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Abstract—The carbon footprint of IT technologies has been a
significant concern in recent years. This concern mainly focuses
on the electricity consumption of data centers; many cloud suppli-
ers commit to using 100% of renewable energy sources. However,
this approach neglects the impact of device manufacturing. We
consider in this paper the question of dimensioning the renewable
energy sources of a geographically distributed cloud with consid-
ering the carbon impact of both the grid electricity consumption
in the considered locations and the manufacturing of solar panels
and batteries. We design a linear program to optimize cloud
dimensioning over one year, considering worldwide locations
for data centers, real-life workload traces, and solar irradiation
values. Our results show a carbon footprint reduction of about
30% compared to a cloud fully supplied by solar energy and of
85% compared to the 100% grid electricity model.

Index Terms—cloud computing, renewable energy, energy
storage, linear program, job scheduling, follow-the-sun, green
computing

I. INTRODUCTION

Data centers (or DCs), the infrastructure that hosts the cloud,
consume 1% of the total power generated in the world [1].
Research and industry sectors are unitedly making efforts to
reduce this impact: during the period from 2010 and 2018,
there was a 10-fold increase in IP traffic, a 25-fold increase
in storage capacity, and a 6-fold increase in DCs workload.
However, energy consumption only increased by 6% thanks
to improvements in efficiency [2]. On the other hand, some
studies predict that the energy demand will keep growing.
For instance, [3] consider scenarios for the period 2016–2030,
with predictions ranging between a wavering balance and a
significant increase in electricity needs.

In order to reduce the environmental impact of data centers’
operation, major cloud players committed to include renewable
energy in their operation, such as Google, Apple, Microsoft,
Amazon AWS, and Facebook [4]. Furthermore, solar energy
costs have fallen 85% (and are expected to keep decreasing)
and its deployment increased over than 10 times from 2010 to
2019 [5]. Moreover, the solar irradiation has a lower variation
than wind speed [6], which can increase the accuracy of
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predictions for the workload scheduling decision. However,
integrating renewable energy is not trivial given its intermittent
nature: its production is variable and affected by the weather,
time of the day, geographic location, and seasons. One possible
strategy to reduce the impact of intermittency is the adoption
of Energy Storage Devices (ESD), such as lithium-ion batter-
ies, to store the renewable energy to be used later.

Defining the optimal area of the photovoltaic panels (PV)
and the capacity of the ESDs (referred in the literature as
sizing, dimensioning, or capacity planning) should not neglect
the following facts: the electricity from the regular electrical
grid in some locations of the world already incorporates a
share of renewable energy; manufacturing photovoltaic panels
and batteries does generate carbon emissions, and each region
in the world has a different potential to produce green power.

The notation of Carbon-Responsive Computing [7] classifies
strategies that are aware of the carbon intensity and use
this information to make decisions. Follow-the-renewables
approaches [8] are one example of carbon-responsive strategies
for reducing the environmental impact of cloud operations.
It incorporates information on the availability of renewable
energy in the scheduling decision. This way, the workload can
be allocated or migrated to locations with more green energy.

In this work, we explore the adoption of both strategies,
sizing the PVs and batteries and scheduling with follow-the-
renewables to make the operations of existing cloud platforms
greener. More specifically, this paper presents the following
contributions: (i) we model the two sub-problems—PVs and
batteries sizing, and workload scheduling—as a single prob-
lem, which allows evaluating scenarios such as: should the
battery capacity or the PV area be increased, or should the
workload be scheduled in a data center located in another
part of the world? (ii) we propose a model that uses a linear
programming approach (LP) with real variables, allowing us
to optimally solve the problem we address in polynomial
time using classical LP solvers. This allows a large number
of scenarios to be evaluated over broad time horizons (i.e.,
one year) to take the seasonal behavior of renewable energy
production into account. This model can be extended to
multiple scenarios, and it may help decision-makers evaluate



which regions need more investment to reduce the cloud
operation’s environmental impact.

The remainder of the paper is organized as follows: Sec-
tion II gives an overview of the state of the art about sizing
IT platforms dedicated to the cloud in general or in the
green IT context in particular. Section III defines the problem
addressed, the assumptions, the models, and the objective
function. Details about the problem constraints and how to
optimally solve the problem are given in Section IV. Compre-
hensive experiments, presented in Section V, are discussed in
Section VI before we conclude in Section VII.

II. RELATED WORK

Most sizing research focuses on a single DC. There are
two approaches, either to consider that the DC can use the
electrical grid as a fallback or to consider how to size a DC
only with on-site renewable sources.

Most sizing approaches consider the capability to use the
electrical grid. Padma Priya and Rekha [9] use a Particle
Swarm Optimization approach for sizing a smart microgrid
to supply fog DCs located in a rural area in India. The
objective of the optimization is to reduce the capital cost
of buying solar panels, wind turbines, diesel generators, and
batteries. Power from the regular electrical grid can be used
when there is no green power production. The authors also
propose a scheduling algorithm to maximize green energy
usage. Niaz et al. [10] evaluates using curtailed renewable
energy to power DCs and provide hydrogen to hydrogen
refueling stations. The authors model their problem as a MILP
(Mixed Integer Linear Programming) with the objective of
minimizing the costs. System components included natural-
gas–powered combined cooling, heating, and power systems,
electrolyzers, hydrogen fuel cells, heat pumps, hydrogen tanks,
and battery energy storage systems. The results were that using
only power from the electrical grid was the worse in both
economic and environmental terms. Using a mix of curtailed
renewable energy and electricity from the grid was the most
economical. Using only renewable energy was the best for the
environment; however, it had the highest costs.

In some cases, the approach considers how also to size on-
site energy production, removing the need to access the electri-
cal grid. Richter et al. [11] proposes a planning methodology
for net-zero energy systems, and performed a qualitative study
to evaluate a net-zero energy DC located in Germany. The
conclusion is that by selecting appropriate technologies for
energy generation, increasing energy efficiency, and optimal
sizing Energy Storage Systems, the DC showed large potential
to operate as a net-zero energy system. A DC as a net-zero
energy system can increase the marketing image and add
economic value to the related company. Haddad et al. [12]
proposes to size a DC using only on-site renewable energy and
energy storage systems (batteries and hydrogen). This work
focuses on a single DC and discusses the impact of its location,
its workload, and its context on the resulting sizing (number
of servers, renewable sources, and storage). Benaissa et al.

[13] proposes to reduce the usual oversizing of renewable-
powered DCs. Classical sizing approaches based on traces are
defined by a few days with unusually high workloads and/or
low renewable availability. In this work, the authors propose
to reduce such sizing and evaluate the impact on the Quality
of Service and on the sizing itself. Contrary to the previous
studies, they use a binary search approach to find the best
relevant sizing instead of MILP formulation.

