v) =

p−d∑
i=1

1{vi > 0}π1
i Sε(y/vi) , S2(y, w) =

d∑
j=1

1{wj > 0}π2
jSζ(y/wj) (B.7)

We now discuss the main differences between the two definitions. Natural questions to
ask are (i) whether one definition is more appropriate than the other depending on the
context ; (ii) whether one condition is stronger than the other, possibly under additional
assumptions.

As for Question (i), in spirit, as reflected by the equivalent condition (B.3), TCI is
comparatively more sensitive to values W = w such that the conditional probability of an
exceedance Y > y is large, which is an appealing feature for identifying tail risk factors
as described in the introduction. On the other hand, one advantage of TCI-G’s scaling is
that the ratio R̃ introduced at the beginning of this section is a relative deviation, which
is arguably easily interpretable. However TCI-G’s criterion takes into account all possible
values w, even those such that the conditional distribution of Y given W = w is shorter
tailed than the marginal distribution of Y . The focus in TCI-G is not exactly on the tail of
Y ’s distribution, but rather on the tails of the conditional distributions of Y given W .

Before turning to Question (ii), we discuss the differences between the two conditions in
terms of mode of convergence.

B.2. Convergence almost-surely or in expectation in TCI-G or TCI

Almost sure convergence R̃(y, V,W ) → 0 as y → y+ implies E|R̃(y, V,W )| → 0. Indeed
by conditioning on W , we have E [R̃(y, V,W )] = 0 so that, denoting by z+ (resp. z−) the
negative (resp. positive) part of a real z, it holds that E [R̃(y, V,W )+] = E [R̃(y, V,W )−].
As a consequence

E |R̃(y, V,W )| = 2E [R̃(y, V,W )−].

However for all y, v, w, R̃(y, v, w) ≥ −1 so that 0 ≤ R̃(y, V,W )− ≤ 1. By dominated con-
vergence, if (3.2) holds, then also E [R̃(y, V,W )−] → 0 and the above display implies that
E |R̃(y, V,W )| → 0 as well. This argument is not valid regarding the tail behaviour of
R(y, V,W ) because it is not true that R(y, V,W ) ≥ −1 almost surely.

We are now ready to examine Question (ii), that is, whether one condition (TCI or
TCI-G) implies the other, in general or under simplifying assumptions.

B.3. Special case: discrete covariates with finite support

In order to build up the intuition, consider the special case where the covariates have a
finite support. This is a sensible assumption for real life applications where observations are
discretized.

We thus consider here finitely supported covariates V ∈ {v1, . . . , vm}, W ∈ {w1, . . . , wn}.
Denote p(vi) = P(V = vi), p(wj) = P(W = wj), p(vi, wj) = P(V = vi,W = wj). Assume for
simplicity that for all (i, j) ∈ {1, . . . ,m} × {1, . . . , n}, we have p(vi, wj) > 0.
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First, in this case, almost sure convergence and convergence in expectation are equivalent
for both ratios R and R̃ introduced at the beginning of this section. In other words

E|R(y, V,W )| −−−−→
y→y+

0 ⇐⇒ |R(y, V,W )| −−−−→
y→y+

0, almost surely ; (B.8)

E|R̃(y, V,W )| −−−−→
y→y+

0 ⇐⇒ |R̃(y, V,W )| −−−−→
y→y+

0, almost surely . (B.9)

Indeed

E|R(y, V,W )| =
m∑
i=1

n∑
j=1

p(vi, wj)
∣∣∣S(y, vi, wj)− S(y, wj)

S(y)

∣∣∣.
The latter display converges to 0 as y → y+ if and only if each terms in the finite summation
does, that is, if and only if ∀(i, j), R(y, vi, wj) → 0 as y → y+. This proves (B.8), and the
argument for (B.9) is similar.

Second, TCI-G implies TCI, meaning that our definition is weaker than Gardes (2018)’s
in this discrete setting. To see this, in view of the equivalence between L1 and almost sure
convergences, it is enough to show that the ratio R(y, vi, wj)/R̃(y, vi, wj) is uniformly upper
bounded when y, i and j vary. However for all (y, i, j),

R(y, vi, wj)

R̃(y, vi, wj)
= ρ(y, wj) = S(y, wj)/S(y) =

S(y, wj)∑n
k=1 p(wk)S(y, wk)

≤ 1

p(wj)
≤ 1/min

k≤n
p(wk) <∞.

As a consequence, if R̃(y, V,W )→ 0 almost surely, then also R(y, V,W )→ 0 almost surely
as y → y+ and the result follows.

B.4. Example in the mixture model where both TCI and TCI-G hold

We consider the setting of Section 3.2 from the main paper, and in particular the case where
the lower bound of the support of each Wj is positive, a > 0.

We verify that the upper bounds (B.5) and (B.6) uniformly converge to 0. First, using
(B.7), we have

S1(y) + S1(y, v)

S2(y)
≤ 2

supv∈[a,b]p−d S1(y, v)

infw∈[a,b]d S2(y, w)
≤ 2

Sε(y/b)

Sζ(y/a)
,

where the right-hand-side converges to 0 as y →∞ under Condition (3.7). Thus the upper
bound in (B.5) uniformly converges to 0 and TCI holds by dominated convergence.

Turning to R̃, we also have

sup
(v,w)∈[a,b]p

S1(y, v)

S2(y, w)
≤

supv∈[a,b]p−d S1(y, v)

infw∈[a,b]d S2(y, w)
≤ Sε(y/b)

Sζ(y/a)
−−−→
y→∞

0.

Thus, by dominated convergence the right-hand-side of (B.6) converges to 0 as y → ∞ so
that TCI-G holds as well.

