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Abstract

Saturnʼs moon Enceladus is a top candidate in the search for extraterrestrial life in our solar system. Ecological
thermodynamic modeling of the plume composition data collected by NASAʼs Cassini mission led to the
hypothesis that a hydrogenotrophic methanogenic ecosystem might exist in the putative hydrothermal vents at
Enceladusʼs seafloor. Here we extend this approach to quantify the ecosystemʼs expected biomass stock and
production and evaluate its detectability from the collection of plume material. We find that although a hypothetical
biosphere in Enceladusʼs ocean could be small (<10 tons of carbon), measurable amounts of cells and organics
might enter the plume. However, it is critical that missions be designed to gain meaningful insights from a negative
outcome (no detection). We show that in order to sample a cell from the plume with 95% confidence, >0.1 mL of
material needs to be collected. This would require material from more than 100 fly-bys through the plume or using
a lander. We then consider amino acid abundance as an alternative signature and find that the absolute abundance
of amino acids, such as glycine, could be very informative if a detection threshold of 1× 10−7 mol L−1 could be
achieved. Altogether, our findings set relatively high bars on sample volume and amino acid detection thresholds,
but these goals seem within the reach of near-future missions.

Unified Astronomy Thesaurus concepts: Astrobiology (74); Saturnian satellites (1427); Planetary science (1255);
Biosignatures (2018)

1. Introduction

On Earth, hydrothermal circulation of seawater in the
oceanic lithosphere triggers a set of reactions known as
serpentinization that produces dihydrogen (H2). H2 molecules
may then react with the seawater’s carbon dioxide (CO2) to
produce methane (CH4) according to the reaction equation
(here written for 1 mol of H2, the electron donor):
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This reaction can occur spontaneously (albeit slowly) in
serpentinization fluids (McCollom 2016). Serpentinization
fluids are released at seafloor hydrothermal vents, geological
features known to harbor complex ecosystems that rely on
chemical gradients instead of sunlight as their primary energy

source (Jannasch & Mottl 1985). In particular, reaction (1) can
be enzymatically catalyzed by hydrogenotrophic, methano-
genic archaea that use it as their catabolic reaction—the
reaction that provides the cell with energy (Hedderich &
Whitman 2013). Biological production of methane through
reaction (1) is called methanogenesis.
Enceladus, the sixth-biggest moon of Saturn, might have

similar hydrothermal vents in direct contact with its water ocean
laying under a thick ice shell and over a rocky core (Iess et al.
2014; Hsu et al. 2015; Thomas et al. 2016). Warm buoyant water
released at the seafloor rises upward, forming a rotating ocean
plume that reaches the top of the water column (Goodman &
Lenferink 2012; Choblet et al. 2017; Steel et al. 2017). Through
cracks in the ice crust, oceanic material is outgassed and forms a
plume of water vapor and ice grains (Spencer et al. 2013). Some
of these particles contain salt and organic compounds, including
high-mass molecules (macromolecules), suggesting that they are
frozen droplets originating from gas bubbles bursting through an
organic-rich film (Postberg et al. 2018). Bubble walls constitute
an interface that attracts organics from the water table it
traverses, thus increasing their concentration in the ocean spray
(Walls et al. 2014). This process, known as bubble scrubbing,
could occur during the formation of Enceladus’s plume (Porco
et al. 2017) as an important process in defining the effective
composition of plume material relative to that of the bulk ocean
or of the ocean plume.
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While hydrothermal circulation in Enceladus’s rocky core,
unlike Earth’s, is likely powered by tidal dissipation (Choblet
et al. 2017), serpentinization might occur still (Waite et al.
2017). Previous work suggested that reaction (1) could be
thermodynamically favored in Enceladus’s ocean (Waite et al.
2017). It was also demonstrated that Earth’s hydrogenotrophic
methanogens could grow under putative Enceladus’s seafloor
conditions (Taubner et al. 2018) and that the observation of a
H2/CO2 thermodynamical disequilibrium remains compatible
with chemical energy consumption by methanogens (Hoeh-
ler 2022). Ecological thermodynamic modeling was used to
quantitatively evaluate the habitability of Enceladus’s hydro-
thermal vents for methanogens and estimate the likelihood of
methanogenesis given H2 and CH4 abundances in the plume
inferred from the Cassini data. The data appear to be
compatible with sufficient H2 production to allow a population
of methanogens to grow and with production of CH4 by abiotic
serpentinization chemistry and a biotic population together, but
as other abiotic sources of methane remain poorly constrained,
this does not provide conclusive evidence in favor of living
organisms (Affholder et al. 2021). To further investigate the
possibility of a biological population in Enceladus’s ocean, the
critical challenges are to (i) predict biosignatures that would
provide more direct evidence and be accessible to future
missions and (ii) design such a mission so as to maximize
scientific return, especially in the case of a negative result.

Previous work has focused on the concentrations of cells
(Bedrossian et al. 2017; Porco et al. 2017) or organics (e.g.,
amino acids; Steel et al. 2017; Guzman et al. 2019)
hypothetically present in the plume material and discussed
how future missions could measure them. Here we build on the
model presented in Affholder et al. (2021) to calculate the
biomass stock and productivity of a hypothetical population of
methanogens in Enceladus’s ocean. In doing so, we are able to
estimate cell densities and concentrations of biotically
produced organics in a radially structured model of Enceladus’s
hydrothermal vent environment. We then can estimate the
density of cells and organics in the initial ocean plume resulting
from the buoyant hydrothermal fluid (HF)/seawater mix that
composes the hydrothermal environment. The stock biomass
that can be supported by Enceladus’s hydrothermalism is not
necessarily the same quantity as the biomass that can be found
in the ocean plume. We therefore explicitly model the
relationships between a population living in the hydrothermal
vents and cells or organics that escape this environment and
travel with buoyant water to the ice shell.

Our modeling approach relies on a description of biological
energetic processes that ultimately govern the efficiency of
hydrogen conversion by a population of methanogens, as well
as on a spatial model of the hydrothermal environment and its
chemical and temperature gradients. Thus, we expect our
estimates of cell or biomass density to be more realistic—and
more conservative—than those produced by models assuming
complete conversion of H2 into CH4 (e.g., Bedrossian et al.
2017; Steel et al. 2017) or assuming constant catabolic energy
yield for biomass generation (such as in Ray et al. 2021). Using
this model, we obtain estimates of a priori credible amino acid
and cell abundances in the plume under the assumption of
methanogenesis, as well as estimates corresponding to a
biomass stock and production best matching methane and
dihydrogen measurements in the plume. In doing so, we show
how previous data from the Cassini mission, as well as current

knowledge of serpentinization systems, can be used to
formulate assumptions and models of Enceladus’s hydrotherm-
alism and provide quantitative, testable predictions. This could
help design the experiments that could yield the best possible
scientific return from a future mission to Enceladus.

2. Methods

The model presented here builds on the modeling and
inference framework of Affholder et al. (2021) but focuses on
quantities that were left out of their analysis such as biomass
stock and biomass production. Indeed, Affholder et al. (2021)
focused on the existence of a population and its effect on the
local composition and ultimately on escape rates of volatile
species in the plume, but they did not evaluate cell densities or
ecosystem productivity.

2.1. Model of the Hydrothermal Environment

In Affholder et al. (2021), the hydrothermal environment is
idealized as a single flat cylinder on the seafloor corresponding
to a mixing layer (ML), in which HF is mixed with seawater.
Given a total power dissipated hydrothermally of F= 5 GW
(Choblet et al. 2017), the HF temperature Tf (in K, variable),
and the ocean’s temperature To= 275 K (Glein et al. 2015),
steady-state physical quantities defining the hydrothermal
environment are derived. Jf(u) and Jc(u) are, respectively, the
surface advection flux in the environment (of HF) and the
upward buoyancy flux coming out of the ML (both in
kg s−1 m−2) as a function of u, the distance to the center
(meters). The expression of Jc(u) is obtained by calculating the
velocity of the water mass of temperature T(u) at the top of the
ML (height òm) assuming that it has initial velocity of zero.
This is done by integrating the expression of the temperature
anomaly buoyancy acceleration (Equation (2) in Goodman
et al. 2004):

