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Abstract—The carbon footprint of IT technologies has been a
significant concern in recent years. This concern mainly focuses
on the electricity consumption of data centers; many cloud suppli-
ers commit to using 100% of renewable energy sources. However,
this approach neglects the impact of device manufacturing. We
consider in this paper the question of dimensioning the renewable
energy sources of a geographically distributed cloud with consid-
ering the carbon impact of both the grid electricity consumption
in the considered locations and the manufacturing of solar panels
and batteries. We design a linear program to optimize cloud
dimensioning over one year, considering worldwide locations
for data centers, real-life workload traces, and solar irradiation
values. Our results show a carbon footprint reduction of about
30% compared to a cloud fully supplied by solar energy and of
85% compared to the 100% grid electricity model.

Index Terms—cloud computing, renewable energy, energy
storage, linear program, job scheduling, follow-the-sun, green
computing

I. INTRODUCTION

Data centers (or DCs), the infrastructure that hosts the cloud,

consume 1% of the total power generated in the world [1].

Research and industry sectors are unitedly making efforts to

reduce this impact: during the period from 2010 and 2018,

there was a 10-fold increase in IP traffic, a 25-fold increase

in storage capacity, and a 6-fold increase in DCs workload.

However, energy consumption only increased by 6% thanks

to improvements in efficiency [2]. On the other hand, some

studies predict that the energy demand will keep growing.

For instance, [3] consider scenarios for the period 2016–2030,

with predictions ranging between a wavering balance and a

significant increase in electricity needs.

In order to reduce the environmental impact of data centers’

operation, major cloud players committed to include renewable

energy in their operation, such as Google, Apple, Microsoft,

Amazon AWS, and Facebook [4]. Furthermore, the costs of

solar energy have fallen 85% (and are expected to keep de-

creasing) and its deployment increased over than 10 times from

2010 to 2019 [5]. Moreover, the solar irradiation has a lower

variation than wind speed [6], which can increase the accuracy

of predictions for the scheduling decision of where to allocate

the workload. However, integrating renewable energy is not

trivial given its intermittent nature: its production is variable

and affected by the weather, time of the day, geographic

location, and seasons. One possible strategy to reduce the

impact of intermittency is the adoption of Energy Storage

Devices (ESD), such as lithium-ion batteries, to store the

renewable energy to be used later.

Defining the optimal area of the photovoltaic panels (PV)

and the capacity of the ESDs (referred in the literature as

sizing, dimensioning, or capacity planning) should not neglect

the following facts: the electricity from the regular electrical

grid in some locations of the world already incorporates a

share of renewable energy; manufacturing photovoltaic panels

and batteries does generate carbon emissions, and each region

in the world has a different potential to produce green power.

The notation of Carbon-Responsive Computing [7] was cre-

ated to classify strategies that are aware of the carbon intensity

(carbon-aware) and use this information to make decisions.

Follow-the-renewables approaches [8] are one example of

carbon-responsive strategies for reducing the environmental

impact of cloud operations. It incorporates information on the

availability of renewable energy in the scheduling decision.

This way, the workload can be allocated or migrated to

locations with more green energy.

In this work, we explore the adoption of both strategies,

sizing the PVs and batteries and scheduling with follow-the-

renewables to make the operations of existing cloud platforms

greener. More specifically, this paper presents the following

contributions: (i) we model the two sub-problems—PVs and

batteries sizing, and workload scheduling—as a single prob-

lem, which allows evaluating scenarios such as: should the

battery capacity or the PV area be increased, or should the

workload be scheduled in a data center located in another

part of the world? (ii) we propose a model that uses a linear

programming approach (LP) with real variables, allowing us

to optimally solve the problem we address in polynomial

time using classical LP solvers. This allows a large number

of scenarios to be evaluated over broad time horizons (i.e.,

one year) to take the seasonal behavior of renewable energy

production into account. This model can be extended to

multiple scenarios, and it may help decision-makers evaluate



which regions need more investment to reduce the cloud

operation’s environmental impact.

The remainder of the paper is organized as follows: Sec-

tion II gives an overview of the state of the art about sizing

IT platforms dedicated to the cloud in general or in the

green IT context in particular. Section III defines the problem

addressed, the assumptions, the models, and the objective

function. Details about the problem constraints and how to

optimally solve the problem are given in Section IV. Compre-

hensive experiments, presented in Section V, are discussed in

Section VI before we conclude in Section VII.

II. RELATED WORK

Most sizing research focuses on a single DC. There are

two approaches, either to consider that the DC can use the

electrical grid as a fallback or to consider how to size a DC

only with on-site renewable sources.

Most sizing approaches consider the capability to use the

electrical grid. Padma Priya and Rekha [9] use a Particle

Swarm Optimization approach for sizing a smart microgrid

to supply fog DCs located in a rural area in India. The

objective of the optimization is to reduce the capital cost

of buying solar panels, wind turbines, diesel generators, and

batteries. Power from the regular electrical grid can be used

when there is no green power production. The authors also

propose a scheduling algorithm to maximize green energy

usage. Niaz et al. [10] evaluates using curtailed renewable

energy to power DCs and provide hydrogen to hydrogen

refueling stations. The authors model their problem as a MILP

(Mixed Integer Linear Programming) with the objective of

minimizing the costs. System components included natural-

gas–powered combined cooling, heating, and power systems,

electrolyzers, hydrogen fuel cells, heat pumps, hydrogen tanks,

and battery energy storage systems. The results were that using

only power from the electrical grid was the worse in both

economic and environmental terms. Using a mix of curtailed

renewable energy and electricity from the grid was the most

economical. Using only renewable energy was the best for the

environment; however, it had the highest costs.

In some cases, the approach considers how also to size on-

site energy production, removing the need to access the electri-

cal grid. Richter et al. [11] proposes a planning methodology

for net-zero energy systems, and performed a qualitative study

to evaluate a net-zero energy DC located in Germany. The

conclusion is that by selecting appropriate technologies for

energy generation, increasing energy efficiency, and optimal

sizing Energy Storage Systems, the DC showed large potential

to operate as a net-zero energy system. A DC as a net-zero

energy system can increase the marketing image and add

economic value to the related company. Haddad et al. [12]

proposes to size a DC using only on-site renewable energy and

energy storage systems (batteries and hydrogen). This work

focuses on a single DC and discusses the impact of its location,

its workload, and its context on the resulting sizing (number

of servers, renewable sources, and storage). Benaissa et al.

[13] proposes to reduce the usual oversizing of renewable-

powered DCs. Classical sizing approaches based on traces are

defined by a few days with unusually high workloads and/or

low renewable availability. In this work, the authors propose

to reduce such sizing and evaluate the impact on the Quality

of Service and on the sizing itself. Contrary to the previous

studies, they use a binary search approach to find the best

relevant sizing instead of MILP formulation.