In the general case the situation is much more complex and it turns out that neither
condition implies the other, as revealed by the counter-examples constructed in the next
two subsections.
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B.5. Counter-example in the mixture model where TCI holds but TCI-G does
not

In contrast to the latter subsection, we now consider the case where the support of the Wj ’s
includes 0, so that a = 0. Namely we take each variable Vj ,Wj following a binary Bernoulli
distribution with parameter τ ∈ (0, 1)Thus P (W = (0, . . . , 0)) = (1−τ)d > 0. Notice already
that the right-hand side of (B.6) is not bounded because S2(y, w = (0, . . . , 0)) = 0 for y > 0.
Also, from (B.4),

R̃(y, v, w = (0, . . . , 0)) =
S1(y, v)− S1(y)

S1(y)
.

In this specific example Y1 and Y2 have point masses at 0 and we have for y > 0, S1(y) =∑
j π

1
j τSε(y) = τSε(y) while for v1 = (1, . . . , 1), S1(y, v1) =

∑
j π

1
jSε(y) = Sε(y). Thus in

the above display, R̃(y, v1, 0) = (1− τ)/τ for all y > 1 and TCI-G does not hold.
Finally we show that TCI holds by examining the right-hand side of (B.5). The argument

above shows that
S1(y, v) + S1(y)

S2(y)
≤ (1 + τ)Sε(y)

τSζ(y)
.

This proves uniform convergence to 0 in (B.5) under Condition (3.7) and concludes the
argument.

B.6. Counter-example where TCI-G holds but TCI does not

In this example we depart from the mixture model forming the basis of the two latter exam-
ples. The idea behind is to build the survival functions in such a way that lim supy→∞ ρ(y,W ) =
∞ (see (B.2) for the definition of ρ), with probability one, while TCI-G holds.

In addition to the notations introduced at the beginning of this section, we introduce the
ratio

q(y, v, w) = S(y, v, w)/S(y, w).

Thus R̃(y, v, w) = q(y, v, w)− 1 and R(y, v, w) = (q(y, v, w)− 1)ρ(y, w). We denote respec-
tively by PW , PV,W the marginal distribution of W and the joint distribution of (V,W ).
Here we define V , W as independent uniform variables, PW = PV = U[−1/2,1/2] and
PV,W = PV ⊗PW . We shall build (S, ρ, q) such that h|q(y, V,W )− 1| → 0 as y →∞, almost
surely, (so that TCI-G holds) while lim supE [|q(y, V,W )− 1|ρ(y,W )] > 0 as y → ∞ (so
that TCI does not hold).

The functions S(y), q(y, v, w), ρ(y, w) define a joint distribution of (Y, V,W ) with no mass
at the right end point of Y if conditions (B.10) (B.11) and (B.12) below hold.

S is non-increasing , lim
y→y+

S(y) = 0, S(y) ≥ 0; (B.10)

PW -almost surely, the function y 7→ ρ(y,W )S(y) is non-increasing, and

lim
y→y+

ρ(y,W )S(y) = 0, ρ(y,W ) ≥ 0, E [ρ(y,W )] = 1 ,∀y; (B.11)

PV,W -almost surely, the function y 7→ q(y, V,W )ρ(y,W )S(y) is non-increasing, and

lim
y→y+

q(y, V,W )ρ(y,W )S(y) = 0, q(y, V,W ) ≥ 0, E [q(y, V,W ) |W ] = 1 ,∀y. (B.12)
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B.6.1. Construction of S(y), ρ(y, w)

We let S(y) = e−y, y ≥ 0, and we construct ρ such that P
(
lim supy→∞ ρ(y, w) =∞

)
= 1

while (B.11) is satisfied. To this end define for n ≥ 2, and 0 ≤ j ≤ n,

Ln =
∑

k<n,k≥2

k2 ; Ln,j = Ln + jn. (B.13)

Thus L2 = 0, L3 = 4, Ln ≤ n3 for n ≥ 2 and Ln,n = Ln+1. Also R+ = tn≥2 t0≤j<n
[Ln,j , Ln,j+1). Also for y ≥ 0, we denote by (n(y), j(y)) the unique pair of integers such that
y ∈ [Ln,j , Ln,j+1).

For n ≥ 2, 0 ≤ j < n, we define ρ(y, w) for y ∈ [Ln,j , Ln,j+1) and w ∈ [−1/2, 1/2] as
follows: let In,j = [1/2− (j + 1)/n, 1/2− j/n], then

ρ(y, w) = 1 + w +
n

4π
sin
(
π(y − Ln,j)/n

)
[1{w ∈ In,j} − 1{w /∈ In,j}/(n− 1)] . (B.14)

Notice that for all w ∈ [−1/2, 1/2], the function y 7→ ρ(y, w) is continuous. Also for all
w ∈ [−1/2, 1/2] we have lim supy ρ(y, w) = +∞. Indeed for any fixed n ≥ 2, let j such that
w ∈ In,j . Then letting

yn = Ln,j + n/2,

we have ρ(yn, w) = w+n/(4π) ≥ n/(4π)−1/2. The sequence yn converges to∞ and is such
that ρ(yn, w)→∞ as n→∞, which proves the claim.

We now verify that the conditions gathered in (B.11) hold.

1. First for all y ≥ 0,

E [ρ(y,W )] = 1 + E [W ] +
n

4π
sin
(
π(y − Ln,j)/n

)
[1/n− (n− 1)/(n(n− 1))] = 1.