J u g T u T2 , 2c o( ) ( ( ) ) ( )r a= -

where ρ (1000 kg m−3) is seawater mass density, α

(3× 10−4 K−1) is the coefficient of thermal expansion of
water, and g (0.12 m s−2) is the local gravitational acceleration.
Note that the unitary surface is removed from this equation for
readability (see Equation (6) in Affholder et al. 2021). Strictly
for numerical purposes, the thickness of the ML ò is assumed to
be of the order of a meter (we set it to ò= 1 m throughout), as it
is intermediate between the height of the tallest spires in the
Lost City Hydrothermal Field (LCHF; ≈60 m, Kelley et al.
2005) and the centimeter local scale of chimneys and ledges
where archaea are present (Schrenk et al. 2004). In practice, the
scale-free properties of the physical model imply that the value
of ò or the assumption of a single vent instead of several has no
influence on the quantities we calculate (see Appendix A).
The shape of function Jf(u) (kg s−1 m−2), the mass flux

density of HF into the ML as a function of the distance, is
assumed to be

J u J e 3f max
u
c

2( ) ( )( )= -

and is governed by parameters Jmax (maximum flux, in
kg s−1 m−2) and c (horizontal scale, in m). In effect, c
represents the distance from the center at which
J c J ef max( ) = , or equivalently x*(c)= e−2/3≈ 0.5 (the mixing
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ratio at this distance is 1:1 HF vs. seawater). Keeping in mind
that this model is an idealized representation of the hydro-
thermal environment, this scale would be ≈8 m for a 5 GW
vent releasing 353 K fluid (or about 2 cm for a 40 kW, 353 K
vent, the predicted output from the LCHF; Lowell 2017). They
are obtained by ensuring that power F is dissipated by the
advection of HF and by setting J J J0f c T u Tmax f

( ) ∣ ( )= = = :

J dS rJ u du
F

C T T
2 , 4

S
f f

p f o0
( )

( )
( )ò ò p= =

-

¥

where S (m2) is the hot spot surface area, and hence


c

F

C g T T
, 5

p f o

2

3( )
( )

p r a
=

-

where Cp is the specific heat capacity of water
(4200 J K−1 kg−1).

Given the chemical composition of the HF and of the
seawater, the steady-state composition in the ML {Ci(u)}
(concentration of molecule i in mol kg−1) is also obtained.
Together, the physical and chemical gradients surrounding the
hydrothermal vent define the environment in which a
population of methanogens may grow. A population of
methanogens changes the steady-state composition of the ML
as explained in Affholder et al. (2021) and summarized below.
The flux of i coming from the hydrothermal environment is
then given by

J u C u udu2 . 6i c i
0

( ) ( ) ( )ò pF =
¥

The concentration of i at the base of the ocean plume, assuming
that buoyant ML water mixes together, is

C
J u C u udu

J u udu

2

2
. 7i

c i

c

OP 0

0

( ) ( )

( )
( )

ò

ò

p

p
=

¥

¥

It is interesting to note that in Affholder et al. (2021)
assumptions that constrain Jc(u), the flux of HF in the ML,
lead to an HF-to-seawater mixing ratio in the initial ocean
plume that is independent of the vent’s scale and of the HF’s
temperature and equals 1/3 (proof is obtained by expressing
the stationary-state mixing ratio in the initial plume:
x*OP= ∫xJc/∫Jc; see Appendix A). This HF-to-seawater ratio
for the initial ocean plume, just above the ML, sets a
benchmark comparison to the total HF-to-seawater dilution of
1:10 numerically estimated in Steel et al. (2017). All parameter
values in the physical model are listed in Tables 1 and 2.

2.2. Stationary Biomass of a Methanogenic Population

Our biological model assumes that a minimal amount of
energy is required to sustain cellular integrity and function,
called the maintenance energy, and that the energy yield of the
catabolic reaction varies as the population alters the composi-
tion of the medium. This second point is relevant to the
assumption that a putative Enceladean methanogenic biosphere
might be limited by the energy yield of the catabolic reaction
more than by electron donor availability. This assumption
might be particularly relevant in the context of chemo-litho-
autotrophs such as the hydrogenotrophs described here because
the catabolic reaction yields low amounts of energy compared

Table 1
Parameters of the Physical Model of the Hydrothermal Environment

Parameter Value Unit Description Reference

To 275 K Ocean temperature
g 0.12 m s−2 Enceladus gravitational acceleration Choblet et al. (2017)
F 5 · 109 W Hydrothermal vent heat dissipation power Choblet et al. (2017)
ò 1 m ML thickness
Cp 4200 J K−1 kg−1 Specific heat capacity of liquid water
α 3 × 10−4 K−1 Thermal expansion coefficient for liquid water
ρo 1000 kg m−3 Seawater mass density

Note. Adapted from Affholder et al. (2021).

Table 2
Range for the Concentrations and the Temperature of the Hydrothermal Fluid and the Concentrations in the Ocean (Ocean Temperature Is Fixed at To = 275 K) That

Were Used in Simulations

Parameter Distribution Unit Meaning

H f2[ ] Ulog 10 , 10e
8 1( )- - mol kg−1 Concentration of H2 in the HF

H o2[ ] Ulog 10 , 10e
8 6( )- - mol kg−1 Concentration of H2 in the ocean

CH f4[ ] Ulog 10 , 10e
8 4( )- - mol kg−1 Concentration of CH4 in the HF

CH f4[ ] ¢ Ulog 10 , 10e
8 1( )- - mol kg−1 Concentration of CH4 in the HF (alternate scenario)

CH o4[ ] Ulog 10 , 10e
8 6( )- - mol kg−1 Concentration of CH4 in the ocean

DIC f[ ] Ulog 4 10 , 10e
8 6( )´ - - mol kg−1 Dissolved carbon concentration in the HF

DIC o[ ] Ulog 4 10 , 10e
3 1( )´ - - mol kg−1 Dissolved carbon concentration in the ocean

Tf U(320, 600) K HF temperature
FGly Ulog 0.19, 10.4410 ( ) g s−1 Abiotic glycine production in the HF

Note. These ranges are taken from Affholder et al. (2021). U denotes the uniform distribution.
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to most other catabolisms (Kleerebezem & Van Loos-
drecht 2010). It thus seems important to couple cellular and
population dynamics with energy yield changes using the
Nernst equation (Equation (13); see also Higgins &
Cockell 2020).

As our model only considers energy provided by the
catabolic reaction as the resource consumed by the population,
it amounts to assuming that the viability (initial growth rate)
and the biomass production and stock are limited by the
catabolic energy yield rather than nutrient availability. It is not
currently known whether autotrophic production in hydro-
thermal vents is energy or nutrient limited, and it is not
straightforward to find out. Autotrophic methanogenic archaea
can fix nitrogen if deprived of bioavailable NH4

+ and are thus
unlikely to be limited by nitrogen availability in Earth’s
ecosystems where N2 is abundant (DeMoll 1993). In Earth’s
natural settings where methanogens are found, H2 is observed
to be consumed rapidly, even if present at low concentrations
(Wolin 1976), suggesting that H2 rather than anabolic nutrients
may be limiting, which is consistent with the catabolic energy
yield being limiting. Moreover, it is likely that NH4

+ and
phosphorus are both present in Enceladus’s ocean, thus making
it less likely that the growth of methanogens be limited by
either of these nutrients (Cable et al. 2021; Hao et al. 2022).

Methanogens catalyze reaction (1) yielding the specific
catabolic rate qcat (s−1) and use the Gibbs free energy
associated with it (noted ΔGcat) to fuel their metabolism. In
particular, cells need to fulfill their specific maintenance
requirements em (J mol−1 s−1; see expression in Table 3) in
order to allocate energy to growth. The model by Affholder
et al. (2021) assumes cell internal steady state (between growth
and division), which allows one to focus on bulk biomass while
ignoring cell density and bypassing the need for a specific
relationship between a cell’s internal biomass and division rate.
Such a relationship needs to be modeled in order to derive cell
density in addition to biomass concentration. Sauterey et al.
(2020) proposed the following expression for the division rate
r (s−1) as a function of internal biomass Bc (in moles of carbon,
molC):

8

r B
r

B B B
B B

r B

1

60 60 24 1 2
if 2

0 otherwise.

c
c

c

c

max

struct struct
struct⎧

⎨
⎩

( )

( )
(( ) )

( )

=
´ ´ + -

>

=

q-

where r 50max = day−1 (hence the conversion to seconds) is the
theoretical maximum initial growth rate (the model hyperther-
mophilic methanogen Methanococcus jannaschii was observed

dividing up to 55 times a day in optimal conditions; Jones et al.
1983), θ= 10, and Bstruct is a minimal quantity of biomolecules
(in carbon moles) the cell needs in order to divide. This
quantity is derived from the cell’s volume V (in μm3) through
(Menden-Deuer & Lessard 2000; Ward et al. 2012)

B V1.8 10 . 9struct
14 0.94 ( )= ´ -

This empirical law is a power law of cell volume (of the form
aVb) commonly used in ocean ecosystem modeling for diverse
biological parameters and rates (Ward et al. 2012), and it was
also used in Sauterey et al. (2020) for modeling the Archean
Earth’s biosphere. The parameters of this power law were
found in Menden-Deuer & Lessard (2000). Here we assume
that cells are spheres of 1 μm radius (which is the typical scale
for methanogenic archaea; e.g., Oren 2014). As a result,
Bstruct≈ 6.92× 10−14 molC, or about 8.30× 10−13 gC.
Change in the cell’s internal biomass follows

dB

dt
q r B B , 10c

c cana( ( )) ( )= -

where qana is the specific anabolic rate (s−1), the rate at which
biomolecules are produced in the cell. Assuming internal
steady state (Bc

