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Abstract

Linear model reduction techniques design offline low-dimensional subspaces that are tailored
to the approximation of solutions to a parameterized partial differential equation, for the purpose
of fast online numerical simulations. These methods, such as the POD or Reduced Basis (RB)
methods, are very effective when the family of solutions has fast-decaying Karhunen-Loève eigen-
values or Kolmogorov widths, reflecting the approximability by finite-dimensional linear spaces.
On the other hand, they become ineffective when these quantities have a slow decay, in partic-
ular for families of solutions to hyperbolic transport equations with parameter-dependent shock
positions. The objective of this work is to explore the ability of nonlinear model reduction to
circumvent this particular situation. To this end, we first describe particular notions of non-linear
widths that have a substantially faster decay for the aforementioned families. Then, we discuss
a systematic approach for achieving better performance via a non-linear reconstruction from the
first coordinates of a linear reduced model approximation, thus allowing us to stay in the same
“classical” framework of projection-based model reduction. We analyze the approach and report
on its performance for a simple and yet instructive univariate test case.

1 Introduction

The approximation of the solution of a parameterized partial differential equation (PDE) : given µ,
find u solution to

D(u;µ) = 0

can benefit from the a priori analysis of the set of all generated solutions when the parameter µ is
varied, that is,

K := {uµ : µ ∈ P},

where uµ is the solution for the given value µ = (µ1, . . . , µd) of the parameter vector that ranges in
some set P ⊂ Rd. The set K is also referred to as the solution manifold, since it may be thought of as
a parameterized d-dimensional manifold typically immersed in a Hilbert space X, where the solution
to the PDE is well defined. In what follows, the norm in X and the scalar product are respectively
denoted by ∥.∥X and ⟨., .⟩X .

Assuming K to be compact in X, its Kolmogorov m-width defined as

dm(K)X = inf
dim(Xm)≤m

max
v∈K

min
w∈Xm

∥v − w∥X , (1)

describes how well the set can be approximated by an ideally selected (and usually out of reach) m-
dimensional space. If dm has a certain rate of decay as m→ ∞, it is possible to practically construct
low-dimensional spaces Xm that perform with the same approximation rate, by pre-computing offline
a reduced basis consisting of m solutions associated with a well-chosen set of parameters. If dm has a
fast rate of decay, the RB method yields an approximation of the solution for any parameter based
on an algebraic system involving very few unknowns. We refer to [QMN16], [HRS15] or [MP20] for a
presentation of RB methods.

If the parameters µi are considered as random variables and thus uµ is an X-valued random
variable, a stochastic counterpart to these concepts is described by the principal component analysis
in the Hilbert space X, that is, the spectral analysis of the covariance operator

v 7→ E(⟨v, uµ⟩Xuµ),
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once uµ has been recentered so that E(uµ) = 0. Denoting by σ1 ≥ σ2 ≥ · · · the sequence of positive
eigenvalues of this compact self-adjoint operator, and by e1, e2, . . . the Karhunen-Loève orthonormal
basis of eigenfunctions, it is well known that

κ2m := min
dim(Xm)≤m

E( min
w∈Xm

∥uµ − w∥2X) =
∑
n>m

σn,

and that the minimizing space is spanned by e1, . . . , em. This is the starting point to the proper or-
thogonal decomposition (POD) method which amounts to replacing the aforementioned eigenfunctions
by approximations computed offline, based on a sufficiently large set of training solutions.

These linear reduced modeling methods have penetrated industrial applications, a guarantee of their
success. However, there are still cases where these approaches have difficulties to overcome, namely,
when the Kolmogorov width dm or eigenvalues σm do not decay fast.

This is in particular what happens for transport type problems. Even in the conceptually simple
case of constant speed translation of an initial condition given by a step function, where the only
parameter is the position of the discontinuity, it is well known that with X = L2, the numbers dm and
κm decay slowly like O(m−1/2). In other words, for a target precision of ε, the basis is of prohibitive
size O(ε−2).