2. We show that for all y, ρ(y,W ) ≥ 1/3 almost surely. By construction, ρ(y,W ) ≥
1/2− n(y)

4(n(y)−1)π . Since m/(m− 1) ≤ 2 for m ≥ 2, we obtain

ρ(y,W ) ≥ 1/2− 2

4π
≥ 1/2− 1/6 = 1/3.

3. We now show that y 7→ S(y)ρ(y, w) is non increasing for all w ∈ [−1/2, 1/2]. Since both
S and ρ are continuous functions of y, with derivatives from the right which we denote
respectively S′(y) and ρ′(y, w), we need to show that ρ′(y, w) < −ρ(y, w)S′(y)/S(y).
Here S′(y)/S(y) = −1, and from the above point we obtain −ρ(y, w)S′(y)/S(y) ≥ 1/3.
To conclude we show that

∀y ≥ 0, w ∈ [−1/2, 1/2], ρ′(y, w) ≤ 1/4.

Let y > 0 and (n, j) = (n(y), j(y)) as above. On the one hand if w ∈ In(y),j(y) we have
0 ≤ ρ′(y,W ) ≤ 1/4. On the other hand if w /∈ In(y),j(y), we have ρ′(y, w) < 0. In both
cases ρ′(y, w) ≤ 1/4 ≤ 1/3 ≤ −ρ(y, w)S′(y)/S(y), which conludes the argument.

4. Finally we verify that limy→∞ ρ(y,W )S(y) = 0, almost surely. To see this, notice that

for all y > 0, w ∈ [−1/2, 1/2], |ρ(y, w)| ≤ 3/2 + n(y)
4π . Now since Ln ≥ n2, {n : Ln ≤

y} ⊂ {n : n2 ≤ y}, so that n(y) = sup{n : Ln ≤ y} ≤ sup{n : n2 ≤ y} ≤ √y. Thus
|ρ(y, w)|e−y ≤ (3/2 +

√
y/(4π))e−y → 0 as y →∞.
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B.6.2. Construction of q(y, v, w)

Recall n(y) from the beginning of the above paragraph. Define

q(y, v, w) =1 + v

[
1
{
w >

1

2
− 1

n(y)

}
+ 1

{
w ≤ 1

2
− 1

n(y)

}
exp

(
−
y +

⌈
1

1/2−w

⌉
4

)]
(B.15)

We now verify that the function y 7→ q(y, v, w)S(y, w) = S(y, v, w) is non increasing.
Notice already that all the other constraints gathered in (B.12) are satisfied. Since for fixed
(v, w), both y 7→ q(y, v, w) and y 7→ S(y, w) are continuous, it is enough to verify that the
derivative from the right of y 7→ q(y, v, w)S(y, w) is negative or null, that is (since q ≥ 1/2
is positive), we need to ensure that

q′(y, v, w)

q(y, v, w)
≤ −S

′(y, w)

S(y, w)
. (B.16)

With our definition of S(y, w) from Subsection B.6.1,

−S′(y, w)/S(y, w) = (ρ(y, w)− ρ′(y, w))/ρ(y, w) = 1− ρ′(y, w)/ρ(y, w) ≥ 1− 1/4

1/3
= 1/4.

If we denote y(w) = y −
⌈

1
1/2−w

⌉
, we have

q′(y, v, w)/q(y, v, w) = −1

4
1
{
w ≤ 1

2
− 1

n(y)

}
v exp(−y(w)/4)/(1 + v exp(−y(w)/4)).

The above display is always less than 1/4 so that (B.16) holds for all y > 0 and v, w ∈
[−1/2, 1/2] and (B.12) is satisfied. This fact combined with the argument in Subsection B.6.1
implies that the functions (S, ρ, q) define a proper joint distribution for (Y, V,W ).

B.6.3. Conclusion

We have constructed a joint distribution for (Y, V,W ) in Sections B.6.1, B.6.2, such that
PV,W -almost surely, q(y, V,W )→ 1 as y →∞, as can be seen immediately from the defini-
tion of q in (B.15). Thus (Y, V,W ) satisfy TCI-G. However, for all n ≥ 0, let yn = Ln+n/2
(see Subsection B.6.1), so that by construction n(yn) = n. Notice that In,0 = [1/2−1/n, 1/2]
and for w ∈ In,0, we have ρ(yn, w) = 1 + w + n/(4π) ≥ n/16 and q(yn, v, w) = 1 + v. Thus

E [|R(yn, V,W )|] = E [|q(yn, V,W )− 1|ρ(yn,W )]

≥ E [|q(yn, V,W )− 1|ρ(yn,W )1{W > 1/2− 1/n}|]
= P (W > 1/2− 1/n)E [|q(yn, V,W )− 1|ρ(yn,W ) |W ∈ In,0]

≥ 1

n
E [|V |n/16] ≥ E [|V |] /16 = 1/64.

We have shown that lim supy→∞ E [|R(y,V,W )|] > 0, so that TCI does not hold, which
concludes the counter-example.
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B.7. Additive Mixture Model (Remark 2 in the main paper)

We end this section devoted to examples with a full derivation of the additive mixture
example mentioned in Remark 2 from the main paper. We consider here an additive mixture
Y = Y1 + Y2. The first (light-tailed) component is Y1 = V ∈ [a, b] (−∞ < a < b <∞) ; and
the second (heavy-tailed) one is Y2 = Wξ where W ∈ [c, d] with 0 < c < d <∞, and ξ has
a continuous survival function Sξ(y) := 1−Fξ(y) satisfying q(y) = yαSξ(y)→ C as y →∞,
for some α,C > 0. In addition, we assume that V and W are independent.