* such that dBc/dt= 0) yields

*q r B , 11cana ( ) ( )=

hence the following equation for the bulk biomass concentra-
tion B= NBc

* (mol L−1, with N the cell density in L−1):

dB

dt
q d B, 12ana( ) ( )= -

where d= 0.03 day−1 is a constant, density-independent death
rate (Connolly & Coffin 1995; Affholder et al. 2021).
Parameter qana is computed from the catabolic energy yield
λ=−ΔGcat/ΔGdiss, where ΔGdiss≈ 1000 kJ mol−1 is the
energetic cost of building 1 mol of biomass (formally, this term
is usually separated into a dissipation term and the negligible
biosynthesis Gibbs free energy ΔGana; Affholder et al. 2021)
and

G G RT Qln , 13cat cat
0 ( )D = D +

with Gcat
0D the standard Gibbs free energy of the catabolic

reaction, R= 8.314 J K−1 mol−1 the ideal gas constant, T the
temperature (K), and Q the reaction quotient. For reaction (1),
by approximating activities of chemical species with their

Table 3
Parameters of the Biological Model

Parameter Value Unit Description Reference

Gr S,cat
0D −32.6 kJ mol−1 Standard Gibbs energy of the catabolic reaction

Hr S,cat
0D −63.2 kJ mol−1 Standard enthalpy of the catabolic reaction

em(T) e84 R T
69,400 1

298
1( )- kJ day mol1

C
1- - Specific cell maintenance energy Tijhuis et al. (1993)

ΔGdiss 1088 kJ molC
1- Required energy dissipation for biomass synthesis Affholder et al. (2021)

Teq 90 °C Temperature at which activated and inactivated enzymes are in equal quantity Daniel et al. (2010)
ΔGacat 72 kJ mol−1 Activation energy of the catabolic reaction Daniel et al. (2010)
ΔHeq 305 kJ mol−1 Equilibrium enthalpy of enzyme deactivation Daniel et al. (2010)
τ 1.73 × 10−5 dimensionless Ratio of catabolic enzymes to biomass Affholder et al. (2021)
d 0.03 day−1 Baseline cell death rate Connolly & Coffin (1995)

Note. Adapted from Affholder et al. (2021).
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aqueous concentrations (denoted by the square brackets), we
obtain

Q
CH

H CO
. 144

0.25

2 2
0.25

[ ]
[ ][ ]

( )=

The standard Gibbs free energy is approximated by

G T G
T

T
H

T T

T
, 15r r S

S
r S

S

S
cat
0

,cat
0

,cat
0( ) ( )D = D + D

-

where G 32.6r S,cat
0D = - kJ mol−1 and H 63.2r S,cat

0D = -
kJ mol−1 are, respectively, the standard Gibbs free energy
and standard enthalpy of the catabolic reaction at TS= 298 K.
qana also depends on temperature-sensitive kinetic parameters
described in Affholder et al. (2021) and recalled here:

q q q , 16mana cat ( )l= -

where qm= em/ΔGdiss (s
−1) and qcat (s

−1) is the enzymatically
accelerated rate of the catabolic reaction, calculated using
enzymatic rate modeling as in Daniel et al. (2010),

q q
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K e , 17
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1
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eq 1
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=

=

=

+

-
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D

D

where kB= 1.38× 10−23 J K−1 is the Boltzmann constant and
h= 6.63× 10−34 J s is the Planck constant. The meaning,
values, and units of τ, ΔGa,cat, ΔHeq, and Teq are given in
Table 3. Note that we introduce a slight change in notation
compared to Affholder et al. (2021), as they defined
qm=− em/ΔGcat, which is the threshold catabolic rate (the
catabolic rate required to compensate maintenance loss) and
not the maintenance rate per se. The catabolic rate couples
biomass dynamics with the medium’s composition according to


dC

dt
J C C J C C Y q B

1
, 18i

f f
i

o
i

c o
i

i i cat( ( ) ( )) ( )
r

= - + - +

where Ci
o and Ci

f are the concentrations of i in the ocean and the
HF, respectively (Equation (19) in Affholder et al. 2021) and Yi
is the stoichiometric coefficient of molecule i in the catabolic
reaction (e.g., Y 1H2 = - ). Ultimately Equation (18) is solved to
calculate Ci

OP, the concentration of i in the initial ocean plume
according to Equation (7). The biological model and temper-
ature alone set the steady-state (qana= d in Equation (12)) value
of the catabolic reaction free energy, obtained from
Equation (16),

*G T
G

q T
d q , 19mcat

diss

cat

( )
( )

( ) ( )D = -
D

+

which has its highest value (lowest energy limitation) at the
optimal growth temperature Topt≈ 77°C, ΔGcat

*(Topt)≈
−23 kJ mol−1. In other words, growth can occur only if
ΔGcat(T)�ΔGcat

*(T)�− 23 kJ mol−1 and at the steady state
of the microbial population, ΔGcat(T)=ΔGcat

*(T). This limit
value of ΔGcat

*(Topt) is slightly lower (and thus more
conservative) than estimates of the minimally required

catabolic energy yield summarized in Hoehler (2004), which
typically stand in the −10 to −20 kJ mol−1 range.
We use Equations (13), (14), and (19) to express the value of

the steady-state reaction quotient Q*. Then, Equation (22) in
Affholder et al. (2021) allows us to rewrite Equation (14) and
solve numerically a system of three equations, one for each
reactant and product in Equation (1), to obtain the steady-state
concentrations of molecules involved in the catabolic reaction
Ci

*. Ultimately, Equation (18) equal to zero is solved for the
steady-state values of bulk biomass concentration B*. Using
Equation (8), combined with Equations (11) and (16), allows
the derivation of the steady-state cell density N* = B*/Bc

*,
where Bc

* is obtained by solving Equation (8) at the steady
state of the population (Equation (12) equal to zero):
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Note that with θ= 10, Bc
* (and thus N*) is weakly dependent

on rmax (10% change when rmax is changed from 1 to 100).
Thus, Bc

* to the first order depends on the empirically derived
Bstruct.
The total biomass or number of cells in the Enceladean

hydrothermal environment is then obtained by integrating B*

and N* over the volume of the ML:

*

*





N N u udu

B B u udu

2

2 .
21

tot

tot

⎧

⎨
⎩⎪

( )

( )
( )

ò
ò

r p

r p

=

=

2.3. Productivity of a Population of Methanogens

The productivity of the system is defined as the production
of biomass when the system is at steady state. By definition, the
productivity at steady state is equal to the total mortality. It is
the quantity of biomass that leaves the stock of living cells per
unit of time. It includes “waste” molecules corresponding to the
maintenance loss term, but also the biomass in cells that die.
Here the biomass mortality is equal to the constant death rate
plus the maintenance term em defined in Equation (16). Thus,
combining Equations (12) and (16), the specific productivity PB

(molC s
−1 molC

1- ) is given by

P
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G
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+

Consequently, the productivity of the population at steady state
is PBB

* integrated over the ML,

*P P u B u udu2 . 23B B,tot ( ) ( ) ( )òr p=

2.4. Dead Cells and Waste Biomass Densities in the Initial
Plume

At steady state, the population does not stop dividing, but it
replaces cells lost to mortality and waste (biomolecules that lost
their function) through maintenance. Here we track two
quantities: the number of dead cells produced by the
stationary-state population and the productivity of the system.
The former is simply the number of cells (dead cells, Nd, kg

−1)
that may leave the localized environment (hydrothermal vent
surroundings). This is equivalent to assuming that these
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organisms live fixed in the ML (without assuming a specific
fixation mechanism, which could be a biofilm; e.g., Brazelton
et al. 2006). Thus, the derivative of the dead cells’ concentra-
tion at a given location around the hydrothermal vent is


dN

dt
Nd

J
N 24d c

d ( )
r

= -

with steady state

* *


N
J

N d, 25d
c

( )r
=

where ρ= 1000 kg m−3 is the seawater density and ò= 1 m is
the ML thickness. In Appendix B, we show that the calculation
of the steady-state concentration of cells that leave the ML is
independent of the entrainment rate at which dead cells are
detached from the biofilm (as long as it is not zero). Second, the
productivity defined in Equation (22) can serve to estimate the
total concentration of free-floating biomass in the ML
(Bd, mol kg−1) that is carried upward with buoyant water:
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Ultimately, concentrations in the initial ocean plume are
obtained by combining Equations (7), (25), and (27). As the
ocean plume travels upward in the ocean and as oceanic
material traverses the ice crust and is outgassed into space, its
composition might be altered by additional dilution, bubble
scrubbing, or other unknown processes. Here we assume as the
baseline scenario that the concentrations of organics and cells
in the plume are the same as in the initial ocean plume. This
assumption is later discussed in Section 3.5.