Some research focuses on the sizing of particular elements,

such as the electrical infrastructure. Sheme et al. [14] studies

the impact of the battery size to reach a specific green coverage

of 50% (half of the energy consumption of the DC needs to

be green). They develop a simulation tool that uses as input

the area of PVs and capacity of the batteries. Experiments

comparing countries (Finland, Crete, and Nigeria) show that

the number of solar panels needed in Crete and Finland is

slightly higher than in Nigeria, 17% and 45%, respectively.

However, although Finland provides only 15% less annual

solar energy than Nigeria, it requires a battery size of 39 times

bigger to achieve wasted energy at level 0. While in Crete, a

battery capacity of only 27% greater than in Nigeria is needed.

Overall, most studies focus on sizing individual DCs. This

is similar in the context of scheduling renewable-powered

DCs: Song et al. [15] reviews recent publications on the field

of DCs powered by Renewable Energy mix. It shows that

among more than 100 publications, only a quarter focuses on

geographically distributed data centers partially powered by

renewable energy mix. It also shows that most research in this

field focuses on workload scheduling, while few articles focus

on the adaptation or sizing of the infrastructure.

The Carbon Explorer framework is an example of a study

that explores sizing multiple DCs [16]. The framework ex-

plores three solutions to achieve 100% renewable operation of

DCs distributed over the United States of America: i) only use

renewable energy; ii) use renewable energy and energy stor-

age; and iii) use renewable energy and schedule the workload.

These DCs already have access to local solar power, wind

power, or both. The carbon emissions from manufacturing

PVs, wind turbines, batteries, and servers are considered. An

exhaustive search is used to find the solutions. The work

concludes that 100% renewable operation may not be the

optimal solution when considering the geographic location of

the DC, and the carbon emissions from the manufacturing

phase. Furthermore, the authors say that choosing the optimal

solution is still an open research question for future work.

Our approach focuses on optimally sizing of geo-distributed

DCs across the globe, which has not yet been studied to the

best of our knowledge. Furthermore, in contrast to the Carbon

Explorer framework, our solution allows using the regular

electrical grid when opportune, given it may be supplied by a

low-carbon intensive source. Finally, contrary to most studies

using a MILP, our model uses a linear program formulation.

III. PROBLEM STATEMENT

This section is dedicated to the description of the addressed

problem and hypothesis. The next two sections give details



about the chosen model, notations, and the optimal approach

to solve the decision problem that we tackle within the paper.

A. Addressed problem

Our goal is to reduce the carbon footprint of existing cloud

platforms by increasing renewable energy usage and reducing

their sizing. The considered platform consists of several data

centers spread worldwide, on all continents, and in both hemi-

spheres. The chosen approach aims to design an additional

solar-based power supply infrastructure to the classical power

grid connection and to define an optimal way to operate

the global IT cloud platform considering a given workload

to complete. To green the cloud infrastructure and reduce

its carbon footprint, we have to limit the usage of energy

from fossil fuels to operate the data centers. Using renewable

energy is a promising option. However, the production of solar

panels also has a carbon footprint, as does the construction of

batteries, even if we pay this carbon footprint only once. We

have to take this aspect into account.

Another problem is that the locality of the DC determines

how sustainable it can be. The carbon footprint of the elec-

tricity offered by the local power grid depends on how it is

produced: natural gas, coal combustion, hydraulic or nuclear

energy. Also, producing electricity from solar energy is less

efficient depending on whether the solar panels are installed

near or far from the tropics. Powering the cloud federation is

a balance or mix between using low-carbon electricity from

the grid and using solar panels, with the understanding that the

solar panels have to be installed and are necessarily associated

with batteries to mitigate intrinsic solar power intermittency.

This decision problem aims at defining the additional re-

newable power supply architecture from solar energy to reduce

the carbon footprint of the global cloud infrastructure. Results

depend on the inputs and hypothesis of the problem. We

consider as input: (i) carbon footprint of manufacturing the

targeted electrical components (PV and batteries), as well as

the emissions from using grid electricity depending on the

country of the production; (ii) the computing demand from

clients (jobs with a given amount of computation); and (iii)

weather conditions (solar irradiation) in areas where each

data center operates for the federation. It is assumed that job

submission is centralized, 100% of the jobs must be completed

in time, and the cloud platform is homogeneous.

We now introduce the models and notations before the

objective function to optimize.

B. Models and notations

To propose a solution in terms of job operations, we define

a decision horizon H in which job scheduling decisions can be

taken. To do so, we propose to discretize H into K indivisible

time slots whose duration is ∆t such that H = K × ∆t.
To simplify the notations, we consider ∆t = 1u.t. (unit of

time), knowing that, in practice, we assume that ∆t = 1h
such that K = 8760h with H = 1 year. Let k be the index

of the time slot that addresses any time instant t such that

k∆t ≤ t < (k + 1)∆t with 0 ≤ k < K.

TABLE I
MAIN NOTATIONS FOR THE IT MODEL FOR EACH DCd (1 ≤ d ≤ D)

DURING TIME SLOT k (0 ≤ k < K)

∆t time duration of each time slot in unit of time [u.t]
H decision horizon H = K∆t
K number of time slots ∆t = 1 h = 1u.t.
k time slot between dates k∆t and (k+1)∆t excluded

DCd data center number d of the cloud federation

DC the set of all data centers {DCd | d = 1, . . . , D}
Cd number of cores within DCd

Pcore dynamic power consumption of one core

Pidled static power consumption of DCd

Pintranetd consumption of the DCd interconnection network

P d
k

the power demand to perform tasks on DCd during
time slot k

PUE Power Usage Effectiveness (constant value)

T the workload to perform (= {Ti | 1 ≤ i ≤ N})
Ti task i of the workload T (1 ≤ i ≤ N )
ri release date of tasks Ti

pi processing time of tasks Ti

ci number of cores needed to execute task Ti

wk number of cores needed during the kth time slot

wd
k

number of cores needed during the kth time slot on
DCd

1) IT part model: As we plan to green an existing cloud

federation, it is assumed that the data centers have already been

designed in terms of the IT and electrical infrastructure, and

they are homogeneous regarding the number of CPU cores.

Let DC = {DCd | d = 1, . . . , D} be the set of data centers in

the federation. Considering a given data center DCd, let Cd

be its number of cores and Pcore the energy used to power

one core. In order to execute all tasks assigned to DCd at time

slot k, the DC will need an amount of energy of P d
k .