We show that TCI holds, that is Y∞⊥⊥V |W . Introducing the function

g(v, w, y) = w−αyαSξ[(y − v)/w],

we have that

sup
[v,w]∈[a,b]×[c,d]

∣∣g(v, w, y)− C|

= sup
v,w∈[a,b]×[c,d]

∣∣∣(1− v

y

)−α(y − v
w

)α
Sξ

[y − v
w

]
− c
∣∣∣ −−−→
y→∞

0.
(B.17)

The last limit relation follows from y−v
w → ∞ and 1 − v/y → 1, uniformly for v, w ∈

[a, b]× [c, d] as y →∞. We have that

P(Y > y|V,W ) = Sξ((y − V )/W ) = Wαy−αg(V,W, y)

P(Y > y|W ) = Wαy−α
∫ b

a

g(v,W, y)f1(v) dv,

P(Y > y) = y−α
∫ d

c

∫ b

a

wαg(v, w, y)f1(v)f2(w) dv dw.

Thus

P (Y > y|X)− P (Y > y|W )

P (Y > y)
=
Wα

{
g(v,W, y)−

∫ b
a
g(v,W, y)f1(v) dv

}
∫ d
c

∫ b
a
wαg(v, w, y)f1(v)f2(w) dv dw

By (B.17) and dominated convergence,
∫ d
c

∫ b
a
g(v, w, y)f1(v)f2(w) dv dw → cE(Wα) as y →

∞. Regarding the numerator, Cauchy’s inequality implies that

E
∣∣∣Wα

{
g(v,W, y)−

∫ b

a

g(v,W, y)f1(v) dv

}∣∣∣
≤
√
EW 2α

√√√√E

{
g(v,W, y)−

∫ b

a

g(v,W, y)f1(v) dv

}2

.

The right-hand side tends to zero by noting that EW 2α < ∞ and applying the dominated
convergence theorem twice to the second term. The proof is complete.

Appendix C: Proof of Theorem 2

We need to show that
QeE

[
ZZ> − I

∣∣ Y > y
]
−−−−→
y→y+

0. (C.1)
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Notice first that from (LC) (2.1) and (CCV) (2.2) it holds that Qe(Var [Z |PeZ] − Ip) =
−QePe = 0. Thus also

QeE
[
ZZ> − Ip

∣∣ PeZ] = Qe(Var [Z |PeZ]− Ip) +QeE[Z |PeZ]E[Z |PeZ]> = QePe = 0.

As a consequence

QeE
[
(ZZ> − Ip)1{Y > y}

]
= QeE

[
E
(

(ZZ> − Ip)1{Y > y} |PeZ, Y
)]

= QeE
[(

E
[
ZZ> − Ip

∣∣ PeZ, Y ]− E
[
ZZ> − Ip

∣∣ PeZ] )1{Y > y}
]

= QeE
[(

E
[
ZZ>

∣∣ PeZ, Y ]− E
[
ZZ>

∣∣ PeZ] )1{Y > y}
]

Thus in order to show (C.1) it is sufficient to show that for all pair (i, j) ∈ {1, . . . , p}2,
writing py = P (Y > y),

p−1
y E

[(
E [ZiZj | PeZ, Y ]− E [ZiZj | PeZ]

)
1{Y > y}

]
−−−−→
y→y+

0 (C.2)

Fixing i, j ≤ p and following the same path as in Theorem 1 we decompose the left-hand
side of (C.2) for any A > 0 as a sum C1(A, y) + C2(A, y) where

C1(A, y) = p−1
y E

[(
E [ZiZj1{‖Z‖ ≤ A} | PeZ, Y ]− . . .

. . .E [ZiZj1{‖Z‖ ≤ A} | PeZ]
)
1{Y > y}

]
,

C2(A, y) = p−1
y E

[(
E [ZiZj1{‖Z‖ > A} | PeZ, Y ]− . . .

. . .E [ZiZj1{‖Z‖ > A} | PeZ]
)
1{Y > y}

]
.

Point (iii) of Proposition 3 with h = 1 and g(Z) = ZiZj1{‖Z‖ ≤ A} ensures that C1(A, y)→
0 as y → y+ for any fixed A. On the other hand, using that |ZiZj | ≤ 1

2 (|Zi|2 + |Zj |2) ≤
1
2‖Z‖

2
2 ≤ c‖Z‖2 for some constant c we may bound |C2(A, y)| as follows,

|C2(A, y)| ≤ p−1
y cE

[
E
[
‖Z‖21{‖Z‖ > A}

∣∣ PeZ, Y ]1{Y > y}
]

+ . . .

. . . p−1
y cE

[
E
[
‖Z‖21{‖Z‖ > A}

∣∣ PeZ]1{Y > y}
]

= p−1
y c

(
E
[
‖Z‖21{‖Z‖ > A}1{Y > y}

]
+ E

(
E
[
‖Z‖21{‖Z‖ > A}

∣∣ PeZ]1{Y > y}
))

= cE [h1,A(Z) | Y > y] + E [h2,A(Z) | Y > y] .

Hence, in view of condition (4.4) for any ε > 0 there exists some A > 0 such that

lim sup
y→y+

|C2(A, y)| ≤ ε,

whence lim supy→y+ |C2(A, y)|+ |C1(A, y)| ≤ ε, which shows (C.2) and completes the proof.

Appendix D: Proofs and auxiliary results for Section 5

D.1. Inverse of empirical c.d.f.’s and order statistics

The following general fact is used on several occasions in our proofs:
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Fact D.1. For u ∈ (0, 1], Ĥ−(u) = T(dnue) and for z ∈ [0, n− 1]:

(Ĥ(Ti) < (z + 1)/n) ⇔ (Ti ≤ Ĥ−(z/n)).