2.5. Prior and Posterior Densities

2.5.1. Monte Carlo Sampling of Numerical Simulations

Prior densities are estimated by running 20,000 simulations
with parameters (composition and temperature of the HF and
ocean) randomly drawn from the distributions defined in
Affholder et al. (2021) (these distributions are recalled in
Table 2).

As the present study focuses on the detectability of a
hypothetical biosphere, only 8763 simulations that produced
habitable conditions were retained, and the distribution of their
outputs (cell density, total biomass, glycine concentration) is
referred to here as the prior density. Therefore, this distribution
corresponds to the portion of the parameter space bounded by
maximum concentrations of H2 and CH4 obtained in
serpentinization experiments (e.g., McCollom & Donald-
son 2016) and maximum fluid temperature estimated in
Choblet et al. (2017) that allows a population to exist,
regardless of its stock biomass and productivity. The posterior
density is estimated from retaining the 1000 “biotic+abiotic”
simulations (that are habitable and for which a population is
simulated) that produced observables closest to Cassini
observations (hydrogen and methane escape rate in the space
plume reported in Waite et al. 2017), a standard method known
as the k nearest neighbors (KNN; see Csilléry et al. 2010;
Affholder et al. 2021, for details). Because the posterior

distribution is calculated only from biotic+abiotic simulations,
this sets a stronger a priori constraint on the hydrogen escape
rate H2F , which happens to match the latest estimates from
Cassini measurements (Waite et al. 2017; Affholder et al.
2021), while the methane escape rate CH4F sets a stronger
constraint a posteriori. In other words, the most determining
factor for the goodness of fit of the biotic model was the escape
rate of methane, although the assumption of the biotic model
corresponds to an assumption on the hydrogen escape rate and
thus remains contingent on the validity of the hydrogen
abundance calculated in Waite et al. (2017). We find that the
posterior distribution corresponds to the subset of the parameter
space having methanogens that produce the largest amounts of
methane, which thus matches the methane abundance measured
in Waite et al. (2017), as shown in Affholder et al. (2021).
Thus, the posterior distribution is also referred to as the
methane-informed distribution. It is to be noted that this
inference is based on the value of the fluxes of methane and
dihydrogen in the plume instead of their concentration
(Affholder et al. 2021). The underlying assumption is that the
ocean is at steady state and that the escape rates of volatile
molecules are equal to their production rates in the hydro-
thermal system. Hence, this inference is assumed to be
insensitive to dilution (or concentration) processes that might
affect the concentrations in the plume but not the fluxes.
Because of that, the uncertainty in the prediction of the
concentrations of cells or organics in the plume (see
Section 3.5) is distinct from the uncertainty on Enceladus’s
ocean being at a steady state.
We first consider the distributions of simulated cell densities

in the ocean plume, corresponding to dead cells escaping the
system (Section 2.4). This first set of simulations uses model
parameters sampled in the prior distributions shown in Table 2.
These simulations can be used to conduct a prospective
Bayesian inference, in which data that are not yet available
(such as abundance of glycine in the plume) are used in the
form of a variable to calculate posterior probabilities of the
presence of Earth-like methanogens as a function of the value
of this variable. In this context, the simulated glycine
concentrations form a prior distribution. However, the escape
rates of methane and dihydrogen are known (Waite et al. 2017)
and have been used to constrain the habitability of Enceladus’s
hydrothermal vents (Affholder et al. 2021), which amounts to
constraining the composition and temperature of the HF and
seawater within the prior distributions shown in Table 2.
Simulations that best match H2 and CH4 escape rates in the
plume are also associated with a specific subset of simulated
biomass production (and thus glycine concentration). In that
sense, a posterior distribution with respect to the measure of

H2F and CH4F also constitutes a prior distribution with respect
to a hypothetical inference based on a measure of glycine
abundance, for instance. Hence, we call prior distributions
those where the parameters are sampled in Table 2 and
posterior distributions those for which H2F and CH4F best match
the observations, whereas Section 3.5 examines the posterior
confidence in the existence of biotic glycine production (as
opposed to only abiotic production) with respect to a
hypothetical measure of the concentration of glycine in the
plume.
A hypothetical measure falling outside of the interval should

be interpreted as falsifying the biotic and abiotic models.
Posterior probabilities relative to the measure of glycine
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concentration in the plume (using a prior informed or not by the
measure of volatile abundances by Cassini) are determined
using Bayes’s theorem

P m x
P x m P m

P x m P m P x m P m
, 280

0

0 0
( ∣ ) ( ∣ ) ( )

( ∣ ) ( ) ( ∣ ¯ ) ( ¯ )
( )=

´
´ + ´

where m denotes a model or hypothesis (abiotic or abiotic
+biotic, respectively noted A and B) and x0 the observation.
P(x0|m) is the probability (called the likelihood) of observing x0

under model m, and P(m) is the prior probability of m. m̄
denotes the complementary of m (i.e, theoretically all other
models, here abiotic or biotic+abiotic accordingly).

Thus, the posterior probability of biotic+abiotic glycine
production (model B) is

29
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where A denotes abiotic glycine production and H denotes
habitability. Here the prior probability of B has been
decomposed as

P B P B H P H , 30( ) ( ∣ ) ( ) ( )=

where P(H) is constrained by evaluating the viability of the
modeled population over the distribution of environmental
parameters in Table 2 (Affholder et al. 2021).

For visualization and integration purposes, the simulated
samples are used to perform a Gaussian kernel density estimate
implemented in Python’s scipy package (Virtanen et al. 2020),
a standard method to approximate densities.

2.5.2. Determination of the Credible Interval

In this section, we determine the interval of the glycine
concentration [Gly] values that are predicted by the models A
(abiotic) or B (biotic+abiotic) with reasonable confidence, so
as to exclude values that are predicted with low probability by
either model from our analysis. Here we determine the interval
space of glycine concentration that lies above a so that

P x B P H P B H P x A

P H P B H dx

Gly Gly

1 0.025 0
31
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and below b so that
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In practice, we estimated densities for log Gly10[ ] so that the
lower numerical integration bound is log Gly 1010[ ] = - , as
probabilities of [Gly] being less than 10−10 mol kg−1 are
essentially equal to zero in our model. Equations (31) and (32)
are solved numerically using the Scipy optimize package’s
brentq method (Virtanen et al. 2020).

2.6. Cell Detection False-negative Rate in a Sampling Mission

Here we estimate the probability that a mission sampling
plume material fails to capture any cell even though a biosphere

is present in Enceladus’s deep ocean. We transpose modeling
of the probability to observe a cell in a sample in Bedrossian
et al. (2017) to the probability that a sampling mission samples
any cell at all. We argue that this sampling bottleneck is more
relevant to estimating the limits to detecting a putative
biosphere than estimating the chance that a cell is in the
microscope’s field of view, as samples can be concentrated
(Bedrossian et al. 2017; Porco et al. 2017). Some instruments
also require a minimum volume to function; thus, if the sample
volume is lower than the requirement, it needs to be diluted
(e.g., MacKenzie et al. 2021), in which case the sampling
bottleneck is even more relevant.
The probability that no cell is present in the sample (negative

result, denoted by N̄ ) is given by

P N
V

V
1 e , 33b
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tot

b
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⎞
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where ρb is the cell density in the plume, V is the sampled
volume, and Vtot is the total volume of the plume when the
probe is sampling; thus, Vtot》 V. Previous studies have
estimated that a fly-by through Enceladus’s plume could
realistically collect a 1× 10−4 mL sample (using a 0.04 m2

collector plate for a fly-by at 50 km altitude; Porco et al. 2017).
Bedrossian et al. (2017) and Porco et al. (2017) propose that
several samples can be retrieved (across multiple fly-bys, or by
passively collecting falling plume particles on the ice surface of
Enceladus), as multiple mission concepts propose architecture
offering this possibility (Cable et al. 2016; Eigenbrode et al.
2018; MacKenzie et al. 2021). We can thus rewrite
Equation (33) in order to account for a number of fly-bys kf
that multiplies a unit volume V. Increasing the sampling effort
thus lowers the probability of a false-negative result

P N k, e . 34b f
k Vf b( ¯ ∣ ) ( )r » r-

Using the estimated probability density of dead cell density
escaping the hydrothermal environment given by our biological
and circulation model as ρb, we can estimate the overall false-
negative risk, given only the sampling effort kf× V,