For families of such functions, substantial gain can be expected when searching for nonlinear
reduced models. Prominent examples of nonlinear approximation include rational fractions, finite
elements on adaptive grids of fixed cardinality, n-term approximations in a basis or dictionary, and
neural networks, see [DeV98, DHP21] for a general treatment. In these methods, the “coordinates”
describing the approximation to a function u are typically nonlinear functionals applied to u, and the
reconstruction map from such parameters is also nonlinear. In the frame of model reduction, we refer
to [AZF12, GFTBM21, BCD+21] that considers libraries of affine reduced models, [BF22] that uses
quadratic manifolds, and [LC20, FDM21, GGJW22, PDG+22, PWL23, BFM23] for neural network
based approaches, see also [BIR18, CMS19, BSU20, HMC22], and [Peh22] for an overview on these
nonlinear approaches.

Interestingly, it appears that an efficient approach to nonlinear model reduction is to maintain linear
functionals for computing the coordinates while performing reconstruction in a well-chosen nonlinear
way. This state of affair is in particular illustrated by the development of compressed sensing in the
last two decades, where signals are reconstructed from linear measurements by nonlinear methods
promoting sparsity, such as ℓ1 minimization.

In this note, we begin by substantiating this idea more precisely in §2, by recalling and comparing
certain notions of linear and nonlinear m-widths. We present in §3 a general approach that consists
in taking as linear functionals the first components in a linear reduced model (RB or POD) that has
been learned offline; and also use the offline stage to learn a computationally tractable nonlinear map
that reconstructs the missing components from these first ones to reach a better accuracy. One key
aspect lies in the type of nonlinear maps that is allowed. This approach is analyzed in §4, in the case
of a simple univariate model of step functions; it is illustrated by numerical tests for this model in §5.

2 Linear and nonlinear notions of m-widths

Generally speaking, the process of dimensionality reduction can be described by a pair of continuous
mappings, the encoder

E : X → Rm,

and the decoder
D : Rm → X.

The maximum distorsion of the encoding procedure over K is given by the quantity

max
v∈K

∥v −D(E(v))∥X .

Then, for a general Banach space X and a compact set K ⊂ X, we can define various notion of widths

inf
D,E

max
v∈K

∥v −D(E(v))∥X ,

by optimizing the choice of E and D, under specific restrictions:
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• If D and E are both assumed to be linear, one obtains the approximation numbers

am(K)X := inf
L

max
v∈K

∥v − Lv∥X ,

where the infimum is taken over operators L of rank at most m.

• If onlyD is assumed to be linear, one obtains the already mentionned Kolmogorov width dm(K)X .
When X is a general Banach space, the inequality

dm(K)X ≤ am(K)X ,

can be strict. Equality obviously holds in the case when X is a Hilbert space since best approx-
imation in a subspace of X of dimension m is achieved by linear orthogonal projection.

• The sensing numbers sm(K)X correspond to the reciprocal situation, where E is assumed to be
linear and D is assumed to be nonlinear. In other words, they can be defined as

sm(K)X := inf
D,λ1,...,λm

max
v∈K

∥v −D(λ1(v), . . . , λm(v))∥X ,

where the infimum is taken over all choice of linear functionals λ1, . . . , λm ∈ X ′ and decoding
map D. These number are closely related to the Gelfand width classically defined as

dm(K)X := inf
λ1,...,λm

max{∥v∥X : v ∈ K, λ1(v) = · · · = λm(v) = 0}.

It is easily checked that sm(K)X = dm(K)X in the case where K is convex and centrally sym-
metric; and that

sm(K)X ≤ dm(K −K)X ≤ 2sm(K)X ,

for a general compact set K and K −K is a notation for the set {u : u = v − w, v ∈ K, w ∈ K}.