Proof. The first statement follows from the definition of Ĥ−. Thus, using (5.1),

Ĥ(Ti) < (z + 1)/n) ⇐⇒ Ti < Ĥ−((z + 1)/n) = T(dz+1e) = T(dze+1)

⇐⇒ Ti ≤ T(dze) = Ĥ−(z/n).

D.2. Vervaat’s Lemma

We quote Lemma 4.3 in Segers (2015), which is a variant of “Vervaat’s lemma”, i.e., the
functional delta method for the mapping sending a monotone function to its inverse.

Lemma D.1. Let G : R → [0, 1] be a continuous distribution function. Let 0 < rn → ∞
and let Ĝn be a sequence of random distribution functions such that, in `∞(R), we have
rn(Ĝn−G) β ◦G, as n→∞, where β is a random element of `∞([0, 1]) with continuous
trajectories. Then β(0) = β(1) = 0 almost surely and as n→∞,

sup
u∈[0,1]

rn|(G{Ĝ−n (u)} − u) + (Ĝn{G−(u)} − u)| = oP(1).

D.3. Proof of Lemma 1

Because we only need to show that for any u ∈ Rp, vT Γ̃  vT W̃ , to prove that Γ̃ is
asymptotically tight we may consider the case where q = 1, i.e., h(V ) ∈ R. Denoting by
ψ the derivative of x 7→ E

[
h(V )21{U ≤ x}

]
, there exist by assumption positive constants

(c0, δ0) such that for all δ ≤ δ0, ψ(δ) ≤ c0. Similarly, because we assume the existence of
Ξ = S(0) (Assumption 2. in Theorem 3), there exist positive constants (c1, δ1) such that for
all δ ≤ δ1, E[h(V )2 |U < δ1] ≤ c1. We assume in the following argument that k/n ≤ δ0 ∧ δ1.

We apply Theorem 2.11.23 in Van Der Vaart and Wellner (2013) (Classes of functions
changing with n) with

fn,u(V,U) =

√
n

k
h(V )1{U ≤ uk/n},

Fn = {fn,u : u ∈ [0, 1]},

Fn(V,U) =

√
n

k
|h(V )|1{U ≤ k/n}.

We start by verifying equation 2.11.21 in Van Der Vaart and Wellner (2013). First, we have

E
[
Fn(V,U)2

]
≤ c1.

Second, for any η > 0 and M > 0, it holds that (for n, k large enough)

E
[
Fn(V,U)21{Fn(V,U) > η

√
n}
]

=
(n
k

)
E
[
|h(V )|21{U ≤ k/n}1{|h(V )|1{U ≤ k/n} > η

√
k}
]

≤
(n
k

)
E
[
|h(V )|21{U ≤ k/n}1{|h(V )| > η

√
k}
]

≤
(n
k

)
E
[
|h(V )|21{U ≤ k/n}1{|h(V )| > M}

]
.



A. Aghbalou, F. Portier, A. Sabourin, C. Zhou/Tail Inverse Regression for Extremes 42

Hence

lim sup
n→∞

E
[
Fn(V,U)21{Fn(U) > η

√
n}
]
≤ S(M).

But M is arbitrary so the latter display is arbitrarily small. Third, by the mean value
theorem, whenever u ≤ t, ∃t̃ ∈ (u, t) such that

E
[
(fn,u(V,U)− fn,t(V,U))2

]
=
(n
k

)
E
[
h(V )21{uk/n ≤ U ≤ tk/n}

]
= ψ(t̃k/n)(t− u)

≤ c0(t− u).

This implies that

sup
|u−t|≤δn

E
[
(fn,u(V,U)− fn,t(V,U))2

]
→ 0, as δn → 0.

It remains to check the entropy condition for the class Fn. Let 0 < ε < 1, and denote by
ui = iε, i = 0, . . . , N and uN+1 = 1 with N = b1/εc. Denote respectively by f+

n,u and f−n,u
the positive and negative parts of fn,u and by F+

n ,F−n the associated classes. The functions
(f+
n,ui

) (resp. (f−n,ui
)) forms an (ε, L2)-bracketing of F+

n (resp. F−n ), i.e., for any u ∈ [0, 1],
there exists i such that

f+
n,ui
≤ f+

n,u ≤ f+
n,ui+1

,

and

E
[
(f+
n,ui+1

(V,U)− f+
n,ui

(V,U))2
]
≤ c0ε.

Similar inequalities remain valid for F−n . Hence considering the functions fn,i = f+
n,ui
−

f−n,ui+1
, we have that for u ∈ [ui, ui+1], i = 0, . . . , N ,

fn,u( · ) = f+
n,u( · )− f−n,u( · ) ∈ [fn,i( · ), fn,i+1( · )] ,

thus there exists C > 0 such that

N[ ](ε‖Fn‖L2(P ),Fn, L2(P )) ≤ C/ε2.

The entropy condition is satisfied as for all δn → 0,∫ δn

0

√
logN[ ](ε‖Fn‖L2(P ),Fn, L2(P )) dε→ 0. (D.1)

Consequently, the process Γ̃ is tight. Finally the covariance functions at s ≤ t are given by

Cov
[
Γ̃h(s), Γ̃h(t)

]
= E

[
n/kh(V )h(V )>1{U ≤ sk/n}

]
− · · ·

n/kE [h(V )1{U ≤ sk/n}]E [h(V )1{U ≤ tk/n}]
= sE

[
h(V )h(V )>

∣∣ U ≤ sk/n]− · · ·
k/n stE [h(V ) | U ≤ sk/n]E [h(V ) | U ≤ tk/n]

The first term in the right-hand side converges to s Ξ = (s∧ t) Ξ while the second term goes
to zero from assumption 3. in Theorem 3’s statement. This concludes the proof.
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D.4. Proof of Lemma 2

We apply Lemma D.1 (Vervaat) to the distribution functions

Ĝn(u) =


0 for u < 0

F̂U (uk/n)/F̂U (k/n) for 0 ≤ u ≤ 1
1 for 1 < u

, G(u) =

 0 for u < 0
u for 0 ≤ u ≤ 1
1 for 1 < u

.