P N k P N z k P z dz, . 35f b f b( ¯ ∣ ) ( ∣ ) ( ) ( )ò r r= = ´ =
-¥

¥

Equivalently, the sample volume V can be kept as the variable,
as the fly-by sampling events are assumed to be independent.
The integral in Equation (35) is numerically approximated
using Gaussian kernel approximation on simulated samples of
the probability density of ρb.
As ρb corresponds to the concentration of cells in the space

plume, and given that our model calculates Nd, the density of
cells in the initial ocean plume, we define

N f , 36b d d ( )r = ´

with fd being the dilution or concentration factor between
densities in water directly above the hydrothermal vent and in
the plume. This dilution (or concentration) factor is discussed
further in Section 3.5.
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3. Results and Discussion

3.1. Estimates of the Total Biomass Supported by
Hydrothermalism in Enceladus’s Ocean

3.1.1. Cell Number Estimate

We simulate biomass and cell concentrations B* and N*

(Section 2.2) under various conditions in the hydrothermal
environment using distributions of HF composition and
temperature described in Table 2. We also simulate biomass
concentrations under the hypothesis that the methanogenic
population produces the methane levels measured by the
Cassini probe in the plume (Waite et al. 2017). In other words,
we estimate (i) the standing biomass in Enceladus’s hydro-
thermal environment that is possible given a range of
assumptions for the HF’s composition (referred to as the
“prior” estimate) and (ii) the standing biomass that yields the
best fit to the plume’s composition (posterior). We find that our
estimate of the total number of methanogenic cells Ntot

(Equation (21)) supported by Enceladus’s hydrothermalism
(prior: 1016.26±3.01; posterior: 1018.38±0.07) is orders of
magnitude lower than previously estimated (Figure 1(a)).
Previous estimates assume either complete conversion of
electron donor H2 (Bedrossian et al. 2017; Steel et al. 2017)
or that the catabolic yield is constant (that is, that the Gibbs free
energy change associated with the catabolic reaction is
constant) so that the number of cells at steady state is equal
to the chemical energy flux (electron donor flux times catabolic
Gibbs free energy) divided by the individual maintenance
energy rate (Ray et al. 2021). We show that approaches
describing the dynamic coupling between catabolic energy
yield and cellular growth such as the one presented here and in
Higgins & Cockell (2020) lead to more conservative estimates
than electron-donor-limited approaches (such as Ray et al.
2021), which yield higher estimates. For instance, Figure 1(a)
shows the comparison between the estimated number of cells of
hydrogenotrophic methanogens estimated using the method in
Ray et al. (2021) and the distribution of the simulations
under our model, showing a difference of several orders of
magnitude.

3.1.2. Standing Biomass Estimate

To better compare Enceladus’s putative biosphere to Earth’s,
we estimate the total standing biomass Btot (see details in
Section 2.2, specifically Equations (18), (20), and (21)),
measured in kilograms of carbon (kgC). We find that the
simulated population of methanogens has a very low biomass
(Figure 1(b)). In the prior case, the 95% confidence interval
(CI) is 101.57±3.07 kgC, or from negligible (less than 1 gC) to
about 40 tC. In the methane-informed or posterior case, the CI
is 103.69±0.07 kgC or about 4–6 tC, about half the mass of
carbon contained in a single typical baleen whale (Pershing
et al. 2010). As a consequence, the methanogenic population
that could be supported by a single 5 GW hydrothermal vent in
Enceladus’s ocean is very small in comparison to the size of
Earth’s ecosystems. In Appendix A, we show that modeling a
single 5 GW vent or breaking it down in smaller vents feeding
the same ocean plume is equivalent regarding all the quantities
calculated by our model.
On Earth, most methanogenic archea dwelling in hydro-

thermal vents are sessile (e.g., in microbial mats), and free-
floating cells are due to entrainment by circulating fluid
(Brazelton et al. 2006). Conservatively, we should assume that
Enceladus’s putative biosphere is also sessile and that the
plume in space is not directly a sample of the habitable
environment. As a consequence, if one is to estimate biomass
or cell concentrations in the plume, other quantities than
standing biomass have to be derived and integrated with a
circulation model. Such other quantities should relate to the
production term, which amounts to a loss term in the biomass
stock, e.g., through death and subsequent entrainment.

3.2. Total Productivity of a Putative Methanogenic Biosphere

Primary production PB (Equation (22)) measures the amount
of biomass that an ecosystem or population synthesizes per unit
time (usually in petagram or gigaton of carbon per year). At
steady state, this quantity is by definition equal to the rate at
which biomass escapes the considered system. Appendix B
shows that adding an explicit entrainment term to the model is
equivalent to equating the entrainment rate with the death rate
in the population. In our model, the total productivity is orders

Figure 1. (a) Standing cell and (b) biomass population estimates. Dark curves are probability density estimates approximated from simulations using the equations in
Section 2.2 and parameter values from Table 1. The black solid line uses the prior distributions in Table 2, and the dotted line uses the posterior distribution obtained
by sampling simulations that best match escape rates of H2 and CH4 inferred from the Cassini data. The solid line represents the prior estimate, ignoring information
from plume abundances of CH4 and H2, while this information is used to refine the estimate for the dotted curve (posterior). The blue region in panel (a) represents the
estimates of methanogenic cell abundance in Ray et al. (2021). In panel (b), the biomass of a single average baleen whale is given as an illustration and is taken from
Pershing et al. (2010).
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of magnitude lower (2–4) than that of Earth’s hydrothermal
vents (Figure 2(a)). Scaling with HF production, the simulated
specific productivity of HF (the carbon mass of biomolecules
that can be synthesized per kg of fluid) is close to the inference
for Earth’s vents (McCollom 2000; Figure 2). This suggests
that the difference of 2–4 orders of magnitude between the total
productivity of Earth’s hydrothermal systems and that of
Enceladus’s is mainly due to the difference in HF production,
not in the composition or temperature of the produced HF. It is
to be noted, however, that estimates of methanogenic primary
production in Earth’s hydrothermal vent are poorly constrained,
and to our knowledge only energy-based approaches as in
McCollom (2000) have been used, and they have mostly been
applied to global estimates for the deep biosphere rather than
hydrothermal vents in particular (Bach & Edwards 2003;
Orcutt et al. 2013). Therefore, the posterior distribution
corresponds to an Earth-like hypothesis, at least for productiv-
ity. Affholder et al. (2021) only go as far as showing that there
exists a subset of HF compositions within their prior that
translates into biotic methane production matching with the
observations. Here, however, we go into detailing what this
subset of parameters corresponds to in terms of ecosystem
productivity, and we show that it matches that of Earth’s
hydrothermal vents ecosystems.

As detailed in Section 2, productivity (PB, Equation (22)) is
the relevant quantity to consider when estimating biomass and
cells that leave the hydrothermal environment and that can be
later found in the plume. Because of that, we now turn to the
concentrations of (dead) cells and organics that would be found
in the ocean plume if a population of Earth-like methanogens
were to inhabit putative hydrothermal vents on Enceladus.

3.3. Densities of Cells in the Ocean Plume Predicted by the
Model

Others have estimated possible methanogenic cell concen-
trations in different parts of Enceladus’s ocean using various
models. For example, Steel et al. (2017) and Ray et al. (2021)
estimate the flux of available Gibbs free energy in the HF and
divide it by the energy required to form or sustain 1 mol of
biomass assuming total conversion of H2. The authors then
calculate the concentrations of cells in various volumes ranging
from the plume to the whole ocean. Here, rather, we focus on

the the fraction of ecosystem productivity corresponding to
(dead or entrained) cells removed from the ML as the potential
source for cells in the plume, *Nd (Section 2.4, Equation (25)).
While the productivity estimated in Steel et al. (2017) is in line
with our estimates (Figure 2(a)), we estimate a much lower cell
density in the plume (Figure 3) because we consider that the
ocean plume is fed only by fossil organic matter.
Interestingly, our calculations of cell densities in the ocean

plume are in most instances greater than estimates in Porco
et al. (2017) (Figure 3). Their estimates are based on
extrapolation (based on geothermal flux scaling) of cell
densities in seawater around Earth’s hydrothermal vents (which
include but are not limited to methanogens; Brazelton et al.
2006). On the other hand, calculations in Porco et al. (2017),
which are based on energy dissipation scaling (as in Ray et al.
2021), yield higher estimates than our explicit ecosystem
modeling. Hence, the empirical approach in Porco et al. (2017)
might be viewed in that regard as most conservative. A key
explanation for our model’s prediction of greater cell densities
in the ocean plume could be that the death rate value used in

Figure 2. (a) Total hydrothermal vent productivity; (b) HF specific productivity. Dark curves are probability density estimates approximated from simulations using
Equation (22) and parameter values from Table 1. The black solid curve uses the prior distributions in Table 2, and the dotted curve uses the posterior distribution
obtained by sampling simulations that best match escape rates of H2 and CH4 observed by the Cassini mission. The vertical dotted line indicates an estimate of the
biomass production in the HF and seawater mix around Earth’s hydrothermal vents obtained from computations in McCollom (2000).