Some research focuses on the sizing of particular elements,
such as the electrical infrastructure. Sheme et al. [14] studies
the impact of the battery size to reach a specific green coverage
of 50% (half of the energy consumption of the DC needs to
be green). They develop a simulation tool that uses as input
the area of PVs and capacity of the batteries. Experiments
comparing countries (Finland, Crete, and Nigeria) show that
the number of solar panels needed in Crete and Finland is
slightly higher than in Nigeria, 17% and 45%, respectively.
However, although Finland provides only 15% less annual
solar energy than Nigeria, it requires a battery size of 39 times
bigger to achieve wasted energy at level 0. While in Crete, a
battery capacity of only 27% greater than in Nigeria is needed.

Overall, most studies focus on sizing individual DCs. This
is similar in the context of scheduling renewable-powered
DCs: Song et al. [15] reviews recent publications on the field
of DCs powered by Renewable Energy mix. It shows that
among more than 100 publications, only a quarter focuses on
geographically distributed data centers partially powered by
renewable energy mix. It also shows that most research in this
field focuses on workload scheduling, while few articles focus
on the adaptation or sizing of the infrastructure.

The Carbon Explorer framework is an example of a study
that explores sizing multiple DCs [16]. The framework ex-
plores three solutions to achieve 100% renewable operation of
DCs distributed over the United States of America: i) only use
renewable energy; ii) use renewable energy and energy stor-
age; and iii) use renewable energy and schedule the workload.
These DCs already have access to local solar power, wind
power, or both. The carbon emissions from manufacturing
PVs, wind turbines, batteries, and servers are considered. An
exhaustive search is used to find the solutions. The work
concludes that 100% renewable operation may not be the
optimal solution when considering the geographic location of
the DC, and the carbon emissions from the manufacturing
phase. Furthermore, the authors say that choosing the optimal
solution is still an open research question for future work.

Our approach focuses on optimally sizing of geo-distributed
DCs across the globe, which has not yet been studied to the
best of our knowledge. Furthermore, in contrast to the Carbon
Explorer framework, our solution allows using the regular
electrical grid when opportune, given it may be supplied by a
low-carbon intensive source. Finally, contrary to most studies
using a MILP, our model uses a linear program formulation.

III. PROBLEM STATEMENT

This section is dedicated to the description of the addressed
problem and hypothesis. The next two sections give details



about the chosen model, notations, and the optimal approach
to solve the decision problem that we tackle within the paper.

A. Addressed problem

Our goal is to reduce the carbon footprint of existing cloud
platforms by increasing renewable energy usage and reducing
their sizing. The considered platform consists of several data
centers spread worldwide, on all continents, and in both hemi-
spheres. The chosen approach aims to design an additional
solar-based power supply infrastructure to the classical power
grid connection and to define an optimal way to operate
the global IT cloud platform considering a given workload
to complete. To green the cloud infrastructure and reduce
its carbon footprint, we have to limit the usage of energy
from fossil fuels to operate the data centers. Using renewable
energy is a promising option. However, the production of solar
panels also has a carbon footprint, as does the construction of
batteries, even if we pay this carbon footprint only once. We
have to take this aspect into account.

Another problem is that the locality of the DC determines
how sustainable it can be. The carbon footprint of the elec-
tricity offered by the local power grid depends on how it is
produced: natural gas, coal combustion, hydraulic or nuclear
energy. Also, producing electricity from solar energy is less
efficient depending on whether the solar panels are installed
near or far from the tropics. Powering the cloud federation is
a balance or mix between using low-carbon electricity from
the grid and using solar panels, with the understanding that the
solar panels have to be installed and are necessarily associated
with batteries to mitigate intrinsic solar power intermittency.

This decision problem aims at defining the additional re-
newable power supply architecture from solar energy to reduce
the carbon footprint of the global cloud infrastructure. Results
depend on the inputs and hypothesis of the problem. We
consider as input: (i) carbon footprint of manufacturing the
targeted electrical components (PV and batteries), as well as
the emissions from using grid electricity depending on the
country of the production; (ii) the computing demand from
clients (jobs with a given amount of computation); and (iii)
weather conditions (solar irradiation) in areas where each
data center operates for the federation. It is assumed that job
submission is centralized, 100% of the jobs must be completed
in time, and the cloud platform is homogeneous.

We now introduce the models and notations before the
objective function to optimize.

B. Models and notations

To propose a solution in terms of job operations, we define
a decision horizon H in which job scheduling decisions can be
taken. To do so, we propose to discretize H into K indivisible
time slots whose duration is ∆t such that H = K × ∆t.
To simplify the notations, we consider ∆t = 1u.t. (unit of
time), knowing that, in practice, we assume that ∆t = 1h
such that K = 8760h with H = 1 year. Let k be the index
of the time slot that addresses any time instant t such that
k∆t ≤ t < (k + 1)∆t with 0 ≤ k < K.

TABLE I
MAIN NOTATIONS FOR THE IT MODEL FOR EACH DCd (1 ≤ d ≤ D)

DURING TIME SLOT k (0 ≤ k < K)

∆t time duration of each time slot in unit of time [u.t]
H decision horizon H = K∆t
K number of time slots ∆t = 1 h = 1u.t.
k time slot between dates k∆t and (k+1)∆t excluded

DCd data center number d of the cloud federation
DC the set of all data centers {DCd | d = 1, . . . , D}
Cd number of cores within DCd

Pcore dynamic power consumption of one core
Pidled static power consumption of DCd

Pintranetd consumption of the DCd interconnection network
P d
k the power demand to perform tasks on DCd during

time slot k
PUE Power Usage Effectiveness (constant value)

T the workload to perform (= {Ti | 1 ≤ i ≤ N})
Ti task i of the workload T (1 ≤ i ≤ N )
ri release date of tasks Ti

pi processing time of tasks Ti

ci number of cores needed to execute task Ti

wk number of cores needed during the kth time slot
wd

k number of cores needed during the kth time slot on
DCd

1) IT part model: As we plan to green an existing cloud
federation, it is assumed that the data centers have already been
designed in terms of the IT and electrical infrastructure, and
they are homogeneous regarding the number of CPU cores.
Let DC = {DCd | d = 1, . . . , D} be the set of data centers in
the federation. Considering a given data center DCd, let Cd

be its number of cores and Pcore the energy used to power
one core. In order to execute all tasks assigned to DCd at time
slot k, the DC will need an amount of energy of P d

k .
The power consumption of a cloud data center can be clas-

sified as static or dynamic [17]. For the static part, the current
model considers the idle power consumption Pidled of the
servers, the Power Usage Effectiveness (PUE) to represent the
power consumption used to cool the DC infrastructure, and the
power consumption of the network switches Pintranetd that
interconnect the servers in each data center DCd. Regarding
the latter, cloud data centers usually adopt the fat-tree topology
to interconnect servers in the DC [17]. In this topology,
one can compute the number of network switches needed to
match the number of servers. The power consumption of the
network switches is considered to be static based on actual
measurements, which have shown that the consumption does
not change significantly with the device usage [18]. Moreover,
each geographic location has different cooling needs, therefore
each DC has a specific PUEd value.