The quantile functions of Ĝn and G are respectively, for any u ∈ [0, 1],

Ĝ−n (u) =
F̂−U (uF̂U (k/n))

k/n
, G−(u) = u,

Now we prove that the conditions of Lemma D.1 are satisfied with rn =
√
k and β a Brownian

bridge with covariance function u1 ∧ u2 − u1u2. Define

an =
k/n

F̂U (k/n)

and write

√
k(Ĝn(u)− u) =

( √
k

F̂U (k/n)

)(
F̂U (uk/n)− uF̂U (k/n)

)
= an

√
k
(n
k
F̂U (uk/n)− un

k
F̂U (k/n)

)
= an

√
k
(

(
n

k
F̂U (uk/n)− u)− u(

n

k
F̂U (k/n)− 1)

)
= an (γ̂1(u)− uγ̂1(1))

= anγ̂2(u),

where γ̂1 is defined in (5.12) and

γ̂2(u) = γ̂1(u)− uγ̂1(1). (D.2)

Now use that an → 1 in probability and that supu∈[0,1] |γ̂2(u)| = OP(1) (both are conse-
quences of Corollary 2) to conclude (invoking Slutsky’s lemma) that

√
k(Ĝn(u)− u) = γ̂2(u) + (an − 1)γ̂2(u)

= γ̂2(u) + oP(1), (D.3)

where the stochastic convergence oP(1) is uniform in u ∈ [0, 1]. In particular that
√
k(Ĝn(u)−

u) weakly converges to a Brownian bridge with covariance function u1 ∧ u2 − u1u2. The
conclusion of Lemma D.1 is that

sup
u∈(0,1]

∣∣∣γ̂3(u) +
√
k(Ĝn(u)− u)

∣∣∣ = oP(1),

with
γ̂3(u) =

√
k(Ĝ−n (u)−G−(u)) =

√
k
(n
k
F̂−U (uF̂U (k/n))− u

)
. (D.4)

Consequently, using (D.3),

sup
u∈(0,1]

|γ̂3(u) + γ̂2(u)| = oP(1). (D.5)
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Remark that

√
k
(

(n/k)F̂−U (uk/n)− u
)

= γ̂3(uan) + u
√
k(an − 1). (D.6)

and that, as γ̂1(1) =
√
k((n/k)F̂U (k/n)− 1),

√
k(an − 1) = −anγ̂1(1) (D.7)

Using the triangle inequality and (D.6), we get∣∣∣√k ((n/k)F̂−U (uk/n)− u
)

+ γ̂1(u)
∣∣∣

=
∣∣∣γ̂3(uan) + u

√
k(an − 1) + γ̂1(u)

∣∣∣
≤ |γ̂3(uan) + γ̂2(uan)|+

∣∣∣u√k(an − 1) + γ̂1(u)− γ̂2(uan)
∣∣∣

= |γ̂3(uan) + γ̂2(uan)|+ |γ̂1(u)− γ̂1(uan)|,

where the last line is deduced from (D.7) and γ̂2(u) = γ̂1(u)−uγ̂1(1). Whenever u ∈ [0, 1/2],
we have, with probability going to 1, that uan ∈ [0, 1]. Moreover, because an → 0 in
probability, there exists δn → 0 such that the event |u − uan| ≤ |an| ≤ δn has probability
going to 1. On these events, it holds

sup
u∈(0,1/2]

|γ̂3(uan) + γ̂2(uan)| ≤ sup
u∈(0,1]

|γ̂3(u) + γ̂2(u)| = oP(1)

sup
u∈(0,1/2]

|γ̂1(u)− γ̂1(uan)| = sup
u∈(0,1],v∈(0,1],|u−v|≤δn

|γ̂1(u)− γ̂1(v)| = oP(1).

We have used (D.5) and the asymptotic equicontinuity of γ̂1. Consequently we have shown
that, whenever n→∞, k →∞, we have

sup
u∈(0,1/2]

∣∣∣√k ((n/k)F̂−U (uk/n)− u
)

+ γ̂1(u)
∣∣∣ = oP(1).

To obtain the stated result, apply this with 2k in place of k.

Appendix E: Extension to non-standardized covariates

In this section we extend our inverse regression framework to the case of non-standardized
covariates X. Section E.1 recalls standard results for that matter. In Section E.2 the exten-
sions of the TIREX1 and TIREX2 principles are presented. The proofs of these results are
omitted since they follow from classical arguments from non-standardized covariates com-
bined with our proofs with standardized covariates from Section 3. In Section E.3 we show
that estimating the mean vector and covariance matrix for standardization does not change
the asymptotic behavior of the latter tail processes.

E.1. SIR and SAVE principles with non-standardized covariates

We first recall some necessary background from the theory of inverse regression with non-
standardized covariates, as exposed e.g. in Cook and Weisberg (1991).



A. Aghbalou, F. Portier, A. Sabourin, C. Zhou/Tail Inverse Regression for Extremes 45

E.1.1. SDR spaces

Recall from Section 2 that in terms of non-standardized covariates X = m + Σ1/2Z, a
subspace Ẽ of Rp is a SDR space for the pair (X,Y ) if and only if Ẽ = Σ−1/2E where E
is a SDR space for the pair (Z, Y ). We denote in the sequel by P̃ the orthogonal projector
onto such a SDR space Ẽ and we define Q̃ = Ip − P̃ .