The power consumption of a cloud data center can be clas-

sified as static or dynamic [17]. For the static part, the current

model considers the idle power consumption Pidled of the

servers, the Power Usage Effectiveness (PUE) to represent the

power consumption used to cool the DC infrastructure, and the

power consumption of the network switches Pintranetd that

interconnect the servers in each data center DCd. Regarding

the latter, cloud data centers usually adopt the fat-tree topology

to interconnect servers in the DC [17]. In this topology,

one can compute the number of network switches needed to

match the number of servers. The power consumption of the

network switches is considered to be static based on actual

measurements, which have shown that the consumption does

not change significantly with the device usage [18]. Moreover,

each geographic location has different cooling needs, therefore

each DC has a specific PUEd value.

Finally, the dynamic part is represented by the additional

power consumption generated by using the CPU cores in each

data center. Equation (1) represents the power consumption of

each DC for each step k (0 ≤ k < K):

P d
k = PUEd ×

(

Pidled + Pintranetd + Pcore× wd
k

)

(1)



TABLE II
MAIN NOTATIONS FOR THE ELECTRICAL PART MODEL OF EACH DCd

(1 ≤ d ≤ D) DURING EACH TIME STEP k (0 ≤ k < K)

Id
k

solar irradiation at time slot k [W/m2]

Apvd surface of PVs of DC DCd [m2]
ηpv PV efficiency

Pgridd
k

power from the grid at time slot k [W ]

Pred
k

power from PVs at time slot k [W ]

BAT d battery capacity installed in DCd [Wh]

Bk
k

battery level of energy at the time k ×∆t [Wh]

Pchd
k

power charge during time slot k [W ]

Pdchd
k

power discharge during time slot k [W ]

ηch charging process efficiency
ηdch discharging process efficiency

2) Workload model: Considering the workload to complete,

let T = {Ti | i = 1, . . . , N} be the set of N tasks that have to

be executed in time upon the whole cloud federation during

the time horizon H. Each task Ti has a release date ri, a

processing time pi, and must be executed on ci cores. Let wk

be the total number of cores needed to compute tasks during

the time slot k in order to complete the workload in time.

At each time step, wk is the sum over all cores required by

the tasks executed in time slot k. This is also the sum of the

number of cores wd
k of each data center DCd in DC (with

1 ≤ d ≤ D) and 0 ≤ k < K) as shown by Equation (2):

wk =
∑

Ti|ri≤k∆t<ri+pi

ci =
∑

d

wd
k (2)

3) Electrical part model: The power supply of the whole

cloud platform DC is coming both from the classical power

grid Pgriddk of each country on which DCd ∈ D is hosted,

and from renewable energy (the sun) thanks to solar panels

(PVs) installed on each DCd site. As renewable energies

are inherently intermittent and cannot be controlled, storage

devices are mandatory either to store the overproduction when

the sun shines or to provide the missing energy during the

night. Batteries have been chosen to play this role because

of their good efficiency in terms of costs, power and energy

density, charge and discharge rates, and self-discharge [19].

So, the whole cloud platform power demand can be supplied

by the regular grid, power generated from the PV panels, and

power discharged from the batteries. As a constraint, the power

from the grid (Pgriddk) is always positive because the platform

is not supposed to sell energy. DCs may use the regular

electrical grid as backup when the PV power production is not

enough, or if the stored energy in the batteries is not sufficient.

The amount of renewable power that can be produced

depends on the solar irradiation Idk received at the location

of DCd during the time slot k, on the surface of the solar

panels Apvd and on the efficiency ηpv of the PVs. Equation (3)

models the on-site renewable power production.

Predk = Idk ×Apvd × ηpv (3)

Batteries are systematically installed next to the PVs for the

reason mentioned above. Let Bd
k be the amount of energy (in

Wh) at time kt stored in batteries of capacity BAT d installed

in DCd (Bd
0 = Binitd being the amount of energy at the

beginning the time horizon H). These batteries are charged

during the time slot k thanks to the power charge Pchd
k.

Conversely, Pdchd
k is the power discharge of the batteries.

If Pchd
k is greater than zero, Pdchd

k equals zero and vice

versa. Regarding the batteries modeling, the charging and

discharging process have an efficiency ηch and ηdch less than

1. The self-discharge property has not been modeled because

for lithium-ion batteries the value is very low (0.5 % per

day) [19]. Finally, to increase the lifetime, the batteries cannot

be discharged more than its Maximum Depth of Discharge. We

added restrictions to the Bd
k variable to model this property.

Equation (4) models the battery in terms of the level of energy:

Bd
k = Bd

k−1 + Pchd
k−1 × ηch ×∆t−

Pdchd
k−1

ηdch
×∆t (4)

with 0.2 × BAT d ≤ Bd
k ≤ 0.8 × BAT d for any time slot k

and DCd (0 ≤ k < K and 1 ≤ d ≤ D). The modeling of the

batteries and PVs are based on [20].

4) Footprint model: In the current model, carbon emissions

originate from three sources: (i) the regular power grid and the

manufacturing of both (ii) the photovoltaic panels, and (iii) the

batteries. The carbon footprint of the regular power grid given

by Equation (5) is calculated based on the carbon intensity of

the power grid gridCO2d in the region of data center DCd

times the amount of energy used during the time slot k.

FPgriddk = Pgriddk ×∆t× gridCO2d (5)

The gridCO2d input reflects the share of carbon-intensive

power sources in the regular electricity grid: if it is supplied by

solar, wind power, hydroelectric or nuclear power, the value

will be low. However, the value will be higher if it is supplied

by coal, oil, biomass, or natural gas. It is considered that the

electrical grid may be supplied by multiple power sources.

For the PVs, in order to account for the fact that the amount

of solar irradiation received is not homogeneous for different

geographic regions, one must also consider the expected power

output that PVs can produce over their lifetime relative to the

cost of manufacturing. Therefore, the carbon footprint of PVs

is also related to the location of each data center. The carbon

footprint thus defined is modeled by Equation (6):

pvCO2d =
FPpv1m2

expectedEpvd
(6)

where FPpv1m2 is the cost of manufacturing 1m2 PV

in g CO2 − eq, and expectedEpvd is the expected energy

production in Wh that 1m2 of PV can produce during its

lifetime at the location of DCd. As a result, the unit of this

metric is expressed in g CO2 − eq.Wh−1, and so, the total

emissions from the PVs are related to its power production,

as shown in Equation (7).



FPpvdk = pvCO2d × Predk ×∆t (7)

Finally, the batteries’ carbon footprint FPbatd of the

DC DCd is related to their capacity BAT d in kWh and

carbon emissions of the manufacturing process batCOS in

g CO2− eq.kWh−1, as seen in Equation (8). To be consistent

with the calculation of FPpvdk , batCO2 is the share of the

carbon footprint of the battery type chosen for a capacity of

1 kWh over the time horizon of H, assuming a battery has

a lifetime of 10 years. Thus batCO2 is the tenth of the total

carbon footprint of the considered battery, given that we are

considering 1 year of cloud operation.