• Finally, the nonlinear width or manifold width δm(K)X is defined when no other assumption but
continuity is made on the operators E and D. For numerical stability purpose, it is interesting
to tame this notion by imposing that D and E are both Lipschitz continuous, that is

∥D(a)−D(b)∥X ≤ γ∥a− b∥m and ∥E(v)− E(w)∥m ≤ γ∥v − w∥X , a, b ∈ Rm, v, w ∈ X,

for some fixed γ > 1, with ∥ · ∥m an arbitrary norm on Rm. The resulting infimized quantity
δγm(K)X is referred to as the stable width.

The last two notions of width sm and δm (or δγm) are natural to describe the expected performance
of optimal nonlinear model reduction, since the manifold is approximated by the set D(Rm) – which is
no longer a linear space. However, the sensing numbers take the view that encoding can be restricted
to simple linear measurements.

As already mentionned, the quantities dm and am typically decay slowly for families of piecewise
smooth functions, which reflects the fact that they cannot be well approximated efficiently by linear
spaces. A substantial gain in the rate of decay can be expected however when considering the nonlinear
widths δm and δγm. Interestingly, it appears that this substantial optimal gain is already present when
considering the sensing numbers sm.

As a basic example, consider the two-parameter family of univariate step functions

K := {u := χ[a,a+ℓ] : a ∈ R, ℓ > 0}.

Clearly, the parameters (a, ℓ) are not linear functionals of u. However, any u ∈ K can be exactly
reconstructed from two linear functionals, namely, the first moments

λk(u) =

∫
xku(x)dx, k = 0, 1.

Indeed, λ0 = ℓ and λ1 = 1
2ℓ(2a+ℓ), so that a and ℓ can be exactly recovered from such data. Therefore,

one has sm(K)X = 0 for any m > 2 and for any Banach space X.
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At a more general level, it was proved in [CDPW22] that when X is a Hilbert space, then both
sm(K)X and δγm(K)X are tied to the so-called entropy numbers εm(K)X defined as the smallest value
of ε > 0 such that K can be covered by 2m balls of radius ε. More precisely, it was shown that, on the
one hand, for any s > 0, one has a Carl-type inequality

sup
m>0

msεm(K)X ≤ Cs sup
m>0

msδγm(K)X ,

where Cs depends on (s, γ), and that on the other hand, there exists c > 0 depending on γ > 1 such
that

δγcm(K)X ≤ 3εm(K)X , m ≥ 1.

In the proof of this last inequality, the γ-stable encoding-decoding pair (E,D) which is constructed
has actually a linear E. In turn, one also has

scm(K)X ≤ 3εm(K)X , m ≥ 1.

One consequence of these results is that sm(K)X , δγm(K)X and εm(K)X share the same algebraic rates
of decay.

Remark 1. An additional aspect of non-linear dimensionality reduction is the notion of adaptivity,
which means that the measurements E(u) = (E1(u), . . . , Em(u)) are chosen incrementally, that is, the
functional Em is picked depending on the value of E1(u), . . . , Em−1(u). This allows the definition of
similar notions of adaptive sensing numbers and non-linear widths. Our next described approach is
not of this form, since we use linear functionals that are pre-defined through the standard POD or RB
analysis.

3 Non-linear compressive Reduced Basis approximation

In this contribution, we thus intend to deal with situations where:

• The Kolmogorov widths dm(K)X , or the singular values σn, decay slowly.

• The sensing numbers sm(K)X , and stable non-linear widths δγm(K)X , decay much faster.

In other words, a target accuracy ε > 0 can be reached by dN (K)X or κN , however with a dimension
N = N(ε) much larger than the value of n = n(ε), such that sn(K)X reaches the same accuracy.

Since the optimal linear functionals in the definition of sn(K)X are usually out of reach and could
be computationally unpractical to apply, we take the view of fixing these measurements to be
a small number n of components in the offline computed (orthonormalized) RB or POD
basis (ej)j=1,...,N for some N >> n. Typically, we choose the n first ones, that is,

λj(v) = ⟨v, ej⟩X , j = 1, . . . , n.