E.1.2. Linearity and constant variance conditions

Conditions LC (2.1) and CCV (2.2) regarding the standardized variable Z are respectively
equivalent to

E
[
X|P̃X

]
= b+BP̃X (E.1)

for some b ∈ Rp and B ∈ Rp×p, and

Var
[
X|P̃X

]
is constant a.s. (E.2)

E.1.3. SIR principle and CUME matrix

The extension of the SIR principle (Proposition 1) in terms of non-standardized covariates,
is that under condition (E.1), it holds that

Σ−1(E [X|Y ]−m) ∈ Ẽ. (E.3)

As a consequence the CUME matrix defined in (2.3) must be replaced with the matrix
M̃CUME = E

[
m̃(Y )m̃(Y )T

]
, with

m̃(y) = E [(X −m)1{Y ≤ y}] ,

in which case it holds that

span(M̃CUME) ⊂ ΣẼ = Σ1/2E.

E.1.4. SAVE principle

The parallel statement of Proposition 2 is that under conditions (E.1) and (E.2), we have

span(Σ−1(Var [X | Y ]− Σ)) ⊂ Ẽ a.s., (E.4)

or equivalently span(Σ−1(E
[
(X −m)(X −m)> |Y

]
− Σ)) ⊂ Ẽ.

E.2. TIREX principles with non-standardized covariates

It follows from Definition 3 that Ee is an extreme SDR space for the pair (Z, Y ) if and only
if Ẽe = Σ−1/2Ee is an extreme SDR space for the pair (X,Y ), in the sense that, denoting
by P̃e the orthogonal projection on Ẽe, Y∞ ⊥⊥ X | P̃eX.

We now state the analogue statement to Theorem 1 in terms of the non-standardized
covariate X.
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Proposition E.1 (non-standardized TIREX1 principle). The assumptions of Theorem 1
are equivalent to

1. limA→∞ lim supy→y+ E [g̃k,A(X) | Y > y] = 0, k = 1, 2 where g̃1,A(X) = ‖X‖1{‖X‖ >
A} and g̃2,A(X) = E

[
‖X‖1{‖X‖ > A}

∣∣∣ P̃eX], where P̃e is the orthogonal projector

on Ẽe = Σ−1/2Ee.
2. The covariate vector satisfies the non-standardized linearity condition (E.1)
3. For some ˜̀∈ Rp, with m = E [X]

E [X | Y > y]−m −−−−→
y→y+

˜̀. (E.5)

In such a case ˜̀ = Σ1/2` where ` is the limit defined in Theorem 1 and the conclusion is
that

Σ−1 ˜̀∈ Ẽe.

Proposition E.2 (non-standardized TIREX2 principle). Assume that (X,Y ) and the ex-
treme SDR space satisfy the assumptions of Proposition E.1 (non-standardized TIREX1
principle) and that in addition,

1. (second order uniform integrability):

lim
A→∞

lim sup
y→y+

E
[
h̃k,A(X)

∣∣∣ Y > y
]

= 0, k = 1, 2 , (E.6)

where h̃1,A(X) = ‖X‖21{‖X‖ > A} and h̃2,A(X) = E
[
‖X‖21{‖X‖ > A}

∣∣∣ P̃eX],
2. (CCV) The covariate vector X satisfies the non-standardized constant variance con-

dition (E.2) relative to P̃e,
3. (Convergence of conditional expectations) For some S̃ ∈ Rp×p,

E
[
XX>

∣∣ Y > y
]
−−−−→
y→y+

S̃ + ˜̀̀̃ >, (E.7)

where ˜̀ is the limit appearing in Proposition E.1.

Then
span(Σ−1(S̃ − Σ)) ⊂ Ẽe,

i.e. Q̃eΣ
−1(S̃ − Σ) = 0.

E.3. Estimation with non-standardized covariates

Consider the non-standardized versions of the matrices MTIREX1,MTIREX2 from Section 5
defined as follows:

M̃TIREX1 =

∫ 1

0

Cmn (u)Cmn (u)> du , with

Cmn (u) =
n

k
E
[
(X −m)1{Ỹ < F−(uk/n)}

]
,

(E.8)

and

M̃TIREX2 =

∫ 1

0

Bm,Σn (u)Bm,Σn (u)> du , with

Bm,Σn (u) =
n

k
E
[(

(X −m)(X −m)> − Σ
)
1{Ỹ < F−(uk/n)}

]
.

(E.9)
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In view of Propositions E.1 and E.2, under the same assumptions therein, span(M̃TIREX1)
and span(M̃TIREX2) become close to ΣẼe as n→∞, in the sense that

lim
n→∞

Q̃eΣ
−1M̃TIREX1 = lim

n→∞
Q̃eΣ

−1M̃TIREX2 = 0,

where Q̃e is the orthogonal projector on Ẽ⊥e .
Notice that we can write Cmn , B

m,Σ
n in terms of Cn, Bn as follows:

Cmn (u) = Σ1/2Cn(u)

Bm,Σn (u) = Σ1/2Bn(u)Σ1/2
(E.10)

Despite the apparent simplicity of (E.10), in the estimation step with unknown covariate’s
mean and covariance, one must replace m and Σ in definitions (E.8) and (E.9) with some
estimates, e.g. the empirical ones which we denote by m̂, Σ̂. Namely we consider the processes