Figure 3. Cell densities in the ocean plume. The solid and dotted black curves
are, respectively, the prior and posterior probability density estimates of dead
cells’ concentration in water escaping the ML and composing the initial ocean
plume. Our baseline assumption is that this sets the concentration throughout
the ocean plume, as we assume all the dilution to occur in the ML. The orange
dashed line corresponds to the estimate of plausible cell density in the plume
from Porco et al. (2017). The blue dashed line represents the calculation in
Steel et al. (2017) (≈1011 cells kg−1). The red dashed line highlights the limit
of detection (LOD) assumed to design the Orbilander concept (MacKenzie
et al. 2021) for reference.
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our model (Section 2.2), which serves as a basis to derive the
dead cell densities in the plume, is poorly constrained for
methanogens. We used a value that fits marine plankton (3%
mortality per day; Table 1; Connolly & Coffin 1995) and that
may or may not be greater than the actual basal component of
the death rate of methanogens that could relate to cell
entrainment. Nevertheless, we hold our simulations of cell
densities as plausible, as they span from much below the
relatively conservative calculation of Porco et al. (2017) to
slightly less than the optimistic value in Steel et al. (2017).

While estimates of cell concentrations in the ocean plume in
Steel et al. (2017) and Porco et al. (2017) fall above detection
threshold values that have been previously proposed (Bed-
rossian et al. 2017; MacKenzie et al. 2021), we find that a small
but nonnegligible portion of our prior distribution falls below
this threshold (Figure 3). Modeling the uncertainty of
Enceladus’s putative HF composition as prior distributions
allows us to calculate not a single point estimate but a
distribution of what could be possible. Doing so allows us to
bound the risk of a false negative: when no cells are detected
despite a biosphere existing in the ocean. We thus propose
constraints on the sampling effort in the space plume required
to capture cells with sufficiently high confidence.

3.4. Sampling Effort Required for the Capture of Cells in
Plume Material

Evaluating the risk of a false negative (i.e., the probability
that an experiment gives a negative result even though the
tested condition is true) can help inform instrument design so
that the interpretation of negative results becomes easier.
Indeed, obtaining a negative result when efforts have been
made to reduce the risk of a false negative provides a stronger
argument to discard the hypothesis, here that methanogens are
present in Enceladus’s deep ocean. There are various sources of

false-negative or false-positive error about the detection of a
cell in a sample, which can depend on the detection method.
For example, Archean paleontologists are confronted with the
existence of abiotic organic biomorphs exhibiting microfossil-
like signatures (Criouet et al. 2021).
Assuming that there exists a method that enables us to detect

even a single cell in a sample of plume material—whether
in situ or by means of a sample return mission (Tsou et al.
2012; Nadeau et al. 2016; Neveu et al. 2020)—what are the
chances that a single cell or more are sampled? Small sample
sizes can result in sampling bias, altering the effective cell
density in the sample relative to that in the plume. In some
cases even, this sampling bias can result in no cell at all being
sampled from the plume, even in the case in which plume
material contains cells. We are interested here in constraining
the minimal sample size required to obtain at least one cell with
95% confidence or more, in other words, to bring the risk of
sampling zero of the cells present in the plume under 5%.
Using Equation (34), we compute the false-negative risk as a

function of sampling volume (Figure 4). Because processes
altering the composition of the plume relative to that of the
ocean plume at the bottom of the ice shell are poorly
constrained, we account for dilution up to a factor 1:1000
and for concentration enhancement by bubble scrubbing up to a
factor 1000 (Figure 4) by multiplying *Nd (Equation (25)) by
0.001–1000. First, we look at two fly-by collected sample sizes
studied in Porco et al. (2017; fly-through A, 0.04 m2 plate at
50 km altitude, resulting in a ≈10−4 mL sample) and Guzman
et al. (2019; fly-through B, 1 m2 plate at 25 km altitude,
resulting in a ≈10−3 mL sample). Both sample sizes result in
cell detection false-negative risks greater than 5% in the
uninformed case (prior) unless we assume some amount of
bubble scrubbing: at least a 20-fold concentration increase for
sample B and by a few hundreds for sample A. To reach
acceptable probabilities of sampling a cell without relying on

Figure 4. Required sample volume to capture at least one cell with 95% confidence as a function of the concentration factor. The concentration factor corresponds to a
multiplicative term that either lowers (concentration factor <1) cell concentration in the space plume relative to the initial ocean plume (e.g., plume dilution, cell
destruction) or concentrates (concentration factor >1) cells in the space plume relative to the initial ocean plume (e.g., bubble scrubbing). The dashed line corresponds
to the required sample volume to get at least 1 cell with 95% probability assuming a cell density equal to the mean of the 10% simulations with the lower cell density.
The solid (dotted) line represents this minimal sample volume assuming the prior (posterior) integrated probability density for the dead cell density in the plume. HF-
to-seawater ratios lower than 1:10 are shaded gray, as they are deemed unlikely in Porco et al. (2017) and Steel et al. (2017). The horizontal red line denotes the sample
volume collected from a 50 km altitude flight through the plume on a 0.04 m2 collector plate as estimated in Porco et al. (2017). The blue line represents the required
sample size proposed for the Orbilander microscope (Exhibit B-6 in MacKenzie et al. 2021). The magenta line denotes the total sample volume for the Orbilander
concept (MacKenzie et al. 2021).
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bubble scrubbing and in the uninformed case, the volume that
has to be sampled should be at least 0.1 mL, or about 100 low
plume fly-throughs with the larger plate.

While this number of plume fly-throughs may seem high, a
comparable or greater order of magnitude (up to 1000 plume fly-
throughs) is envisioned for the Enceladus Orbilander mission
concept (MacKenzie et al. 2021). Alternative or complementary
strategies have been proposed, including passive or active
collection of plume material that has fallen on Enceladus’s
surface by a landed component as assessed by Porco et al. (2017)
and included in the Orbilander concept (MacKenzie et al. 2021).
How difficult these strategies would be to implement—landing a
probe on the unknown terrain of Enceladus’s surface or
performing a large number of fly-throughs—is a discussion that
is outside the scope of this study. However, we show that the
sample sizes expected from both strategies would confidently
sample at least one cell if we believe that most of the methane
found in the plume comes from a population of methanogens
(methane-informed case, or posterior). As a result, current
mission and instrument design would be able to confidently
reject the hypothesis that a monospecific methanogenic popula-
tion is the source of the methane found by the Cassini Ion and
Neutral Mass Spectrometer in the plume. However, these
designs could miss the existence of a smaller population if the
plume-found methane has an abiotic origin, in which case a
larger sample is needed.

3.5. Bayesian Hypothesis Selection for Amino Acid Detection

Here we consider another potential biosignature that can be
looked for in a sample of plume material: amino acid
abundances (also examined in Steel et al. 2017; Guzman
et al. 2019). Amino acids could be used as an important
element for building a case for or against extraterrestrial life
(Neveu et al. 2018). In ocean worlds such as Enceladus, amino
acids could come from a primordial stock depending on the
origin of the core material, but they are expected to degrade on
geologically short timescales (Truong et al. 2019). Addition-
ally, the decomposition kinetics are sufficiently slow that the
concentration of amino acid is kept constant during the ocean
plume’s ascent that operates on a timescale of dozens of days
(Steel et al. 2017; Truong et al. 2019). Together, these
arguments make the case that probing the plume for amino
acids could be of astrobiological significance. But amino acids
can also be synthesized abiotically at significant concentrations,
especially in hydrothermal settings (Shock & Schulte 1998),
and as a consequence, detection alone cannot serve as an
unambiguous biosignature. Strategies have been proposed to
overcome this problem, including evaluating enantiomeric
excess (Glavin et al. 2019) or homochirality (Chan et al. 2019,
and references therein). Here we propose that because
production rates, as well as the stoichiometric ratios of amino
acids, differ depending on their biotic or abiotic origin, a
Bayesian approach to biosignatures can be based on amino acid
quantification (Amend et al. 2013; Moura et al. 2013; Steel
et al. 2017).