Intuitively, it is expected that in the situation where sn(K)X is very small, then the unknown compo-
nent (λj(v))j=n+1,...,N should be somehow dependent, up to a small error, of the n fist ones that carry
most of the relevant information. This idea was at first presented in [BFM23]. Here, we formalize
it and study its validity in detail on a simple step function model, and propose a general numerical
strategy that we test on this model.

Our objective is thus to predict from these first components the extra components λk(v) for k =
n+1, . . . , N that are needed to approximate the functions v ∈ K with target accuracy ε. We are thus
interested to construct N − n functions ψk : Rn → R so that

λ̃k(v) := ψk(λ1(v), . . . , λn(v)),

is a very accurate approximation to λk(v) for k = n+ 1, . . . , N and can be fastly computed.
Let us stress that ψk should typically be a nonlinear function. Indeed consider the ideal case of

the PCA basis computed after having recentered the variable uµ. Then the variables

zj = λj(uµ),
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are uncorrelated and centered, such that, for any k > n,

min
α1,...,αn

E(|zk −
n∑

j=1

αjzj |2 = E(|zk|2).

Thus, the best choice of a linear function would be the null one that does not deliver any information.
On the other hand, the best choice of a nonlinear function in this mean square sense, that is,

minimizing E(|zk − ψ(z1, . . . , zn)|2) over all functions ψ, is given by the conditional expectation

ψ∗
k(z1, . . . , zn) = E(zk |z1, . . . , zn),

which is out of reach and should be approximated by a computationally tractable function.
Our practical approach to the construction of ψk is by learning it in a second step of the offline

stage, after the basis (ej)j=1,...,N has been identified. Having in mind the above mean square loss, one
typical approach is to select ψk within a sufficiently rich class F of nonlinear functions by empirical
risk minimization : with (ui)i=1,...,M a training set of random snapshots ui = uµi , we define

ψk := argmin
{ m∑

i=1

|λk(ui)− ψ(λ1(u
i), . . . , λn(u

i))|2 : ψ ∈ F
}
.

A critical aspect in this approach lies in the choice of the class F , which could be, for example, the
set of:

• Quadratic functions, as in [BF22] or [GWW23].

• Polynomials of some higher degree d > 2.

• Neural networks with a given architecture, as proposed in [BFM23] (see also [LC20] where an
autoencoder-based approximation was proposed, which was in a way a pioneering idea but un-
fortunately not computationally tractable one).

This class should be able to approximate correctly the ideal but out of reach ψ∗
k by a computationally

tractable function ψk ∈ F . Another difficulty with this approach is the fact that when the number
n of informative components is chosen to be not very small, one faces a regressing problem in large
dimension, for which classical methods such as splines or polynomials are known to suffer from the
curse of dimensionality.

For these reasons, we have also considered in our numerical tests regression methods based on trees
(CART) and random forests, that are both universally consistent and able to tackle large-dimensional
problems. These methods seem to deliver the best numerical results for the considered problems.

4 Analysis of a model framework : periodic step functions

In order to investigate the aforementioned questions, we place ourselves in a framework where the
Karhunen-Loève basis is explicitely known. Specifically, we work in the Hilbert space

X = L2(0, 1),

and consider a randomly parameterized family such that

E(uµ(x)) = ū,

independently of x ∈ [0, 1] and such that

E((uµ(x)− ū)(uµ(y)− ū)) = R(x− y),

where R is an even and 1-periodic function. In other words, uµ is a periodic stationary process, its
covariance operator coincides with the convolution operator by R, and therefore its Karhunen-Loève
basis is exactly given by the basis of the Fourier series on [0, 1] (see e.g. [PUP02]).
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More specifically, we consider a simple model of periodic stationary step functions by introducing
the three-parameter family

uµ(x) :=
{ b for x ∈ (a, a+ ℓ) (mod 1)

0 for x ∈ (a+ ℓ, a) (mod 1)
, µ = (a, ℓ, b), (2)

that is, uµ = bχ[a,a+ℓ] in a 1-periodic sense.
Here a, ℓ, and b are assumed to have independent uniform distributions. Taking the base point a

to be uniformly distributed over [0, 1], it is easily checked that the process is periodic stationnary. In
addition, we take the height b to be uniformly distributed in [0, 1] and the length ℓ to be uniformly
distributed in [ℓmin, 1− ℓmin] for some 0 < ℓmin <

1
2 .