Ĉm̂n (u) =
1

k

n∑
i=1

(Xi − m̂)1{Ỹi ≤ F̂−(uk/n)} ,

B̂m̂,Σ̂n (u) =
1

k

n∑
i=1

(
(Xi − m̂)(Xi − m̂)> − Σ̂

)
1{Ỹi ≤ F̂−(uk/n)}]

(E.11)

and define the non-standardized TIREX1 and TIREX2 tail empirical processes respectively
as

√
k
(
Ĉm̂n − Cmn

)
and
√
k
(
B̂m̂,Σ̂n −Bm,Σn

)
. (E.12)

We assume that the conditions for the central limit theorem regarding the estimators m̂
and Σ̂ are met. For instance, we assume that X admits fourth order moments, an assumption
which is needed anyway for the weak convergence of the TIREX2 process, see Corollary 1.
Thus we work under the assumption that

m̂ = m+OP(1/
√
n) ; Σ̂ = Σ +OP(1/

√
n). (E.13)

Proposition E.3 (Weak convergence of non-standardized TIREX processes). Under As-
sumption (E.13),

1. The standardized TIREX1 process
√
k(Ĉn − Cn) converges weakly in `∞([0, 1]) to a

tight Gaussian process W1 if and only if its non-standardized version defined in (E.12)
converges weakly, in the same space, to the Gaussian process Σ1/2W1.

2. If weak convergence of the TIREX1 process holds true, then the standardized TIREX2
process

√
k(B̂n − Bn) converges weakly in `∞([0, 1]) to a tight Gaussian process W2

if and only if its non-standardized version defined in (E.12) converges weakly, in the
same space, to the Gaussian process Σ1/2W2Σ1/2.

Proof of Proposition E.3.

1. Substituting X −m with Σ1/2Z we obtain

Ĉm̂(u) =
1

k

n∑
i=1

Σ1/2(Zi +m− m̂)1{Ỹi ≤ F̂−(uk/n)}

= Σ1/2
{
Ĉn(u) + ∆n(u)(m− m̂)

}
(E.14)
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where Ĉn is defined in (5.5) in terms of Z and

∆n(u) :=
n

k
F̂
(
F̂−(uk/n)

)
≤ n

k
F̂
(
F̂−(k/n)

)
=
n

k
F̂ (Ỹ(k)) = 1. (E.15)

Combining the latter upper bound, (E.14) and (E.10) we obtain

√
k
(
Ĉm̂n − Cmn

)
= Σ1/2

√
k(Ĉn(u)− Cn(u)) +Rn(u), (E.16)

where supu∈[0,1]Rn(u) = OP(
√
k/n) = oP(1) and the main term

√
k(Ĉn(u) − Cn(u))

is the standardized TIREX1 process. The first assertion of the statement follows from
the Slutsky’s lemma.

2. The argument for the second order method is similar though the computation is more
involved. We have

B̂m̂,Σ̂n (u) = Σ1/2

{
1

k

∑
i≤n

((
Zi + Σ−1/2(m− m̂)

)(
Zi + Σ−1/2(m− m̂)

)> − Σ−1/2Σ̂Σ−1/2
)
× · · ·

· · ·1{Ỹi ≤ F̂−(uk/n)}
}

Σ1/2

= Σ1/2
{
B̂n(u) +A1,n∆n(u) +A2,n(u)

}
Σ1/2

with ∆n(u) ≤ 1 as in (E.15) and

A1,n =
(
Ip − Σ−1/2Σ̂Σ−1/2

)
+ Σ−1/2(m− m̂)(m− m̂)>Σ−1/2 ,

A2,n = Σ−1/2(m− m̂)Ĉ>n (u) + Ĉn(u)(m− m̂)>Σ−1/2.

Under the assumption that the TIREX1 empirical process converges weakly we have
that supu Ĉn(u) = OP(1), and using (E.13) and (E.10) we obtain

√
k
(
B̂m̂,Σ̂n (u)−Bm,Σn (u)

)
= Σ1/2

√
k
(
B̂n(u)−Bn(u)

)
Σ1/2 +R′n(u)

with supuR
′
n(u) = OP(

√
k/n) = oP(1). The second assertion follows.


	Introduction
	Background: dimension reduction space and Sliced Inverse Regression
	Tail conditional independence, Extreme SDR space 
	Definition for Tail Conditional Independence
	Examples and discussion
	Technical consequences of TCI, parallel with traditional conditional independence
	Extreme dimension reduction spaces

	Tail Inverse Regression
	Estimation
	Framework and notations
	Main result
	Proposed estimation method

	Experiments
	TIREX implementation
	Performance for tail SDR estimation, synthetic data
	Predicting tail events with TIREX on real datasets

	Supplementary Material
	References
	Proofs for Remark 1
	Proofs for Section 3.2 and additional comments 
	Additional notations regarding the generic mixture model from Section 3.2
	Convergence almost-surely or in expectation in TCI-G or TCI
	Special case: discrete covariates with finite support 
	Example in the mixture model where both TCI and TCI-G hold
	Counter-example in the mixture model where TCI holds but TCI-G does not
	Counter-example where TCI-G holds but TCI does not
	Construction of S(y),(y,w)
	Construction of q(y,v,w)
	Conclusion

	Additive Mixture Model (Remark 2 in the main paper)

	Proof of Theorem 2
	Proofs and auxiliary results for Section 5
	Inverse of empirical c.d.f.'s and order statistics
	Vervaat's Lemma
	Proof of Lemma 1
	Proof of Lemma 2

	Extension to non-standardized covariates
	SIR and SAVE principles with non-standardized covariates
	SDR spaces 
	Linearity and constant variance conditions 
	 SIR principle and CUME matrix 
	SAVE principle 

	TIREX principles with non-standardized covariates
	Estimation with non-standardized covariates