Finally, the dynamic part is represented by the additional
power consumption generated by using the CPU cores in each
data center. Equation (1) represents the power consumption of
each DC for each step k (0 ≤ k < K):

P d
k = PUEd ×

(
Pidled + Pintranetd + Pcore× wd

k

)
(1)



TABLE II
MAIN NOTATIONS FOR THE ELECTRICAL PART MODEL OF EACH DCd

(1 ≤ d ≤ D) DURING EACH TIME STEP k (0 ≤ k < K)

Idk solar irradiation at time slot k [W/m2]
Apvd surface of PVs of DC DCd [m2]
ηpv PV efficiency

Pgriddk power from the grid at time slot k [W ]
Predk power from PVs at time slot k [W ]

BAT d battery capacity installed in DCd [Wh]
Bk

k battery level of energy at the time k ×∆t [Wh]
Pchd

k power charge during time slot k [W ]
Pdchd

k power discharge during time slot k [W ]
ηch charging process efficiency
ηdch discharging process efficiency

2) Workload model: Considering the workload to complete,
let T = {Ti | i = 1, . . . , N} be the set of N tasks that have to
be executed in time upon the whole cloud federation during
the time horizon H. Each task Ti has a release date ri, a
processing time pi, and must be executed on ci cores. Let wk

be the total number of cores needed to compute tasks during
the time slot k in order to complete the workload in time.
At each time step, wk is the sum over all cores required by
the tasks executed in time slot k. This is also the sum of the
number of cores wd

k of each data center DCd in DC (with
1 ≤ d ≤ D) and 0 ≤ k < K) as shown by Equation (2):

wk =
∑

Ti|ri≤k∆t<ri+pi

ci =
∑
d

wd
k (2)

3) Electrical part model: The power supply of the whole
cloud platform DC is coming both from the classical power
grid Pgriddk of each country on which DCd ∈ D is hosted,
and from renewable energy (the sun) thanks to solar panels
(PVs) installed on each DCd site. As renewable energies
are inherently intermittent and cannot be controlled, storage
devices are mandatory either to store the overproduction when
the sun shines or to provide the missing energy during the
night. Batteries have been chosen to play this role because
of their good efficiency in terms of costs, power and energy
density, charge and discharge rates, and self-discharge [19].
So, the whole cloud platform power demand can be supplied
by the regular grid, power generated from the PV panels, and
power discharged from the batteries. As a constraint, the power
from the grid (Pgriddk) is always positive because the platform
is not supposed to sell energy. DCs may use the regular
electrical grid as backup when the PV power production is not
enough, or if the stored energy in the batteries is not sufficient.

The amount of renewable power that can be produced
depends on the solar irradiation Idk received at the location
of DCd during the time slot k, on the surface of the solar
panels Apvd and on the efficiency ηpv of the PVs. Equation (3)
models the on-site renewable power production.

Predk = Idk ×Apvd × ηpv (3)

Batteries are systematically installed next to the PVs for the
reason mentioned above. Let Bd

k be the amount of energy (in
Wh) at time kt stored in batteries of capacity BAT d installed
in DCd (Bd

0 = Binitd being the amount of energy at the
beginning the time horizon H). These batteries are charged
during the time slot k thanks to the power charge Pchd

k.
Conversely, Pdchd

k is the power discharge of the batteries.
If Pchd

k is greater than zero, Pdchd
k equals zero and vice

versa. Regarding the batteries modeling, the charging and
discharging process have an efficiency ηch and ηdch less than
1. The self-discharge property has not been modeled because
for lithium-ion batteries the value is very low (0.5 % per
day) [19]. Finally, to increase the lifetime, the batteries cannot
be discharged more than its Maximum Depth of Discharge. We
added restrictions to the Bd

k variable to model this property.
Equation (4) models the battery in terms of the level of energy:

Bd
k = Bd

k−1 + Pchd
k−1 × ηch ×∆t−

Pdchd
k−1

ηdch
×∆t (4)

with 0.2 × BAT d ≤ Bd
k ≤ 0.8 × BAT d for any time slot k

and DCd (0 ≤ k < K and 1 ≤ d ≤ D). The modeling of the
batteries and PVs are based on [20].

4) Footprint model: In the current model, carbon emissions
originate from three sources: (i) the regular power grid and the
manufacturing of both (ii) the photovoltaic panels, and (iii) the
batteries. The carbon footprint of the regular power grid given
by Equation (5) is calculated based on the carbon intensity of
the power grid gridCO2d in the region of data center DCd

times the amount of energy used during the time slot k.

FPgriddk = Pgriddk ×∆t× gridCO2d (5)

The gridCO2d input reflects the share of carbon-intensive
power sources in the regular electricity grid: if it is supplied by
solar, wind power, hydroelectric or nuclear power, the value
will be low. However, the value will be higher if it is supplied
by coal, oil, biomass, or natural gas. It is considered that the
electrical grid may be supplied by multiple power sources.

For the PVs, in order to account for the fact that the amount
of solar irradiation received is not homogeneous for different
geographic regions, one must also consider the expected power
output that PVs can produce over their lifetime relative to the
cost of manufacturing. Therefore, the carbon footprint of PVs
is also related to the location of each data center. The carbon
footprint thus defined is modeled by Equation (6):

pvCO2d =
FPpv1m2

expectedEpvd
(6)

where FPpv1m2 is the cost of manufacturing 1m2 PV
in g CO2 − eq, and expectedEpvd is the expected energy
production in Wh that 1m2 of PV can produce during its
lifetime at the location of DCd. As a result, the unit of this
metric is expressed in g CO2 − eq.Wh−1, and so, the total
emissions from the PVs are related to its power production,
as shown in Equation (7).



FPpvdk = pvCO2d × Predk ×∆t (7)

Finally, the batteries’ carbon footprint FPbatd of the
DC DCd is related to their capacity BAT d in kWh and
carbon emissions of the manufacturing process batCOS in
g CO2− eq.kWh−1, as seen in Equation (8). To be consistent
with the calculation of FPpvdk , batCO2 is the share of the
carbon footprint of the battery type chosen for a capacity of
1 kWh over the time horizon of H, assuming a battery has
a lifetime of 10 years. Thus batCO2 is the tenth of the total
carbon footprint of the considered battery, given that we are
considering 1 year of cloud operation.

FPbatd = BAT d × batCO2 (8)

These modifications regarding the lifetime of PVs and
batteries were necessary because we are considering only one
year of cloud operation. If we use the total carbon emissions
for manufacturing the PVs and batteries, the solver will find
a solution where there is few to no PV or batteries, because
using the regular electrical grid would be less carbon-intensive.