The best linear approximation of dimension m = 2n+1 is thus given by the truncation up to k ≤ n
of the Fourier expansion

uµ =
∑
k∈N

αk cos(2πkx) +
∑
k∈N∗

βk sin(2πkx) (3)

where 
α0 = α0(a, ℓ, b) = bℓ

αk = αk(a, ℓ, b) = b sin(2πk(a+ℓ))−sin(2πka)
2πk = b sin(πkℓ)) cos(πk(2a+ℓ))

πk

βk = βk(a, ℓ, b) = b cos(2πk(a+ℓ))−cos(2πka)
2πk = −b sin(πkℓ)) sin(πk(2a+ℓ))

πk

(4)

Clearly σ0 = E(|α0|2) = E(ℓ2)E(b2) = 1
9 ((1 − ℓmin)

3 − ℓ3min). It is also easily checked that the
eigenvalues associated to the functions x 7→ cos(2πkx) and x 7→ sin(2πkx) are the same and are given
by

σk = E(|αk|2) = E(|βk|2) =
c

k2
,

for some c = c(ℓmin) > 0. It follows that the best linear approximation has a mean-square error κ2m
behaving like m−1. Note that, for the corresponding manifold

K := {uµ : a ∈ [0, 1], ℓ ∈ [ℓmin, 1− ℓmin], b ∈ [0, 1]},

one obviously has dm(K)X ≥ κm, since a worst case error dominates the average error. On the other
hand, it is also readily seen that the worst case approximation by Fourier series behaves like m−1/2,
and therefore

dm(K)X ∼ κm ∼ m−1/2.

We also consider the two-parameter family Kℓ0 obtained by freezing the value ℓ = ℓ0 and the one-
parameter family Kb0,ℓ0 obtained by freezing in addition the value b = b0. It is easily checked that one
has the same behaviour m−1/2 for κm and dm after such restrictions.

The one-parameter family Kb0,ℓ0 can be encoded by the data of a, so that its nonlinear width
satifies

δm(Kb0,ℓ0)X = 0, m > 1.

It is easily seen that the data of only one Fourier coefficient is not sufficient to characterize the
elements of this family. Indeed, α0(a, ℓ, b) is independent of a, αk(a, ℓ, b) = αk(1/2 − a − ℓ, ℓ, b), and
βk(a, ℓ, b) = βk(1/4− a− ℓ, ℓ, b) for k ̸= 0.

On the other hand, the recovery of a can be done through the data of the two coefficients α1 and
β1 since

a = − ℓ

2
− 1

2π
arctan

(β1
α1

)
(mod 1) (5)

Similarly, any element in the two-parameter family Kℓ0 , parametrized by a and b, can be recovered
from the data of these two coefficients, since one also has

b =
π

sin(πℓ0)
(α2

1 + β2
1)

1/2.

When more coefficients are available, we note that there is not a unique reconstruction map : for
example from the three coefficients α0 , α1, and β1, we can also recover b according to

b =
α0

ℓ0
.
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Finally, in the case of the three parameter family K, exact recovery of (a, b, ℓ) can be obtained by
solving the nonlinear system  a+ ℓ

2 = − 1
πarctan(

β1

α1 )
πb sin(πℓ) = (α2

1 + β2
1)

1/2

bℓ = α0

(6)

however the exact recovery map does not anymore have an explicit form.
These exact recovery procedures induce for all k > 1 an exact recovery map ψ∗

k such that

αk = ψ∗
k(α0, α1, β1).

and similarly an exact recovery map ψ̃∗
k such that

βk = ψ̃∗
k(α0, α1, β1),

In this very simple case, the success of the learning strategy outlined in the previous section therefore
depends on how these maps can be approximated by the family F .