We center our analysis on one of the most abundant amino
acids: glycine (Gly). Glycine serves also as a reference from
which estimates of concentrations of other amino acids can be
derived using ratios in Steel et al. (2017) and Amend et al.
(2013). According to Steel et al. (2017), abiotic production of
amino acids in the hydrothermal vent could be Faa= 1.6–87
g s−1, of which fGly= 12% is glycine. This production rate is

converted to a concentration in the HF:

Gly
f F

M J
, 37ab

f aa

f

Gly

Gly

[ ] ( )
ò

=

where ∫Jf is the total advection flux of HF (Affholder et al.
2021).
The proteic content of the Archean cell is poorly known, and

its measurement is made difficult by the presence of the S-layer
of glycoprotein in the cellular envelope. Therefore, in a first
approximation, we assume that the putative methanogenic
microorganisms contain the same relative abundances of amino
acids as Escherichia coli. In E. coli, 50%–64% of cell dry mass
is made of amino acids depending on the growth phase
(Neidhardt 1996; Valgepea et al. 2013). Conservatively, we
assume the value of faa

E. coli = 50%. Genome analysis of
Methanocaldococcus jannaschii, a model methanogenic archaea
(Jones et al. 1983), shows a glycine fraction fGly

M. jannaschii = 6.3%
(Bult et al. 1996; Moura et al. 2013). As a reference,
f 7.3% 7.4Gly

E. coli –= %; see Table S2 in Moura et al. (2013).
Mass fraction is then converted into concentration using the
molecular mass of Gly MGly= 75.062 gmol−1 and multiplying
by the simulated waste biomass Bd

* (Equation (27)). Concentra-
tions in the plume for both abiotic and biotic+abiotic cases are
then estimated using Equation (7) and multiplying by a dilution
or concentration factor if applicable. Biotic glycine is expected
to be present in protein polymers that could themselves serve as
biosignatures. We assume that sample treatment or retrieval
methods allow (or impose) the separation of these hypothetical
proteins into free amino acids, and thus we focus on the
concentration in free amino acids.
We compare two scenarios: (i) abiotic synthesis of amino

acids (as parameterized in Steel et al. 2017), and (ii) abiotic
synthesis plus biotic production using our model (Section 2.3).
We then calculate the confidence in either of these scenarios
that a hypothetical measure of glycine concentration in the
ocean plume would yield. In effect, this corresponds to the
posterior probability calculated from Equation (29) for the
competing models “abiotic” and “abiotic+biotic” (A and B in
Equation (29)), given values of the glycine concentration in the
ocean plume (x0 in Equation (29)) and the prior probabilities of
the models (P(B)= 1− P(A)= P(B|H)P(H), Equations (29)
and (30)). Because the posterior probability is calculated
assuming that either A or B is true (P(A|x0)= 1− P(B|x0)), we
do not calculate this probability when P(x0|B∪ A)< 0.05; see
Section 2.5.2. The calculations of P(B|x0)= f (x0, P(B)) are
shown in Figure 5. These calculations are done by first
discarding constraints on hydrothermal vent composition and
biotic methane production stemming from Cassini mission data
(Figure 5(a), “prior” or “uninformed,” parameters drawn from
distributions in Table 2) and then by leveraging the correlation
between CH4 (and H2) abundance in the plume and biomass
production in our model to further constrain biotic glycine
production (Figure 5(b), “posterior” or “methane-informed”;
Section 2.5). In the prior case, the prior probability P(B) is
bounded by the maximum value of P(H)≈ 0.4, which is the
prior probability of habitability calculated in Affholder et al.
(2021). In the posterior case, however, since the “habitable
abiotic” and “biotic” (methane production) always match
escape rates H2F and CH4F better than the “uninhabitable”
model, the posterior values from Affholder et al. (2021),
P(B) ä [0, 1], are used. The maximum posterior value of P(B)
in Figure 3 of Affholder et al. (2021) is actually 0.95, but since
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this result is tied to the arbitrary upper bound on CH f4[ ] (Figure
2 of Affholder et al. 2021 shows that with the upper bound of
methane concentration in the HF taken from serpentinization
experiments, the posterior P(B) is 1), we allow ourselves to
explore the prior space P(B) ä [0, 1] when considering
prospective inference based on glycine quantification in the
ocean plume. Additionally, Figure 3 of Affholder et al. (2021)
shows that assuming a uniform distribution P(B|H)∼U[0, 1]
yields an average posterior E(P(B))≈ 0.59. Even though the
range in which P(B|H) could be found is not known, it is worth
noting that there is no reason a priori to consider the probability
of methanogenesis in the methane-informed case as uniformly
distributed in [0, 1], as it might in fact be skewed to higher
values than the unknown P(B|H). To highlight this effect, we
show the value of E P B P B H U 0,1( ( )) ( ∣ ) [ ]~ on the horizontal axis
of Figure 5(b).

As an example, if a future mission estimated that the
concentration of glycine in the ocean plume were [Gly]= 7×
10−6 mol L−1, we would reject biotic production with high
confidence under the assumption that life emergence is a rare
event (P(B)< 0.05; Figure 5(a)). However, people convinced
that life emergence is not rare could remain hopeful in that
scenario, as the posterior probability of biotic glycine production
remains relatively large for higher values of the prior P(B) (about
0.25 for P(B)= 0.35 in the case of our hypothetical measure of
[Gly]= 7× 10−6 mol L−1; Figure 5(a)). If we further impose the
analysis of these hypothetical data to be consistent with data
gathered by the Cassini mission (assuming that no abiotic source
of methane matching these data better than methanogenesis
would have been found), then even life emergence optimists
would face a problem inferring biotic glycine production under
this hypothetical measure, as a biosphere producing amounts of
methane that match Cassini observations is unlikely to produce
so little glycine in the ocean plume. The result would thus point
toward the existence of an alternate source of methane working
in addition to or in lieu of methanogenesis to explain plume-
found methane levels.

There are cases for which the biotic hypothesis would be
rejected regardless of the prior probability: if the glycine
concentration is lower than ≈2× 10−7 mol L−1, then the biotic
model and the abiotic model are rejected (the likelihood of one
or the other is less than 5%). In such a case, one would
conclude that if a nonzero concentration is measured, the origin
of glycine is likely not abiotic production in the hydrothermal
setting as described in Amend et al. (2013) but another
unknown pathway or possibly remains of a primordial stock if
Enceladus’s core is of carbonaceous chondrite or cometary
origin. The so-called “methane-informed” case corresponds to
the posterior estimates relative to volatile concentrations in the
plume (methane in particular, denoted by “posterior” in
Figures 1–4) and amounts to assuming that most of the
plume-found methane is of biotic origin. In this case, we find
that the abiotic production is favored when [Gly]<
10−5 mol L−1 (see Figure 5(b) and Table 4), regardless of the
prior probability of methanogenesis. This second hypothesis
(methane in the plume is biotic) is stronger than the “prior”
case (methane in the plume could or could not be of biotic
origin), and thus it is expected that it is easier to reject, given
that it yields narrower predictions. Because the conditions of
hypothesis rejection differ largely between the two cases
(Table 4), investigation of methane sources potentially able to
explain plume levels could help us in interpreting a
hypothetical abundance of glycine. If a methane source
concurrent to methanogenesis is identified, then our prior
knowledge on a hypothetical biosphere is reduced. The interest
of drawing such confidence maps (and the associated
interpretation; see Table 4) is to help set the detection
thresholds that should be aimed for in future in situ
measurements, should a mission focus on amino acid detection
and quantification.
The confidence maps in Figure 5 are calculated assuming

that a hypothetical mission is able to accurately constrain the
glycine concentration in the ocean plume based on a measure
of the gas or ice or both phases in the space plume. For a
reliable interpretation of a future result based on this analysis,

Figure 5. (a) Posterior confidence in biotic glycine production as a function of the observed glycine concentration in the ocean plume and the prior confidence in the
existence of methanogens. The map is drawn only for glycine concentration values that fall in the 95% confidence interval of the total model (abiotic or abiotic
+biotic). The prior probability of methanogenesis is here bounded by the prior probability of habitability (Section 2.5.1), hence the plot stopping at ≈0.4. (b) Posterior
(or methane-informed) confidence in biotic glycine production as a function of the observed glycine concentration and the prior confidence in the existence of
methanogens using information from methane concentration in the plume. The black triangle denotes the average posterior probability of methanogenesis in Figure 3
of Affholder et al. (2021). This value highlights that a uniform prior distribution for P(B|H) implies an average value of E(P(B)) ≈ 0.59. In Affholder et al. (2021), the
posterior probability of methanogenesis can reach unity (if the conditional probability of life emergence is also unity); therefore, the methane-informed case considers
probability of methanogenesis up to 1.
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one should correct the thresholds we propose in Table 4 by the
estimated concentration or dilution factor between the bottom
of the ice shell and the sampled plume. Main sources of
dilution or concentration that could be evoked a priori are (i)
plume dilution in the ocean, additional to the initial dilution of
HF (e.g., Steel et al. 2017); (ii) alteration of organic molecules
in the space plume due to exposure to ionizing radiation; (iii)
organics concentration enhancement in the plume through
bubble scrubbing (see Porco et al. 2017); and (iv) fractionation
due to adsorption or condensation on ice walls of cracks in the
shell (Spencer et al. 2018; Bouquet et al. 2019).