C. Objective function

Now that the models have been introduced, the objective
function can be defined (see Equation (9)). It consists of
minimizing the carbon footprint of the globally distributed
cloud federation in order to reduce as much as possible carbon
emissions, which come from both the consumption of elec-
tricity from the power grid, as well as from the manufacturing
of photovoltaic panels and batteries with k and d defined as
follows: 0 ≤ k < K and 1 ≤ d ≤ D.

minimize
K−1∑
k=0

D∑
d=1

(FPgriddk + FPpvdk) +

D∑
d=1

FPbatd (9)

IV. OPTIMAL RESOLUTION

The models presented in the previous section consist of sev-
eral linear equations. We show in this section that constraints
governing the use of the globally distributed cloud platform
can be expressed as linear expressions. New real variables
are introduced to finalize the linear program that needs to be
solved to achieve the targeted objective. The solution obtained
after solving the linear program is optimal in nature and
computed in polynomial time, as long as the variables are
not integers. Polynomial time is mandatory if we consider the
number of variables needed for a time horizon H as long as
one year. We assume to choose real positive values for all
variables even if variables denote discrete objects like cores.
Indeed, wd

k is the number of cores needed to run tasks on
DCd during time slot k. Considering the size of the cloud
with its thousands of cores, the decimal part of each wd

k can
be neglected. Having the solution with more or less than a
core on a given DC does not change the order of magnitude
for the PV and battery sizing process.

The globally distributed cloud platform that we plan to
optimally size, as mentioned in the problem statement (Sec-
tion III), has only one goal: completing a given amount of
work during a given year and knowing the weather conditions
during the same year. We present a set of constraints that must
be respected to make this mission possible. Some constraints
are explicit, and some are implicit to avoid the addition of
integer variables which would transform this LP into a MILP
whose solving process would not scale at all.

A. Constraints to address the workload
Since the distributed cloud federation configuration is de-

fined a priori by a set of existing cloud DCs at each chosen lo-
cation, the amount of work to be performed must respect each
data center’s computational capabilities DCd. Equation (10)
expresses that the number of cores that are switched on does
not exceed the existing number of cores of DCd:

wd
k ≤ Cd (10)

B. Constraints to reach the power demand
The electric part of each DC has to supply the DC power de-

mand using renewable energy (Predk), from batteries (Pdchd
k

and Pchd
k) and/or from the classical grid (Pgriddk). Equa-

tion (11) presents the restriction for the power consumption.

P d
k ≤ Predk + Pgriddk + Pdchd

k − Pchd
k (11)

C. Constraints on batteries
The batteries are defined by their capacity, which is different

for each DC and depends on how the intermittency of the re-
newable energies is managed on each site. The other quantities
concerning the batteries depend on the total capacity of the
batteries, DC by DC. This allows realistic behaviors for the
batteries to be assumed. These limitations concern the practical
level of use of the energy stored in the batteries, which cannot
be completely emptied, for example. In addition, the power to
charge or discharge a battery is also limited by the level of
energy remaining in the associated battery, so that it is not
possible to reach a forbidden energy level. Equations (12),
(13) and (14) express these constraints:

0.2×BAT d ≤ Bd
k ≤ 0.8×BAT d (12)

Pchd
k ×∆t× ηch ≤ 0.8×BAT d −Bd

k−1 (13)

Pdchd
k ×∆t / ηdch ≤ Bd

k−1 − 0.2×BAT d (14)

One may notice that we are not modeling any restrictions
for charging and discharging simultaneously. Such restrictions
would require the usage of binary variables that would sig-
nificantly increase the required computational time to find the
optimal solution to the problem. We performed experiments
with a shorter duration (around 1 month), and the sizing results
were the same between both versions: using and not using
binary variables. Furthermore, it is possible to calculate an
alternative solution for the linear program where there would
be no charge and discharge at the same time slot by increasing
or decreasing the value of the variables Pchd

k and Pdchd
k.



D. Linear program

This following linear program (LP) summarises what has
been described before concerning the model that has to be
respected to solve the tackled problem. All variables given
by the solution obtained after the solving process are used
to completely define both the renewable power supply part
and the core operating process of the distributed low carbon
cloud federation and the way each DC is used time slot by
time slot for one year on the considered weather conditions.
Comprehensive experiments have been led to highlight the
pertinence of the approach. These experiments are shown in
the next section, and a discussion is proposed in Section VI.

(LP)


minimize

K−1∑
k=0

D∑
d=1

(FPgriddk+FPpvdk)+

D∑
d=1

FPbatd

s.t. (1) (3) (4) (5) (7) (8) (10) (11) (12) (13) (14)

where all variables are positive real variables.

V. EXPERIMENTS

In this section, we present the settings and the results of our
experiments. More details for reproducing the experiments can
be found in Appendix A.

A. Settings

1) Cloud infrastructure: The servers are homogeneous and
based on equipment of real cloud infrastructure: the Taurus
server of the Grid’5000 testbed1. The servers are equipped
with two Intel Xeon E2630 CPUs, with a total of 12 cores.
For modeling the power consumption of the servers, real mea-
surements conducted by Ahvar et al. [17] were considered: in
the idle state, each server consumes 97 W, and their maximum
power consumption (when using 100% of the 12 cores) is
220 W. The value of Pcore is 10.25 W, and it was obtained
by linear interpolation between the power consumption of the
idle and the fully used state.

Each data center is equipped with 23,200 servers (and a
total of 278,400 cores). This number matches what can be seen
in production data centers of major cloud players: Microsoft
operates over 4 million servers distributed over 200 DCs [21].

We considered a network with a 48-ary fat-tree topology
linked by 2,880 switches with 48 ports each. The power
consumption of the switches was based on real measurements
by Hlavacs et al. [18]: the HP ProCurve 2810-48G was
selected, with 48 ports and approximately 52W per device.

For the location of the data centers, it was based on the
real cloud infrastructure of Microsoft Azure2, and different
regions in different continents, hemispheres, and time zones
were selected. Figure 1 presents the details of the locations.

We used values for the PUE inspired by real data from
Microsoft Azure for each region: for the Americas, the PUE
is 1.17 (DCs São Paulo and Virginia), Asia Pacific has a PUE

1https://www.grid5000.fr/w/Lyon:Hardware#taurus
2Azure global infrastructure: https://infrastructuremap.microsoft.com/.
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Fig. 1. Selected locations for the data centers.

of 1.405 (DCs Pune, Canberra, Singapore, and Seoul), and for
the Europe region, Middle East, Africa the PUE is 1.185 (DCs
Johannesburg, Dubai, and Paris) [22].

2) Workload: The workload used was generated using the
Grog generator3, a workload generator based on analysis of
properties of the execution trace made available by Google
in 2011 [23]. For reproducibility purposes, the parameters
regarding the number of tasks were set to 350,000, the duration
was 30 days, and it was executed 12 times (1 per month). The
tasks have a duration of one hour.

3) Photovoltaic power production: Global Solar Horizontal
Irradiation (in Wh/m2) data was collected from the MERRA-
2 project [24], since it provides information for anywhere on
earth. Figure 2 illustrates different solar irradiation of each
location throughout the year 2021.