A simple intuition can be given when looking at the particular case of ψ̃∗
k for the one-parameter

family Kb0,ℓ0 , when b0 = 1 and ℓ0 = 1
2 . Then, we find that

βk = b
sin(πk/2) cos(2πka)

πk
,

which is null for even values of k, and for odd values k = 2j + 1 satisfies

βk =
b

kπ
(−1)jTk

(π
b
β1

)
,

where Tk is the Chebychev polynomial of degree k. Therefore for such values, the optimal reconstruc-
tion is exact and given by

ψ̃∗
k(x, y, z) =

b

kπ
(−1)jTk

(π
b
z
)
.

Clearly, the function ψ̃∗
k cannot be well approximated by polynomials of moderate dimensions for large

values of k. On the other hand, it is well known that the derivative of Tk has maximal norm of order
k over [−1, 1], and this implies that the functions ψ̃∗

k are Lipschitz continuous with Lipschitz constant
bounded independently of k > 0.

This property holds in more generality from the following argument: the derivative of the arctan
function being upper bounded by 1, the recovery of a from α1(a, ℓ0, b0) and β1(a, ℓ0, b0) is stable as

da

dα1
=

1

2π

1

1 +
[
β1

α1

]2 β1α2
1

= − 1

2π

β1
α2
1 + β2

1

(7)

and
da

dβ1
= − 1

2π

1

1 +
[
β1

α1

]2 1

α2
1

= − 1

2π

α1

α2
1 + β2

1

(8)

are both bounded since, by construction,

[α1]
2 + [β1]

2 = b20
sin2(πℓ0)

π2
.

Hence, an error in the values of α1 or β1 will induce an error of comparable size on a. The same hold
for the determination of b in the case of Kℓ0 .

On the other hand, it is readily seen from the definition of Fourier coefficients that the two maps

µ 7→ αk(uµ) and µ 7→ βk(uµ),

are Lipschitz continuous with Lipschitz constants bounded independently of k > 0. In turn, the stable
recovery of a and b from α0, α1 and β1, induces recovery maps

(α1(a, ℓ0, b0), β1(a, ℓ0, b0)) 7−→ (αk(a, ℓ0, b0), βk(a, ℓ0, b0)) (9)
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and
(α0(a, ℓ0, b), α1(a, ℓ0, b), β1(a, ℓ0, b)) 7−→ (αk(a, ℓ0, b), βk(a, ℓ0, b)) (10)

that are Lipschitz continuous with Lipschitz constants bounded independently of k > 0.
This state of affairs explains that universally consistent methods such as random forests are well

adapted for the joint approximation of ψ∗
k and ψ̃∗

k, while approaches based on low order polynomials
are doomed to fail. This is confirmed by the numerical tests presented in the next section.

In the perspective of recovering more general piecewise smooth functions, we expect that the low-
order components are affected by the smooth pieces in addition to the jumps, while the high-order
components are only affected by the jumps. Thus it is interesting to adress the question of the recovery
of the parameters of the step function from a few components αk and βk for larger values of k.

This task appears to be more involved and requiring more coefficients. For example, when recovering
a as in (5), we find

a = − ℓ

2
− 1

2π
arctan

[βk
αk

]
(mod 1/k). (11)

One possiblity to lift the indeterminacy (mod 1/k) is to combine the information coming from (11)
and

a = − ℓ

2
− 1

2π
arctan

[βk+1

αk+1

]
(mod 1/(k + 1)) (12)

since a = a′, (mod 1/k), a = a′, (mod 1/(k + 1)), and a, a′ ∈ (0, 1) imply a = a′.
Thus we can in principle recover the parameters a and b out of 4 coefficients of arbitrary high

frequencies (k, k + 1). However we also observe that the stability of this recovery is deteriorated since
da
dαk

and da
dβk

increase linearly with k. We may hope to improve the stability by using a larger number

of coefficient values with indexes (k, k + 1, . . . , k + d) for some d > 1.