FPbatd = BAT d × batCO2 (8)

These modifications regarding the lifetime of PVs and

batteries were necessary because we are considering only one

year of cloud operation. If we use the total carbon emissions

for manufacturing the PVs and batteries, the solver will find

a solution where there is few to no PV or batteries, because

using the regular electrical grid would be less carbon-intensive.

C. Objective function

Now that the models have been introduced, the objective

function can be defined (see Equation (9)). It consists of

minimizing the carbon footprint of the globally distributed

cloud federation in order to reduce as much as possible carbon

emissions, which come from both the consumption of elec-

tricity from the power grid, as well as from the manufacturing

of photovoltaic panels and batteries with k and d defined as

follows: 0 ≤ k < K and 1 ≤ d ≤ D.

minimize

K−1
∑

k=0

D
∑

d=1

(FPgriddk + FPpvdk) +

D
∑

d=1

FPbatd (9)

IV. OPTIMAL RESOLUTION

The models presented in the previous section consist of sev-

eral linear equations. We show in this section that constraints

governing the use of the globally distributed cloud platform

can be expressed as linear expressions. New real variables

are introduced to finalize the linear program that needs to be

solved to achieve the targeted objective. The solution obtained

after solving the linear program is optimal in nature and

computed in polynomial time, as long as the variables are

not integers. Polynomial time is mandatory if we consider the

number of variables needed for a time horizon H as long as

one year. We assume to choose real positive values for all

variables even if variables denote discrete objects like cores.

Indeed, wd
k is the number of cores needed to run tasks on

DCd during time slot k. Considering the size of the cloud

with its thousands of cores, the decimal part of each wd
k can

be neglected. Having the solution with more or less than a

core on a given DC does not change the order of magnitude

for the PV and battery sizing process.

The globally distributed cloud platform that we plan to

optimally size, as mentioned in the problem statement (Sec-

tion III), has only one goal: completing a given amount of

work during a given year and knowing the weather conditions

during the same year. We present a set of constraints that must

be respected to make this mission possible. Some constraints

are explicit, and some are implicit to avoid the addition of

integer variables which would transform this LP into a MILP

whose solving process would not scale at all.

A. Constraints to address the workload

Since the distributed cloud federation configuration is de-

fined a priori by a set of existing cloud DCs at each chosen lo-

cation, the amount of work to be performed must respect each

data center’s computational capabilities DCd. Equation (10)

expresses that the number of cores that are switched on does

not exceed the existing number of cores of DCd:

wd
k ≤ Cd (10)

B. Constraints to reach the power demand

The electric part of each DC has to supply the DC power de-

mand using renewable energy (Predk), from batteries (Pdchd
k

and Pchd
k) and/or from the classical grid (Pgriddk). Equa-

tion (11) presents the restriction for the power consumption.

P d
k ≤ Predk + Pgriddk + Pdchd

k − Pchd
k (11)

C. Constraints on batteries

The batteries are defined by their capacity, which is different

for each DC and depends on how the intermittency of the re-

newable energies is managed on each site. The other quantities

concerning the batteries depend on the total capacity of the

batteries, DC by DC. This allows realistic behaviors for the

batteries to be assumed. These limitations concern the practical

level of use of the energy stored in the batteries, which cannot

be completely emptied, for example. In addition, the power to

charge or discharge a battery is also limited by the level of

energy remaining in the associated battery, so that it is not

possible to reach a forbidden energy level. Equations (12),

(13) and (14) express these constraints:

0.2×BAT d ≤ Bd
k ≤ 0.8×BAT d (12)

Pchd
k ×∆t× ηch ≤ 0.8×BAT d −Bd

k−1 (13)

Pdchd
k ×∆t / ηdch ≤ Bd

k−1 − 0.2×BAT d (14)

One may notice that we are not modeling any restrictions

for charging and discharging simultaneously. Such restrictions

would require the usage of binary variables that would sig-

nificantly increase the required computational time to find the

optimal solution to the problem. We performed experiments

with a shorter duration (around 1 month), and the sizing results

were the same between both versions: using and not using

binary variables. Furthermore, it is possible to calculate an

alternative solution for the linear program where there would

be no charge and discharge at the same time slot by increasing

or decreasing the value of the variables Pchd
k and Pdchd

k.



D. Linear program

This following linear program (LP) summarises what has

been described before concerning the model that has to be

respected to solve the tackled problem. All variables given

by the solution obtained after the solving process are used

to completely define both the renewable power supply part

and the core operating process of the distributed low carbon

cloud federation and the way each DC is used time slot by

time slot for one year on the considered weather conditions.

Comprehensive experiments have been led to highlight the

pertinence of the approach. These experiments are shown in

the next section, and a discussion is proposed in Section VI.

(LP)



















minimize

K−1
∑

k=0

D
∑

d=1

(FPgriddk+FPpvdk)+

D
∑

d=1

FPbatd

s.t. (1) (3) (4) (5) (7) (8) (10) (11) (12) (13) (14)

where all variables are positive real variables.

V. EXPERIMENTS

In this section, we present the settings and the results of our

experiments. More details for reproducing the experiments can

be found in Appendix A.

A. Settings

1) Cloud infrastructure: The servers are homogeneous and

based on equipment of real cloud infrastructure: the Taurus

server of the Grid’5000 testbed1. The servers are equipped

with two Intel Xeon E2630 CPUs, with a total of 12 cores.

For modeling the power consumption of the servers, real mea-

surements conducted by Ahvar et al. [17] were considered: in

the idle state, each server consumes 97 W, and their maximum

power consumption (when using 100% of the 12 cores) is

220 W. The value of Pcore is 10.25 W, and it was obtained

by linear interpolation between the power consumption of the

idle and the fully used state.

Each data center is equipped with 23,200 servers (and a

total of 278,400 cores). This number matches what can be seen

in production data centers of major cloud players: Microsoft

operates over 4 million servers distributed over 200 DCs [21].

We considered a network with a 48-ary fat-tree topology

linked by 2,880 switches with 48 ports each. The power

consumption of the switches was based on real measurements

by Hlavacs et al. [18]: the HP ProCurve 2810-48G was

selected, with 48 ports and approximately 52W per device.

For the location of the data centers, it was based on the

real cloud infrastructure of Microsoft Azure2, and different

regions in different continents, hemispheres, and time zones

were selected. Figure 1 presents the details of the locations.

We used values for the PUE inspired by real data from

Microsoft Azure for each region: for the Americas, the PUE

is 1.17 (DCs São Paulo and Virginia), Asia Pacific has a PUE

1https://www.grid5000.fr/w/Lyon:Hardware#taurus
2Azure global infrastructure: https://infrastructuremap.microsoft.com/.
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Fig. 1. Selected locations for the data centers.

of 1.405 (DCs Pune, Canberra, Singapore, and Seoul), and for

the Europe region, Middle East, Africa the PUE is 1.185 (DCs

Johannesburg, Dubai, and Paris) [22].