4) Carbon footprint: For solar panels, it is considered
a lifetime of 30 years, and manufacturing 1m2 emits 250
kg CO2 − eq, inspired from real measurements [25]. To com-
pute the emissions in the form of g CO2−eq.kWh−1 as stated
in Section III-B4, we considered the total solar irradiation
that was produced during the year 2021 multiplied by 30
(to account for the PV module lifetime of 30 years). For
the electrical grid, we also considered the real-world data of
the carbon footprint (g CO2 − eq.kWh−1). Table III lists the
carbon emission values for each region.

Regarding the batteries, the emissions are only considered
for the manufacturing step—59 kg CO2 − eq per kWh. In our
experiments, the considered lifetime of the batteries is ten
years. Therefore, the input used is equal to 5.9 kg CO2 − eq
per kWh, given that we simulated one year.

5) Execution environment: We ran the experiments on a
machine with an Intel i9-11950H CPU, and 32 GB of RAM.
The solver used was the Gurobi Optimizer (version 9.5.2).
The execution time for solving the LP with the inputs listed
in the previous sections — which resulted in a total of 394,263
variables — was in the order of 30 seconds.

3https://pypi.org/project/grog/

https://www.grid5000.fr/w/Lyon:Hardware#taurus
https://infrastructuremap.microsoft.com/
https://pypi.org/project/grog/
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Fig. 2. Average daily solar irradiation per location throughout the year 2021.

TABLE III
EMISSIONS (IN g CO2 − eq.kWh−1) FOR BOTH PV USAGE AND USING
THE REGULAR GRID. SOURCE FOR GRID EMISSIONS: ELECTRICITYMAP,

CLIMATE-TRANSPARENCY.ORG.

Location Grid PV
Johannesburg 900.6 24.90
Pune 702.8 27.96
Canberra 667.0 29.71
Dubai 530.0 24.84
Singapore 495.0 36.19
Seoul 415.6 34.00
Virginia 342.8 31.71
São Paulo 61.7 27.99
Paris 52.6 39.93

B. Results

In this section, we present the results in terms of the
computed optimal area of the PVs and capacity of the batteries,
the source of energy that was consumed by the DCs operation
(grid, batteries, or PV panels), and the total emissions of the
cloud operation, generated from both manufacturing PVs and
batteries, and power consumption of the regular electrical grid.
Furthermore, to assess the solution computed by the LP, we
compare it with two other scenarios: i) only power from the
regular electrical grid is used to supply the DCs (represent
current DCs), and ii) only power generated from the PV
panels, and stored and discharged from the batteries are used
to supply the DCs. Finally, we present an evaluation using
metrics to assess the environmental impact of the results.

Figure 3 illustrates the area of the photovoltaic panels and
the capacity of the batteries computed from the LP using the
inputs described in Section V.

To analyze the sources of energy that supplied the DCs
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Fig. 3. Optimal result for the area of PV panels and capacity of the batteries.

operation, we present in Figure 4 the percentage that each
source (grid, renewable, and batteries) was used to daily
supply the DCs throughout the year. Figure 5 is a fine-
grain visualization of the DC operation regarding the power
consumed or produced: it illustrates hour-by-hour the DC total
power demand, how much power was consumed from the grid,
discharged from the batteries, and produced by the PV panels.

In order to assess the optimal solution of the LP, we
compared it with two other scenarios in terms of total carbon
emissions (tCO2−eq): i) the DCs are only supplied by power
from the regular electrical grid, and ii) the DCs are only
supplied by power from the photovoltaic panels and batteries.
Table IV presents the results. In comparison with the first
scenario (only grid power), the reduction in the CO2 emissions
was approximately 85%, and it was approximately 30% for the
second scenario (only renewable power).

TABLE IV
TOTAL EMISSIONS FOR THE DIFFERENT SCENARIOS.

Scenarios Emissions (t,CO2 − eq)
Electrical grid 201211.3
PV and batteries 42370.6
PV, batteries, and grid 29600.6

To further evaluate these scenarios, we present in Table V
results in terms of the average load each DC executed through-
out the year. Equation (15) represents how the metric was
computed for each DC d. ∑

k w
d
k

Cd ×K
(15)

To evaluate the environmental impact of the solution, we
used metrics extracted from [26]. The first metric, the Green
Energy Coefficient (or GEC), is the ratio between the total
green power generated and the DC total energy consump-
tion, and it can illustrate the oversizing of the green power
supply infrastructure. The second metric is the CO2 savings,
which represents the emissions reduction after DC equipment
upgrade or flexibility mechanisms. CO2 savings is computed
as seen in Equation 16, where: CO2current represents the
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Fig. 4. Composition of the DCs’ daily energy consumption throughout the
year considering the different sources of energy, where 1.0 is the DC’s total
energy consumption.

system studied after the modifications (the result of the linear
program for the sizing of PVs and batteries) and CO2baseline
the system in its original state. Here, it was considered that
CO2baseline has the same workload allocation of CO2current;
the difference between the two is that CO2baseline does not
have PVs and batteries, and thus only consumes power from
the grid. Table VI shows the computed values for both metrics.
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Fig. 5. Composition of the DCs’ hourly power consumption throughout the
first day of the year. Time follows the Universal Time (UT) standard.

CO2savings =

(
1− CO2current

CO2baseline

)
× 100 (16)

In order to assess the robustness of the sizing process for
the area of PV panels and the capacity of the batteries, it is
necessary to take into account other meteorological conditions,
given that the DCs will operate for decades and not only
for one year. The metric selected is the Mean Absolute
Percentage Error (MAPE) defined by: 1

n

∑n
i=1

|Ri−Fi|
Ri

, where
n represents the number of values being considered, i the index



TABLE V
AVERAGE DC LOAD THROUGHOUT THE YEAR

Location Grid PV + Bat PV + Bat + Grid
Johannesburg 0 79.31 86.20
Pune 10.25 82.07 89.34
Canberra 99.72 66.62 67.95
Dubai 99.97 93.93 95.11
Singapore 99.93 72.6 85.18
Seoul 99.99 81.87 65.39
Virginia 100.0 88.54 75.51
São Paulo 100.0 63.67 59.06
Paris 100.0 81.24 86.11

TABLE VI
RESULTS OF THE SUSTAINABILITY METRICS FOR THE EXPERIMENTS

Location GEC CO2 savings (%)
Johannesburg 1.47 93.93
Pune 1.45 91.5
Canberra 1.57 89.59
Dubai 1.59 89.1
Singapore 1.42 85.75
Seoul 1.53 82.51
Virginia 1.46 75.99
São Paulo 0.5 20.05
Paris 0.24 5.25

of the value being considered, Ri the real value for the year,
and Fi the estimated value (in this case, the computed sizing
for the year 2021 that was used in the experiments). Table VII
presents the results of the MAPE for both the area of PV
and capacity of the batteries when we solve the LP using as
input the solar irradiation for the years 2018, 2019, and 2020.
Results indicate a variation of less than 10% in the different
DCs over the years.