5 Numerical illustrations

In this section, we investigate the ability of different methods to learn mappings that use different
amount m of components, namely

m = 2, (α1, β1) 7−→ (αk, βk)
m = 3, (α0, α1, β1) 7−→ (αk, βk)
m = 5, (α0, α1, β1, α2, β2) 7−→ (αk, βk)

for each of the three families Kb0,ℓ0 (Figures 1 and 2), Kℓ0 (Figures 3 and 4), K (Figures 5 and 6),
for all 2 ≤ k ≤ 500. In these Figures, the average recovery error for the αk and βk are presented in a
symmetric manner, on the left and right side of the x-axis respectively.

The learning methods are

• linear regression: F is the set of linear functions.

• quadratic regression: F is the set of polynomials of total degree 2.

• quartic regression: F is the set of polynomials of total degree 4.

• decision tree [HTF09]

• random forest [Bre01] [GEW06]

For all the numerical illustrations we used Python 3.8 and scikit-learn 1.2.2 [PVG+11] for the
implementation of each of the regression methods described above. For more information, the code
can be found at https://github.com/agussomacal/NonLinearRBA4PDEs

As can be expected, linear regression give the same results as the null forecast, and quadratic and
quartic regression give the same (bad) result here, with some improvement over the null forecast only
for very small value of k in certain cases (see Figures 3 and 4).

In contrast, decision tree and random forest are well suited as can be seen for the one parameter
family on Figure 1, with improved results on Figure 2 obtained from a larger training samples (10 000
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rather than 1 000). This reflects the universal consistency of the these methods that are guaranteed
to converge towards the regression function as the number of sample tends to +∞.

The same also holds for the two parameter family, as seen on Figures 3 and 4 : the problem is
slightly more involved but nevetheless decison tree and random forest manage to obtain a fair (resp.
good) approaximation after a learning phase of 1 000 (resp. 10 000) training samples.

Figure 1: In this figure we plot the error obtained from different recovery methods for the family
Kb=1,ℓ=.5 where we recover all coefficients αk and βk in (3) for 2 ≤ k ≤ 500 from 2 (left) 3 (center)
and 5 (right) Fourier coefficients with different approaches: linear, quadratic, quartic, tree and random
forests. Note that linear, quadratic, quartic are superposed and do not improve over the trivial recovery
of the missing modes by value 0. The learning phase is based on 1 000 training samples. The x-axis
represents (in a log scale) the index k of αk and the index k of βk and the y-axis the mean-square
reconstruction error on the mode.

Figure 2: Sames test as Figure 1 with 10 000 training samples.

The numerical results for the three parameter family are displayed on Figure 5 for the range
ℓ ∈ [0.4, 0.6], and on Figure 6 for the range ℓ ∈ [0.01, 0.99], that is ℓmin = 0.4 and 0.01 respectively.
One first observation is that all methods fail in the case of m = 2 known component since they are
unsufficient to characterize an element of K. Secondly we observe that the performance deteriorates
as ℓ is allowed to be very small in which case the exact recovery becomes less stable in view of the
multiplicative coupling between b and ℓ in the last two equations of the system (6). These last results
reveal difficulties for these too simple non-linear recovery methods to achieve a satisfactory recovery.
We expect that more involved approaches such as deep neural networks can improve this state of affair.

Finally, in the case of the two parameter family (ℓ fixed), we study the recovery error of (αk, βk) for
k > 10 + d when using information from high frequency coefficients (αj , βj) for j = 10, 11, . . . , 10 + d.
As explained in the end of the last section, the exact recovery is feasible for d = 1, yet less stable and
thus more difficult to learn. This is confirmed by Figure 7, where we see an improvement when using
a larger value of d and a larger training sample.
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Figure 3: Same test as Figure 1 for the two parameter family Kℓ=.5, using 1 000 training samples.

Figure 4: Same test as Figure 3 for the two parameter family Kℓ=.5, using 10 000 training samples.

Figure 5: Same test as Figure 1 for the three parameter family K, using 10 000 training and ℓmin = 0.4.
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