2) Workload: The workload used was generated using the

Grog generator3, a workload generator based on analysis of

properties of the execution trace made available by Google

in 2011 [23]. For reproducibility purposes, the parameters

regarding the number of tasks were set to 350,000, the duration

was 30 days, and it was executed 12 times (1 per month). The

tasks have a duration of one hour.

3) Photovoltaic power production: Global Solar Horizontal

Irradiation (in Wh/m2) data was collected from the MERRA-

2 project [24], since it provides information for anywhere on

earth. Figure 2 illustrates different solar irradiation of each

location throughout the year 2021.

4) Carbon footprint: For solar panels, it is considered a

lifetime of 30 years, and manufacturing 1m2 emits 250 kg

CO2-eq, inspired from real measurements [25]. To compute

the emissions in the form of g CO2-eq/kWh, as stated in

Section III-B4, we considered the total solar irradiation that

was produced during the year 2021 multiplied by 30 (to

account for the PV module lifetime of 30 years). For the

electrical grid, we also considered the real-world data of the

carbon footprint (g CO2-eq/kWh). Table III lists the carbon

emission values for each region.

Regarding the batteries, the emissions are only considered

for the manufacturing step—59 kg CO2-eq per kWh. In our

experiments, the considered lifetime of the batteries is ten

years. Therefore, the input used is equal to 5.9 kg CO2-eq

per kWh, given that we simulated one year.

5) Execution environment: We ran the experiments on a

machine with an Intel i9-11950H CPU, and 32 GB of RAM.

The solver used was the Gurobi Optimizer (version 9.5.2).

The execution time for solving the LP with the inputs listed

in the previous sections — which resulted in a total of 394,263

variables — was in the order of 30 seconds.

3https://pypi.org/project/grog/

https://www.grid5000.fr/w/Lyon:Hardware#taurus
https://infrastructuremap.microsoft.com/
https://pypi.org/project/grog/
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Fig. 2. Average daily solar irradiation per location throughout the year 2021.

TABLE III
EMISSIONS (IN G CO2-EQ/KWH) FOR BOTH PV USAGE AND USING THE

REGULAR GRID. SOURCE FOR GRID EMISSIONS: ELECTRICITYMAP,
CLIMATE-TRANSPARENCY.ORG.

Location Grid PV

Johannesburg 900.6 24.90

Pune 702.8 27.96

Canberra 667.0 29.71

Dubai 530.0 24.84

Singapore 495.0 36.19

Seoul 415.6 34.00

Virginia 342.8 31.71

São Paulo 61.7 27.99

Paris 52.6 39.93

B. Results

In this section, we present the results in terms of the

computed optimal area of the PVs and capacity of the batteries,

the source of energy that was consumed by the DCs operation

(grid, batteries, or PV panels), and the total emissions of the

cloud operation, generated from both manufacturing PVs and

batteries, and power consumption of the regular electrical grid.

Furthermore, to assess the solution computed by the LP, we

compare it with two other scenarios: i) only power from the

regular electrical grid is used to supply the DCs (represent

current DCs), and ii) only power generated from the PV

panels, and stored and discharged from the batteries are used

to supply the DCs. Finally, we present an evaluation using

metrics to assess the environmental impact of the results.

Figure 3 illustrates the area of the photovoltaic panels and

the capacity of the batteries computed from the LP using the

inputs described in Section V.

To analyze the sources of energy that supplied the DCs
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Fig. 3. Optimal result for the area of PV panels and capacity of the batteries.

operation, we present in Figure 4 the percentage that each

source (grid, renewable, and batteries) was used to daily

supply the DCs throughout the year. Figure 5 is a fine-

grain visualization of the DC operation regarding the power

consumed or produced: it illustrates hour-by-hour the DC total

power demand, how much power was consumed from the grid,

discharged from the batteries, and produced by the PV panels.

In order to assess the optimal solution of the LP, we

compared it with two other scenarios in terms of total carbon

emissions (tons of CO2-eq): i) the DCs are only supplied by

power from the regular electrical grid, and ii) the DCs are only

supplied by power from the photovoltaic panels and batteries.

Table IV presents the results. In comparison with the first

scenario (only grid power), the reduction in the CO2 emissions

was approximately 85%, and it was approximately 30% for the

second scenario (only renewable power).

TABLE IV
TOTAL EMISSIONS FOR THE DIFFERENT SCENARIOS.

Scenarios Emissions (t CO2-eq)

Electrical grid 201211.3

PV and batteries 42370.6

PV, batteries, and grid 29600.6

To further evaluate these scenarios, we present in Table V

results in terms of the average load each DC executed through-

out the year. Equation (15) represents how the metric was

computed for each DC d.

∑

k w
d
k

Cd ×K
(15)

To evaluate the environmental impact of the solution, we

used metrics extracted from [26]. The first metric, the Green

Energy Coefficient (or GEC), is the ratio between the total

green power generated and the DC total energy consump-

tion, and it can illustrate the oversizing of the green power

supply infrastructure. The second metric is the CO2 savings,

which represents the emissions reduction after DC equipment

upgrade or flexibility mechanisms. CO2 savings is computed

as seen in Equation 16, where: CO2current represents the
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Fig. 4. Composition of the DCs’ daily energy consumption throughout the
year considering the different sources of energy, where 1.0 is the DC’s total
energy consumption.

system studied after the modifications (the result of the linear

program for the sizing of PVs and batteries) and CO2baseline
the system in its original state. Here, it was considered that

CO2baseline has the same workload allocation of CO2current;
the difference between the two is that CO2baseline does not

have PVs and batteries, and thus only consumes power from

the grid. Table VI shows the computed values for both metrics.
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Fig. 5. Composition of the DCs’ hourly power consumption throughout the
first day of the year. Time follows the Universal Time (UT) standard.

CO2savings =

(

1−
CO2current
CO2baseline

)

× 100 (16)

In order to assess the robustness of the sizing process for

the area of PV panels and the capacity of the batteries, it is

necessary to take into account other meteorological conditions,

given that the DCs will operate for decades and not only

for one year. The metric selected is the Mean Absolute

Percentage Error (MAPE) defined by: 1

n

∑n

i=1

|Ri−Fi|
Ri

, where

n represents the number of values being considered, i the index



TABLE V
AVERAGE DC LOAD THROUGHOUT THE YEAR

Location Grid PV + Bat PV + Bat + Grid

Johannesburg 0 79.31 86.20

Pune 10.25 82.07 89.34

Canberra 99.72 66.62 67.95

Dubai 99.97 93.93 95.11

Singapore 99.93 72.6 85.18

Seoul 99.99 81.87 65.39

Virginia 100.0 88.54 75.51

São Paulo 100.0 63.67 59.06

Paris 100.0 81.24 86.11

TABLE VI
RESULTS OF THE SUSTAINABILITY METRICS FOR THE EXPERIMENTS

Location GEC CO2 savings (%)

Johannesburg 1.47 93.93

Pune 1.45 91.5

Canberra 1.57 89.59

Dubai 1.59 89.1

Singapore 1.42 85.75

Seoul 1.53 82.51

Virginia 1.46 75.99

São Paulo 0.5 20.05

Paris 0.24 5.25

of the value being considered, Ri the real value for the year,

and Fi the estimated value (in this case, the computed sizing

for the year 2021 that was used in the experiments). Table VII

presents the results of the MAPE for both the area of PV

and capacity of the batteries when we solve the LP using as

input the solar irradiation for the years 2018, 2019, and 2020.