TABLE VII
EVALUATING SIZING FOR DIFFERENT YEARS USING THE MAPE METRIC

(VALUES ARE IN %)

Location PV Area Battery Capacity
Johannesburg 1.72 1.64
Pune 3.72 0.76
Canberra 8.62 4.25
Dubai 2.31 2.88
Singapore 7.22 0.34
Seoul 3.15 1.11
Virginia 2.2 0.87
São Paulo 5.81 8.05
Paris 2.76 0

VI. ANALYSIS AND DISCUSSION

These results permit the evaluation of the carbon footprint
impact of different electricity supply policies for Clouds. On
the one hand, as shown in Table IV, there is a significant
reduction to obtain by including renewable energy in the
electricity sources of DCs. We observe a 5-fold decrease in
the footprint in our experiments. Many Cloud providers have
committed to using 100% renewable energy supplies for their
DCs in the following years. On the other hand, this objective
of 100% renewable is, in our opinion, more ideological than
pragmatic, and there is more benefit to obtain by combining

grid and renewable electricity. We observe in our experiments
a further reduction of a fourth in the optimal solution compared
to the 100% renewable scenario. This study thus gives further
insight into the debate of energy sources in Clouds.

The locations used in this paper for the different DCs allow
us to benefit from the diversity of latitudes, hemispheres, and
climates, as shown in Figure 1. This variety of longitudes and
hemispheres permits mitigation of the impact of seasonal and
daily variations of solar irradiation on electricity production
and always has at least some DCs with good PV production, as
shown in Figure 2. The diversity of climates is highlighted by
the case of Singapore’s solar production, which is the second
lowest with Paris, while its location close to the equator could
permit better irradiation.

As indicated in Table III, we observe significant heterogene-
ity in the carbon footprint of grid electricity of the different
DCs, which results in two categories for the optimal solution:
i) Paris and São Paulo, DCs with a reduced number of PVs
and batteries (no battery in Paris), and ii) the other locations
have quite similar sizes of PV and batteries. In the second
category, the larger PV area is mainly associated with low
solar irradiation. It might appear counterintuitive to allocate
more PVs to locations with lower solar production, but this is
more comprehensive considering the static part of the power
consumption of DCs. When the workload is mainly sent to
locations with solar production, the electricity consumption
of DC also includes a static part for the idle consumption
of servers and the interconnection network, as referred to in
Equation (1). This static electricity consumption implies either
using the carbon-intensive grid or a sizing of PV and batteries
that matches the demand, even during winter days of low PV
production. This results in a large PV and battery sizing — the
PVs are producing up to 1.6 times the DC energy consumption
as seen in Table VI — and, as shown in Figure 4, the grid
energy consumption of these DCs is very low.

The results for Paris and São Paulo show the carbon
footprint of ESDs compared to grid electricity. There is a
small benefit in São Paulo for intensive usage, so with reduced
sizing, there is no benefit in Paris to using batteries. The PV
sizing on these DCs is reduced, probably due to the fact that
little energy can be stored in case of overproduction.

The detail of hourly electricity consumption is highlighted
in Figure 5. The workload is allocated in DCs with PV
production. If all this production is used, or the corresponding
DCs are full, then the allocation is driven by the battery state
of charge, and when none of these possibilities are available,
the allocation is for the DC with the lowest grid electric-
ity footprint. For example, in the last hours, the electricity
consumption of the different DCs is furnished by battery
discharge, in the limit of a state of charge, and the remaining is
allocated in the DCs of Paris, São Paulo, and Virginia. Thus,
the DC of Virginia consumes grid electricity in two cases:
either when Paris and São Paulo DC are full (from hours 10
to 24), or when the DC is empty and only local electricity
can be used (hours 3, 5, and 6 in Figure 5). The follow-
the-sun approach can be partially observed between hour 7



and 8, when Seoul PV production fall and the workload is
transferred to Paris, with grid consumption. Then, at hour 10,
the same append between PV production in Singapore and
grid electricity in São Paulo and at hour 11 between Pune
and Virginia. The figure also shows the impact of location,
season, and PV sizing on the solar production between Pune
and Canberra, large PV production in the best hours, and the
tiny production in Paris.

Table V presents the impact of the different scenarios for
energy sources on the load of the different DCs. In the first
scenario, the workload is only allocated based on the grid
electricity footprint. Thus, we could expect the workload order
to be the same as the footprint order per kWh. However,
the consumption does not only depend on the workload but
also the PUE of the different DCs. We can thus observe a
higher workload in Dubai compared to Singapore, considering
that Dubai has electricity with a slightly higher footprint but
the lowest PUE. Globally, the range of values highlights the
workload variations, requesting at least 4 DCs, at most 8,
and most of the time 7. The second scenario considers a
model without grid electricity. The allocation is surprisingly
distinct from the solar irradiation of the different DCs. For
example, the DC of Paris has the lowest yearly irradiation but
the median workload in this scenario. Its workload is higher
than the one in Johannesburg, which has the second-highest
yearly irradiation and is on a similar longitude. The workload
is thus not only driven by yearly irradiation. The extremely
low PV production in Paris during winter, associated with the
static part of the electricity consumption in each data center,
implies a high sizing of PV and battery, which lead to a
high production during the other seasons that permit a large
workload. On Johannesburg, the seasonal variation is lower, so
static constraints do not drive PV sizing. Another surprising
result is that the DCs with the lowest workload in this scenario
are the 4 in the southern hemisphere (including Singapore).
This contradicts the intuition of “follow-the-summer” alloca-
tion. The case of São Paulo and Canberra could be similar
to the one of Johannesburg with the value of the minimal
daily production in Virginia and Seoul. The largest workload
concerns DCs with the more stable production (Dubai and
Pune) and the lowest minimum daily production (Virginia,
Paris, and Seoul). Finally, for the last complete scenario, the
DCs with the largest workload are the 3 with the largest
irradiation (Dubai, Pune, and Johannesburg), followed by Paris
with the lowest grid electricity footprint. The only surprise is
the workload of São Paulo, which is low considering its low
grid electricity footprint and high solar irradiation, and the
workload of Singapore, which is high considering its low PV
production. Concerning São Paulo, this is probably because it
has the second-lowest grid footprint. This implies a low battery
sizing, thus a low PV sizing, and finally, it mainly receives
workload only when no more DC can provide electricity from
PV or battery discharge, and when the DC of Paris is full, that
makes many constraints. Considering Singapore, it is probably
due to its position close to the equator, which implies no
“winter” season, and its large PV sizing. Finally, the reduction

of carbon footprint of each DC between the complete scenario
(PV + bat + grid) and the scenario with only grid electricity is
showed in Table VI. It shows a small decrease in Paris and São
Paulo, and a large decrease in the other locations, correlated
to the electricity footprint.