Results indicate a variation of less than 10% in the different

DCs over the years.

TABLE VII
EVALUATING SIZING FOR DIFFERENT YEARS USING THE MAPE METRIC

(VALUES ARE IN %)

Location PV Area Battery Capacity

Johannesburg 1.72 1.64

Pune 3.72 0.76

Canberra 8.62 4.25

Dubai 2.31 2.88

Singapore 7.22 0.34

Seoul 3.15 1.11

Virginia 2.2 0.87

São Paulo 5.81 8.05

Paris 2.76 0

VI. ANALYSIS AND DISCUSSION

These results permit the evaluation of the carbon footprint

impact of different electricity supply policies for Clouds. On

the one hand, as shown in Table IV, there is a significant

reduction to obtain by including renewable energy in the

electricity sources of DCs. We observe a 5-fold decrease in

the footprint in our experiments. Many Cloud providers have

committed to using 100% renewable energy supplies for their

DCs in the following years. On the other hand, this objective

of 100% renewable is, in our opinion, more ideological than

pragmatic, and there is more benefit to obtain by combining

grid and renewable electricity. We observe in our experiments

a further reduction of a fourth in the optimal solution compared

to the 100% renewable scenario. This study thus gives further

insight into the debate of energy sources in Clouds.

The locations used in this paper for the different DCs allow

us to benefit from the diversity of latitudes, hemispheres, and

climates, as shown in Figure 1. This variety of longitudes and

hemispheres permits mitigation of the impact of seasonal and

daily variations of solar irradiation on electricity production

and always has at least some DCs with good PV production, as

shown in Figure 2. The diversity of climates is highlighted by

the case of Singapore’s solar production, which is the second

lowest with Paris, while its location close to the equator could

permit better irradiation.

As indicated in Table III, we observe significant heterogene-

ity in the carbon footprint of grid electricity of the different

DCs, which results in two categories for the optimal solution:

i) Paris and São Paulo, DCs with a reduced number of PVs

and batteries (no battery in Paris), and ii) the other locations

have quite similar sizes of PV and batteries. In the second

category, the larger PV area is mainly associated with low

solar irradiation. It might appear counterintuitive to allocate

more PVs to locations with lower solar production, but this is

more comprehensive considering the static part of the power

consumption of DCs. When the workload is mainly sent to

locations with solar production, the electricity consumption

of DC also includes a static part for the idle consumption

of servers and the interconnection network, as referred to in

Equation (1). This static electricity consumption implies either

using the carbon-intensive grid or a sizing of PV and batteries

that matches the demand, even during winter days of low PV

production. This results in a large PV and battery sizing — the

PVs are producing up to 1.6 times the DC energy consumption

as seen in Table VI — and, as shown in Figure 4, the grid

energy consumption of these DCs is very low.

The results for Paris and São Paulo show the carbon

footprint of ESDs compared to grid electricity. There is a

small benefit in São Paulo for intensive usage, so with reduced

sizing, there is no benefit in Paris to using batteries. The PV

sizing on these DCs is reduced, probably due to the fact that

little energy can be stored in case of overproduction.

The detail of hourly electricity consumption is highlighted

in Figure 5. The workload is allocated in DCs with PV

production. If all this production is used, or the corresponding

DCs are full, then the allocation is driven by the battery state

of charge, and when none of these possibilities are available,

the allocation is for the DC with the lowest grid electric-

ity footprint. For example, in the last hours, the electricity

consumption of the different DCs is furnished by battery

discharge, in the limit of a state of charge, and the remaining is

allocated in the DCs of Paris, São Paulo, and Virginia. Thus,

the DC of Virginia consumes grid electricity in two cases:

either when Paris and São Paulo DC are full (from hours 10

to 24), or when the DC is empty and only local electricity

can be used (hours 3, 5, and 6 in Figure 5). The follow-

the-sun approach can be partially observed between hour 7



and 8, when Seoul PV production fall and the workload is

transferred to Paris, with grid consumption. Then, at hour 10,

the same append between PV production in Singapore and

grid electricity in São Paulo and at hour 11 between Pune

and Virginia. The figure also shows the impact of location,

season, and PV sizing on the solar production between Pune

and Canberra, large PV production in the best hours, and the

tiny production in Paris.

Table V presents the impact of the different scenarios for

energy sources on the load of the different DCs. In the first

scenario, the workload is only allocated based on the grid

electricity footprint. Thus, we could expect the workload order

to be the same as the footprint order per kWh. However,

the consumption does not only depend on the workload but

also the PUE of the different DCs. We can thus observe a

higher workload in Dubai compared to Singapore, considering

that Dubai has electricity with a slightly higher footprint but

the lowest PUE. Globally, the range of values highlights the

workload variations, requesting at least 4 DCs, at most 8,

and most of the time 7. The second scenario considers a

model without grid electricity. The allocation is surprisingly

distinct from the solar irradiation of the different DCs. For

example, the DC of Paris has the lowest yearly irradiation but

the median workload in this scenario. Its workload is higher

than the one in Johannesburg, which has the second-highest

yearly irradiation and is on a similar longitude. The workload

is thus not only driven by yearly irradiation. The extremely

low PV production in Paris during winter, associated with the

static part of the electricity consumption in each data center,

implies a high sizing of PV and battery, which lead to a

high production during the other seasons that permit a large

workload. On Johannesburg, the seasonal variation is lower, so

static constraints do not drive PV sizing. Another surprising

result is that the DCs with the lowest workload in this scenario

are the 4 in the southern hemisphere (including Singapore).