VII. CONCLUSION

In this paper, we tackled the problem of greening a dis-
tributed cloud data center (DC) federation to lower its carbon
footprint. The IT part of the cloud platform already exists,
and the idea is to add the equipment on site to introduce
renewable energy into the brown energy from the classical grid
into the power supply of the DCs. Since the sun is shining
everywhere on earth, we have proposed photovoltaic panels
(PVs) to produce renewable energy and batteries as storage
devices to mitigate the intrinsic intermittency of this energy
during the day. The question is how to size the PV array and
associated battery size, given an existing federation of DCs
distributed around the earth. We have provided a formulation
of the problem as a linear program. The particularity of our
formulation is that we do not need integer variables; a solution
is possible using only real variables given our objective and
the context of the problem. As a result, the linear program
allows to optimally solve large problem sizes, e.g., minimize
the carbon footprint of a nine-site federation, each with its own
weather conditions, upon a one-year horizon, hour by hour.
We have demonstrated that our program is able to calculate
the optimal sizing for PVs and batteries in just a few minutes.
Numerous experiments have brought forward results that we
have analyzed and discussed to explain what these results
express. As an example, an interesting result, depending on
the DC locations considered, the optimal solution to reduce
the carbon footprint is a hybrid configuration between using
PVs and the regular electrical grid. Moreover, batteries are not
always mandatory in each location. Finally, our model has the
flexibility to be extended to assess other scenarios (more DCs,
other locations, values for carbon emissions, or workloads) and
it may help decision-makers build their strategy to reduce the
environmental impact of the cloud operation.

In future work, we plan to propose a sizing process that also
includes the IT part. Since this investment has been made for
years, another perspective is to introduce uncertainty into this
sizing process to obtain a more robust distributed DC platform
that can provide satisfying service to clients even if the weather
conditions change and the submitted workload evolves. The
goal always being to remain as virtuous as possible.

ACKNOWLEDGEMENT

This work has been partially supported by the LabEx
PERSYVAL-Lab (“ANR-11-LABX-0025-01”) funded by
the French program Investissement d’avenir, by grant
#2021/06867-2, São Paulo Research Foundation (FAPESP), by
the EIPHI Graduate school (contract “ANR-17-EURE-0002”),
by the EuroHPC EU Regale project (g.a. 956560), and by the
ANR DATAZERO2 (contract “ANR-19-CE25-0016”) project.



REFERENCES
[1] IEA, “Data centres and data transmission networks,” IEA, Paris, Tech.

Rep., 2022. [Online]. Available: https://www.iea.org/reports/data-centr
es-and-data-transmission-networks

[2] E. Masanet, A. Shehabi, N. Lei, S. Smith, and J. Koomey, “Recalibrating
global data center energy-use estimates,” Science, vol. 367, no. 6481,
pp. 984–986, 2020.

[3] M. Koot and F. Wijnhoven, “Usage impact on data center electricity
needs: A system dynamic forecasting model,” Applied Energy, vol. 291,
p. 116798, 2021.

[4] Greenpeace, “Clicking Clean,” Greenpeace International, 2017. [Online].
Available: www.greenpeace.org/international/publication/6826/clicking
-clean-2017/

[5] IPCC, Summary for Policymakers. Cambridge, UK: Cambridge Uni-
versity Press, 2022, p. In Press, in Press.

[6] N. Y. Krakauer and D. S. Cohan, “Interannual variability and seasonal
predictability of wind and solar resources,” Resources, vol. 6, no. 3,
2017. [Online]. Available: https://www.mdpi.com/2079-9276/6/3/29

[7] D. Nafus, E. M. Schooler, and K. A. Burch, “Carbon-responsive
computing: Changing the nexus between energy and computing,”
Energies, vol. 14, no. 21, 2021. [Online]. Available: https://www.mdpi
.com/1996-1073/14/21/6917

[8] J. Shuja, A. Gani, S. Shamshirband, R. W. Ahmad, and K. Bilal,
“Sustainable cloud data centers: a survey of enabling techniques and
technologies,” Renewable and Sustainable Energy Reviews, vol. 62, pp.
195–214, 2016.

[9] R. Padma Priya and D. Rekha, “Sustainability modelling and green
energy optimisation in microgrid powered distributed FogMicroData-
Centers in rural area,” Wireless Networks, vol. 27, no. 8, pp. 5519–5532,
2021.

[10] H. Niaz, M. H. Shams, M. Zarei, and J. J. Liu, “Leveraging renewable
oversupply using a chance-constrained optimization approach for a
sustainable datacenter and hydrogen refueling station: Case study of
california,” Journal of Power Sources, vol. 540, 2022.

[11] M. Richter, P. Lombardi, B. Arendarski, A. Naumann, A. Hoepfner,
P. Komarnicki, and A. Pantaleo, “A vision for energy decarbonization:
Planning sustainable tertiary sites as net-zero energy systems,” Energies,
vol. 14, no. 17, 2021.

[12] M. Haddad, G. Da Costa, J.-M. Nicod, M.-C. Péra, J.-M. Pierson,
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APPENDIX A
ARTIFACT DESCRIPTION: OPTIMAL SIZING OF A
GLOBALLY DISTRIBUTED LOW CARBON CLOUD

FEDERATION

A. Abstract

This document details the necessary steps and instructions
for the reader to be able to: i) install the programs and all
the necessary dependencies to run the Linear Program (LP)
of the experiments; ii) extract all the data used for generating
the figures and tables; iii) generate the figures and tables; iv)
create custom scenarios for their custom experiments.

B. Description

1) Check-list (artifact meta information):

• Program: (i) The LP modeling and execution; (ii) Scripts
to extract data from the LP solution; (iii) Scripts to
generate the figures and data for the tables;

• Data set: Solar irradiation data, workload, the LP param-
eters;

• Hardware: Various x86 or x64 CPUs;
• Experiment workflow:

1) Install, and execute experiments;
2) Extract data from the LP solution;
3) Generate figures and data for the tables.

• Output: (i) Data extracted from the LP solution file (ii)
Figures and data for the tables;

• Experiment customization: See below;
• Publicly available?: Yes.

2) How the artifact can be obtained: The Persistent ID of
the artifact is:

https://doi.org/10.25666/dataubfc-2023-02-03
and to ensure that the code will be available for the long
term and that the reader will use the same exact version
to reproduce the experiments, we stored the code, all the
necessary input files and parameters, and the instructions on
Software Heritage:

https://archive.softwareheritage.org/swh:1:rev:44d2
de89057ff6df4657769e0b14ac2bade57830;origin=https:
//gitlab.com/migvasc/lowcarboncloud
Finally, all source material can also be downloaded from the
git repository associated with the Persistent ID:

https://gitlab.com/migvasc/lowcarboncloud

The artifact is structured by the following main directories:

• input: It contains the data that will be used as input
for the LP (solar irradiation values, parameters, workload
data);

• script: contains all the source code that will run the
LP, extract the results and generate the plots;

• results: It contains the plots (in PDF format) and the
data files (CVS file in text format) used to generate them,
extracted data from the LP solution and data used to
generate the tables presented in the paper.