This contradicts the intuition of “follow-the-summer” alloca-

tion. The case of São Paulo and Canberra could be similar

to the one of Johannesburg with the value of the minimal

daily production in Virginia and Seoul. The largest workload

concerns DCs with the more stable production (Dubai and

Pune) and the lowest minimum daily production (Virginia,

Paris, and Seoul). Finally, for the last complete scenario, the

DCs with the largest workload are the 3 with the largest

irradiation (Dubai, Pune, and Johannesburg), followed by Paris

with the lowest grid electricity footprint. The only surprise is

the workload of São Paulo, which is low considering its low

grid electricity footprint and high solar irradiation, and the

workload of Singapore, which is high considering its low PV

production. Concerning São Paulo, this is probably because it

has the second-lowest grid footprint. This implies a low battery

sizing, thus a low PV sizing, and finally, it mainly receives

workload only when no more DC can provide electricity from

PV or battery discharge, and when the DC of Paris is full, that

makes many constraints. Considering Singapore, it is probably

due to its position close to the equator, which implies no

“winter” season, and its large PV sizing. Finally, the reduction

of carbon footprint of each DC between the complete scenario

(PV + bat + grid) and the scenario with only grid electricity is

showed in Table VI. It shows a small decrease in Paris and São

Paulo, and a large decrease in the other locations, correlated

to the electricity footprint.

VII. CONCLUSION

In this paper, we tackled the problem of greening a dis-

tributed cloud data center (DC) federation to lower its carbon

footprint. The IT part of the cloud platform already exists,

and the idea is to add the equipment on site to introduce

renewable energy into the brown energy from the classical grid

into the power supply of the DCs . Since the sun is shining

everywhere on earth, we have proposed photovoltaic panels

(PVs) to produce renewable energy and batteries as storage

devices to mitigate the intrinsic intermittency of this energy

during the day. The question is how to size the PV array and

associated battery size, given an existing federation of DCs

distributed around the earth. We have provided a formulation

of the problem as a linear program. The particularity of our

formulation is that we do not need integer variables; a solution

is possible using only real variables given our objective and

the context of the problem. As a result, the linear program

allows to optimally solve large problem sizes, e.g., minimize

the carbon footprint of a nine-site federation, each with its own

weather conditions, upon a one-year horizon, hour by hour.

We have demonstrated that our program is able to calculate

the optimal sizing for PVs and batteries in just a few minutes.

Numerous experiments have brought forward results that we

have analyzed and discussed to explain what these results

express. As an example, an interesting result, depending on

the DC locations considered, the optimal solution to reduce

the carbon footprint is a hybrid configuration between using

PVs and the regular electrical grid. Moreover, batteries are not

always mandatory in each location. Finally, our model has the

flexibility to be extended to assess other scenarios (more DCs,

other locations, values for carbon emissions, or workloads) and

it may help decision-makers build their strategy to reduce the

environmental impact of the cloud operation.

In future work, we plan to propose a sizing process that also

includes the IT part. Since this investment has been made for

years, another perspective is to introduce uncertainty into this

sizing process to obtain a more robust distributed DC platform

that can provide satisfying service to clients even if the weather

conditions change and the submitted workload evolves. The

goal always being to remain as virtuous as possible.
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renewable power system scheduling for a green data center using integer

linear programming,” Journal of Scheduling, vol. 24, pp. 523 – 541,
2021.

[21] J. Roach, “Microsoft’s virtual datacenter grounds “the cloud” in
reality,” Microsoft Innovation Stories, 2021. [Online]. Available:
https://news.microsoft.com/innovation-stories/microsofts-virtual-datac
enter-grounds-the-cloud-in-reality/

[22] N. Walsh, “How microsoft measures datacenter water and energy use
to improve azure cloud sustainability,” Microsoft Azure Blog, 2022.
[Online]. Available: https://azure.microsoft.com/en-us/blog/how-micro
soft-measures-datacenter-water-and-energy-use-to-improve-azure-clo
ud-sustainability/

[23] G. Da Costa, L. Grange, and I. de Courchelle, “Modeling, classifying
and generating large-scale google-like workload,” Sustainable Comput-

ing: Informatics and Systems, vol. 19, pp. 305–314, 2018.
[24] R. Gelaro, W. McCarty, M. J. Suárez, R. Todling, A. Molod, L. Takacs,
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APPENDIX A

ARTIFACT DESCRIPTION: OPTIMAL SIZING OF A

GLOBALLY DISTRIBUTED LOW CARBON CLOUD

FEDERATION

A. Abstract

This document details the necessary steps and instructions

for the reader to be able to: i) install the programs and all

the necessary dependencies to run the Linear Program (LP)

of the experiments; ii) extract all the data used for generating

the figures and tables; iii) generate the figures and tables; iv)

create custom scenarios for their custom experiments.

B. Description

1) Check-list (artifact meta information):

• Program: (i) The LP modeling and execution; (ii) Scripts

to extract data from the LP solution; (iii) Scripts to

generate the figures and data for the tables;

• Data set: Solar irradiation data, workload, the LP param-

eters;

• Hardware: Various x86 or x64 CPUs;

• Experiment workflow:

1) Install, and execute experiments;

2) Extract data from the LP solution;

3) Generate figures and data for the tables.

• Output: (i) Data extracted from the LP solution file (ii)

Figures and data for the tables;

• Experiment customization: See below;

• Publicly available?: Yes.

2) How the artifact can be obtained: The Persistent ID of

the artifact is:

https://doi.org/10.25666/dataubfc-2023-02-03

and to ensure that the code will be available for the long

term and that the reader will use the same exact version

to reproduce the experiments, we stored the code, all the

necessary input files and parameters, and the instructions on

Software Heritage:

https://archive.softwareheritage.org/swh:1:rev:44d2

de89057ff6df4657769e0b14ac2bade57830;origin=https:

//gitlab.com/migvasc/lowcarboncloud

Finally, all source material can also be downloaded from the

git repository associated with the Persistent ID:

https://gitlab.com/migvasc/lowcarboncloud

The artifact is structured by the following main directories:

• input: It contains the data that will be used as input

for the LP (solar irradiation values, parameters, workload

data);

• script: contains all the source code that will run the

LP, extract the results and generate the plots;

• results: It contains the plots (in PDF format) and the

data files (CVS file in text format) used to generate them,

extracted data from the LP solution and data used to

generate the tables presented in the paper.

3) Hardware requirements: Any modern x86 or x64 CPU

is appropriate to execute the experiments. The experiments

may be executed in parallel in order to reduce the execution

time. If you want to run the experiments in parallel, it is

recommended that your system have at least 16 GB of RAM

(running all the experiments in parallel consumes around 10

GB of RAM). If your system does not meet the minimum

requirements for running in parallel, you may still run the

experiments in a sequential way. For running the sequential

version of the experiments, your system needs at least 4GB

of RAM (running each experiment consumes around 2 GB of

RAM).

4) Software requirements:

• Git (week requirement): a version control system that is

being used for storing all the necessary materials to run

and analyze the experiments: the code of the simulations,

input files, and scripts for extracting the results;

• Nix (weak requirement but strongly recommended): a

multi-platform packet manager (run in Linux, Windows

with WSL, and MacOS) that allows configuring the

experiments in a practical way and allows for repro-

ducibility.

If the reader does not want to install Nix, it is recommended

to use a Linux distribution (preferably Ubuntu or Debian).

Furthermore, it is necessary to install the following programs

and packages/libraries:

• Python 3 (version 3.10.8): Used for modeling and execut-

ing the LP, and extracting data. Necessary libraries and

their versions: PuLP (2.7.0), and argparse (1.1.0);

• R (version 4.1.2): Used for generating the plots. Nec-

essary packages and their versions: tidyverse (1.3.1),

gridExtra (2.3.0), patchwork (1.1.1), viridis (0.6.2),

stringr (1.4.0), rjson (0.2.20), rlist (0.4.6.2).

Finally, if the reader does not want to install Git, the artifact

can also be downloaded from Software Heritage, as stated

before.

5) Datasets: All the necessary data sets to execute the

experiments are available in the input directory. The solar

irradiation data was collected from the MERRA-2 service. The

main input file is in the .json format, containing all the LP

parameters and inputs. Regarding the workload file, it is a

CSV file in text format, where for each time slot, there is the

total CPU cores demand value. More details about these input

files are presented in Section Experiment customization.

6) Installation: Dowload the artifact (either from Software

Heritage or by cloning the Git repository). Installing Nix

is optional, however, if the reader decides not to use Nix,

it is necessary to install Python, R, and all the packages

described in the software requirement section. In the Nix

option, this dependency installation was automated. After

installing all the necessary dependencies, and if you wish

to use Git, you can clone the Git repository to your local

computer with the following command: git clone

https://gitlab.com/migvasc/lowcarboncloud

and then enter in the cloned/downloaded repository.

https://doi.org/10.25666/dataubfc-2023-02-03
https://archive.softwareheritage.org/swh:1:rev:44d2de89057ff6df4657769e0b14ac2bade57830;origin=https://gitlab.com/migvasc/lowcarboncloud
https://archive.softwareheritage.org/swh:1:rev:44d2de89057ff6df4657769e0b14ac2bade57830;origin=https://gitlab.com/migvasc/lowcarboncloud
https://archive.softwareheritage.org/swh:1:rev:44d2de89057ff6df4657769e0b14ac2bade57830;origin=https://gitlab.com/migvasc/lowcarboncloud
https://gitlab.com/migvasc/lowcarboncloud


7) Experiment workflow: There are two ways to execute the

experiments: in parallel or sequentially. In the first, the total

execution time of the experiments will be shorter, however, it

has higher hardware requirements (as detailed in the section

Hardware requirements).

If you are using Nix and want to execute the experiments

in parallel, you must use the following command: bash

./scripts/workflow_parallel_nix.sh and if you

want to run the experiments in a sequential way, execute:

bash ./scripts/workflow_sequential_nix.sh.

This command will build a nix environment with all the

necessary dependencies to reproduce the experiments and

execute them.

If you are not using Nix, and you want to execute the experi-

ments in parallel, you must use the following command: bash

./scripts/workflow_parallel.sh and if you want

to run the experiments in a sequential way, execute: bash

./scripts/workflow_sequential.sh.

These script files (workflow_parallel and

workflow_sequential ) automate the execution of

the experiments and have 3 main steps. In the first step, the

LP will be executed (using the low_carbon_cloud.py

program) for each scenario (the years 2018, 2019, 2020, 2021,

and the two extra scenarios of only using the grid and only

using PVs and batteries). In the second step, after the execution

of the LPs, the data for generating the plots and the tables

will be extracted (files extract_data_figures.py,

extract_table_v_data.py,

extract_table_viii_data.py, and

extract_table_vi_vii_data.py). Finally, in the

last step, the figures will be generated using the R script file

plots.r.

The total time it takes to run the entire workflow may vary

depending on the machine’s hardware configuration where the

experiments will execute. For example, on our test machine

equipped with an Intel core i9-11950H CPU and 32 GB of

RAM, it took about 1 hour for the parallel version, and about

6 hours for the sequential version.

This execution time is different from the one reported in

the paper because, in this artifact, we are using another solver:

the CBC solver (Pulp’s default solver). In the paper, we used

Gurobi, a commercial solver requiring a license (free license

for academics), so we are providing this artifact using CBC

to avoid costs for the reader who wants to reproduce the

experiments.

8) Evaluation and expected result: Once the experiments

are completed, a results directory will be created. In this

directory, the reader will find:

• For each Table y present in the paper, there is a respective

file table_y_data.csv that contains the data used

for the table;

• Each scenario of the experiment has its own folder. For

example, for the results for the year 2021 there is the

folder results/2021, and within this folder are the

following files:

– metrics.csv contains the values for the metrics

Green Energy Coefficient (GEC) and CO2 Savings,

and Data Center utilization (DCU);

– solution.csv is an auxiliary file to store the val-

ues of the computed variables of the linear program;

– summary_results.csv contains the values for

carbon emissions, which input was used in the ex-

periments, and the runtime;

– For each Figure x present in the paper, there

is a file figure_x.pdf with the plot, and

figure_x_data.csv with the data used to gen-

erate the figure. In the paper, we only presented

the figures for the year 2021, but the figures are

generated for other years as well.

For all the Tables and most of the Figures, the results

presented in the paper and obtained by reproducing the ex-

periments will be the same or very similar.

The reason why some results may be different is that there

are multiple alternative solutions for an LP. In other words, the

optimal value of the LP regarding its objective function will

be the same, but the variable values might differ. In our case,

the computed optimal value for the PV surface area and the

capacity of batteries is the same. The difference might occur in

the variables regarding how much power to charge/discharge

from the batteries, use from the grid, or workload to execute

at a specific data center at a specific time slot.

We provide a script test_output.py that will compare

the results of the experiment execution with the expected

results to automate the validation process. The validation will

consider the sizing and the total carbon emissions. If the

validation succeeds, the following messages will be shown:

“Sizing results validated!! The value obtained is equal to

the expected result.” and “Total emissions results validated!!

The value obtained is equal to the expected result.” .To

do the validation process, the reader may also compare the

output with the tables and figures in the paper and the folder

expected_results.

9) Experiment customization: This section describes how

other scenarios can be executed using the present artifact.

Examples of possible scenarios: using other locations for the

data centers, workloads, and carbon footprint values for PVs,

batteries, and the grid.

The starting point to generate your own scenario is creating

a .json file that will describe all the parameters and inputs

necessary for the Linear Program. This file must be located

inside the input folder. More details about all the necessary

parameters, what they are, and their data type can be found in

the readme.md file of the artifact.

After creating your input file, execute: bash

scripts/run_custom_scenario_nix.sh

example.json if you are using Nix, or execute

bash scripts/run_custom_scenario.sh

example.json otherwise.

Once the experiment execution is complete, all results will

be in the respective results directory. In the previous example,

this directory is named results/example.
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