3) Hardware requirements: Any modern x86 or x64 CPU
is appropriate to execute the experiments. The experiments
may be executed in parallel in order to reduce the execution
time. If you want to run the experiments in parallel, it is
recommended that your system have at least 16 GB of RAM
(running all the experiments in parallel consumes around 10
GB of RAM). If your system does not meet the minimum
requirements for running in parallel, you may still run the
experiments in a sequential way. For running the sequential
version of the experiments, your system needs at least 4GB
of RAM (running each experiment consumes around 2 GB of
RAM).

4) Software requirements:
• Git (week requirement): a version control system that is

being used for storing all the necessary materials to run
and analyze the experiments: the code of the simulations,
input files, and scripts for extracting the results;

• Nix (weak requirement but strongly recommended): a
multi-platform packet manager (run in Linux, Windows
with WSL, and MacOS) that allows configuring the
experiments in a practical way and allows for repro-
ducibility.

If the reader does not want to install Nix, it is recommended
to use a Linux distribution (preferably Ubuntu or Debian).
Furthermore, it is necessary to install the following programs
and packages/libraries:

• Python 3 (version 3.10.8): Used for modeling and execut-
ing the LP, and extracting data. Necessary libraries and
their versions: PuLP (2.7.0), and argparse (1.1.0);

• R (version 4.1.2): Used for generating the plots. Nec-
essary packages and their versions: tidyverse (1.3.1),
gridExtra (2.3.0), patchwork (1.1.1), viridis (0.6.2),
stringr (1.4.0), rjson (0.2.20), rlist (0.4.6.2).

Finally, if the reader does not want to install Git, the artifact
can also be downloaded from Software Heritage, as stated
before.

5) Datasets: All the necessary data sets to execute the
experiments are available in the input directory. The solar
irradiation data was collected from the MERRA-2 service. The
main input file is in the .json format, containing all the LP
parameters and inputs. Regarding the workload file, it is a
CSV file in text format, where for each time slot, there is the
total CPU cores demand value. More details about these input
files are presented in Section Experiment customization.

6) Installation: Dowload the artifact (either from Software
Heritage or by cloning the Git repository). Installing Nix
is optional, however, if the reader decides not to use Nix,
it is necessary to install Python, R, and all the packages
described in the software requirement section. In the Nix
option, this dependency installation was automated. After
installing all the necessary dependencies, and if you wish
to use Git, you can clone the Git repository to your local
computer with the following command: git clone
https://gitlab.com/migvasc/lowcarboncloud
and then enter in the cloned/downloaded repository.

https://doi.org/10.25666/dataubfc-2023-02-03
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7) Experiment workflow: There are two ways to execute the
experiments: in parallel or sequentially. In the first, the total
execution time of the experiments will be shorter, however, it
has higher hardware requirements (as detailed in the section
Hardware requirements).

If you are using Nix and want to execute the experiments
in parallel, you must use the following command: bash
./scripts/workflow_parallel_nix.sh and if you
want to run the experiments in a sequential way, execute:
bash ./scripts/workflow_sequential_nix.sh.
This command will build a nix environment with all the
necessary dependencies to reproduce the experiments and
execute them.

If you are not using Nix, and you want to execute the experi-
ments in parallel, you must use the following command: bash
./scripts/workflow_parallel.sh and if you want
to run the experiments in a sequential way, execute: bash
./scripts/workflow_sequential.sh.

These script files (workflow_parallel and
workflow_sequential) automate the execution of
the experiments and have 3 main steps. In the first step, the
LP will be executed (using the low_carbon_cloud.py
program) for each scenario (the years 2018, 2019, 2020, 2021,
and the two extra scenarios of only using the grid and only
using PVs and batteries). In the second step, after the execution
of the LPs, the data for generating the plots and the tables
will be extracted (files extract_data_figures.py,
extract_table_v_data.py,
extract_table_viii_data.py, and
extract_table_vi_vii_data.py). Finally, in the
last step, the figures will be generated using the R script file
plots.r.

The total time it takes to run the entire workflow may vary
depending on the machine’s hardware configuration where the
experiments will execute. For example, on our test machine
equipped with an Intel core i9-11950H CPU and 32 GB of
RAM, it took about 1 hour for the parallel version, and about
6 hours for the sequential version.

This execution time is different from the one reported in
the paper because, in this artifact, we are using another solver:
the CBC solver (Pulp’s default solver). In the paper, we used
Gurobi, a commercial solver requiring a license (free license
for academics), so we are providing this artifact using CBC
to avoid costs for the reader who wants to reproduce the
experiments.

8) Evaluation and expected result: Once the experiments
are completed, a results directory will be created. In this
directory, the reader will find:

• For each Table y present in the paper, there is a respective
file table_y_data.csv that contains the data used
for the table;

• Each scenario of the experiment has its own folder. For
example, for the results for the year 2021 there is the
folder results/2021, and within this folder are the
following files:

– metrics.csv contains the values for the metrics
Green Energy Coefficient (GEC) and CO2 Savings,
and Data Center utilization (DCU);

– solution.csv is an auxiliary file to store the val-
ues of the computed variables of the linear program;

– summary_results.csv contains the values for
carbon emissions, which input was used in the ex-
periments, and the runtime;

– For each Figure x present in the paper, there
is a file figure_x.pdf with the plot, and
figure_x_data.csv with the data used to gen-
erate the figure. In the paper, we only presented
the figures for the year 2021, but the figures are
generated for other years as well.

For all the Tables and most of the Figures, the results
presented in the paper and obtained by reproducing the ex-
periments will be the same or very similar.

The reason why some results may be different is that there
are multiple alternative solutions for an LP. In other words, the
optimal value of the LP regarding its objective function will
be the same, but the variable values might differ. In our case,
the computed optimal value for the PV surface area and the
capacity of batteries is the same. The difference might occur in
the variables regarding how much power to charge/discharge
from the batteries, use from the grid, or workload to execute
at a specific data center at a specific time slot.

We provide a script test_output.py that will compare
the results of the experiment execution with the expected
results to automate the validation process. The validation will
consider the sizing and the total carbon emissions. If the
validation succeeds, the following messages will be shown:
“Sizing results validated!! The value obtained is equal to
the expected result.” and “Total emissions results validated!!
The value obtained is equal to the expected result.”. To
do the validation process, the reader may also compare the
output with the tables and figures in the paper and the folder
expected_results.

9) Experiment customization: This section describes how
other scenarios can be executed using the present artifact.
Examples of possible scenarios: using other locations for the
data centers, workloads, and carbon footprint values for PVs,
batteries, and the grid.

The starting point to generate your own scenario is creating
a .json file that will describe all the parameters and inputs
necessary for the Linear Program. This file must be located
inside the input folder. More details about all the necessary
parameters, what they are, and their data type can be found in
the readme.md file of the artifact.

After creating your input file, execute: bash
scripts/run_custom_scenario_nix.sh
example.json if you are using Nix, or execute
bash scripts/run_custom_scenario.sh
example.json otherwise.

Once the experiment execution is complete, all results will
be in the respective results directory. In the previous example,
this directory is named results/example.
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