Our model neglects any dilution during the ocean plume
ascent and structurally assumes a 1:3 ratio of HF to seawater
(Section 2.1). This assumption is well supported by scaling
laws derived for Europa’s putative ocean plumes in Goodman
et al. (2004), later replicated for Enceladus by Choblet et al.
(2017), who show that the ocean plume is rotationally
controlled until it reaches the ice shell. Steel et al. (2017) also
reported an HF-to-seawater ratio of 1:10 in the ocean plume
using 2D circulation numerical simulations. More recent
studies on circulation in Enceladus’s ocean, although not
necessarily focused on ocean plume motion, do not appear to
contradict these assumptions (Liao et al. 2020; Lobo et al.
2021; Zeng & Jansen 2021).

Ionizing radiation is unlikely to have a significant direct
impact on the concentrations of organic molecules in the space
plume. Transport time of ice grains in the plume before
potential sampling altitudes or deposition is of the order of
minutes to tens of minutes (assuming 1–10 μm diameter grains
and a 65° ejection angle; Degruyter & Manga 2011). Once
deposited on the surface of Enceladus, ice grains are expected
to be buried faster than they would be altered under the harsher
conditions of Europa’s surface (Nordheim et al. 2018; South-
worth et al. 2019). It is not known, however, whether the
exposure times expected for ice grains from Enceladus’s space
plume allow free radicals to build up and oxidize organic
molecules (Pasek 2020). Together, these arguments suggest
that the influence of ionizing radiation on the concentration of
organics in the material that could be sampled by a future
mission might be reasonably neglected, be it fresh grains
collected during a plume fly-through or deposited particles on
the shallow subsurface.

The process of bubble scrubbing, or scavenging, is reviewed
in Walls et al. (2014), and the possibility of this process for
Enceladus’s ocean outgassing is thoroughly discussed in Porco
et al. (2017). Moreover, Postberg et al. (2018) have reported
concentrated organic macromolecules being present in Ence-
ladus’s plume’s ice grains, suggesting that bubble scrubbing
occurs at the outgassing of oceanic matter to form the plume. It

has to be noted, however, that bubble scrubbing principally
concerns macromolecules or whole cells, but it is unknown
whether small organic molecules such as glycine are
significantly affected by this process. On the other hand,
volatile organic compounds might be adsorbed onto the ice
walls or the ice grains during the outgassing of oceanic
material.
Bouquet et al. (2019) show that organic compounds with a

lower energy of desorption (e.g., ethylene, methanol, or
formaldehyde) are not significantly affected by adsorption
onto ice, whereas compounds with a desorption energy greater
than approximately 0.7 eV are likely to be overrepresented on
the surface of ice grains or to be retained on ice walls during
outgassing. The desorption energy of glycine is not well
constrained but could be ≈0.81 eV, and thus it could be
significantly affected by adsorption onto ice (Escamilla-Roa &
Moreno 2013; Bouquet et al. 2019). The abundance of
adsorption sites on the ice wall surface is finite, and Bouquet
et al. (2019) show that in relatively short timescales (tens of
seconds) maximum coverage of the ice walls is reached. It is
possible that water vapor condensation on the ice walls and
subsequent freezing effectively prevent reaching that steady
state (Spencer et al. 2018). However, Bouquet et al. (2019)
review experimental work on the matter and conclude that
condensation is unlikely to alter the composition of the gas
phase, as adsorption is reversible and an ice wall equilibrium is
still reached, even if water vapor condenses. Once this steady
state is reached, the composition of the gas+ice phases should
accurately reflect the composition of the ocean plume source
material. If only the solid phase (ice grains) is to be considered,
adsorption of glycine could result in overestimating its
concentration in the source liquid phase. Whether adsorption
of glycine could result in a significant depletion in the gas
phase is unknown and depends on the relative velocities of the
grains and the ice phase; modeling work extending the findings
of Bouquet et al. (2019) is warranted to understand which
phase (gas or ice grains) should be sampled to infer ocean
composition. Finally, Pasek (2020) shows that during droplet
freezing and sublimation ice grains lose about 20% of their
water mass, hence slightly concentrating solutes. In conclusion,
even though uncertainties remain on the effect of adsorption
and bubble scrubbing on glycine, the concentrations predicted
in the ocean plume in Figure 5 and Table 4 might be relatively
conservative estimates of the concentrations in the plume
material, especially if the gas and ice phases are sampled in
adequate proportions.
Thus, we argue that a glycine-detection mission should aim

for a minimal detection capability of ≈1× 10−7 mol L−1. Mitić
et al. (2009) report on a kinetic spectrophotometry method with

Table 4
Interpretation Key of Figure 5 in Terms of Hypothesis Selection and Rejection Based on the Observation of Glycine Concentration in the Ocean Plume

Biotic+Abiotic Gly Production

Range of Gly Concentration in the Ocean Plume Uninformed/Prior Methane-informed/Posterior

>2 × 10−5 mol L−1 Favored Favored

2 × 10−7 − 2 × 10−5 mol L−1 Not favored, but not rejected Rejected

<2 × 10−7 mol L−1 Rejected (with abiotic) Rejected (with abiotic)

Note. Note that these ranges can be adjusted to account for biases in Gly concentration in material found in the space plume relative to the concentration in the ocean
plume. For instance, if bubble scrubbing is expected to increase the concentration of Gly by a factor 1000 in the space plume, these ranges listed here can be multiplied
by 1000.
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a theoretical detection limit just below this threshold
(6.5 ng mL−1 ≈ 8.7× 10−8 mol L−1). (Whether this type of
instrument could be used in situ or, on the contrary, whether a
sample return would be necessary is outside the scope of this
study.) In addition, other amino acid detection methods
applicable to in situ characterization of Enceladus’s plume
exist and could meet the detection threshold that we calculated.
Laser-induced fluorescence making use of a capillary electro-
phoresis microfluidic suite could reach the 1–100 picomolar
limit of detection, well below our proposed threshold (Skelley
et al. 2005; Creamer et al. 2017; Mathies et al. 2017; Casto-
Boggess et al. 2021). Alternatively, mass-spectrometry-based
methods of detection and analysis might also reach our
proposed threshold (Ligterink et al. 2020). To conclude, while
it might be hard to interpret a measure of [Gly]> 2× 10−7

mol L−1 unless organics enhancement (such as bubble scrub-
bing) can be confidently constrained, it seems quite feasible to
reach sufficiently high detection capability (less than 2× 10−7

mol L−1) for which the probability of false negatives is low.
Thus, an amino acid detection strategy could yield significant
scientific value, even if only glycine is studied. The inclusion
of other amino acids in our framework could dramatically
increase the capacity of our analysis to distinguish between
abiotic and biotic sources, as different amino acids may be
characterized by different relative abundances between biotic
and abiotic origins (Amend et al. 2013; Creamer et al. 2017;
Steel et al. 2017).

4. Conclusions and Implications for Future Missions

By using a detailed model of a putative population of
methanogens in Enceladus’s ocean, we found that the size of
this hypothetical biosphere could be very small compared to
previous estimates and to the size of Earth’s hydrothermal vent
biosphere. Nonetheless, we found that the cell density in the
ocean plume could reach relatively high values (up to 107

cells mL−1) if the biosphere is concentrated at the hydrothermal
vent, rather than homogeneously distributed in the global
ocean.

Although our predictions of cell density in the ocean plume
are more often than not above detectable levels, a number of
processes could affect the density of cells in the space plume
material relative to cell density in the ocean plume. First, a
significant amount of cells ejected in the plume could be
destroyed owing to depressurization (Bywaters et al. 2020
report a potential cell destruction rate of 94% in depressuriza-
tion experiments). Due to the linear relation between the
concentration factor and the required sample volume shown in
Figure 4, such an approximately 10-fold decrease in the intact
cell abundance in the plume translates into an approximately
10-fold increase in the required minimal sample volume to
about 1 mL compared to the case where abundance of cells in
the plume directly reflects cell abundance in the ocean plume
above the hydrothermal vent.

Second, cell-like abiotic structures (abiotic biomorphs) that
may form in hydrothermal environments could cause a high
risk of a false positive (Criouet et al. 2021). Assuming that cells
can be identified unambiguously (see Nadeau et al. 2016), we
find that the volume of plume material that needs to be
collected to confidently sample at least one cell might require a
large number of fly-throughs in the plume, or using a lander to
collect plume particles falling on Enceladus’s surface (e.g., the
Enceladus Orbilander; MacKenzie et al. 2021).

Additionally, we show that aiming for the quantification of
hypothetical amino acids could contribute a great deal to mount
evidence for or against the hypothesis of an Earth-like
methanogenic biosphere living in Enceladus’s deep ocean
using potentially smaller sample sizes. Although positive
evidence is hard to achieve so long as there is uncertainty in
abiotic processes, glycine abundance consistent with biotic
production could then be combined with analysis of its
abundance relative to other amino acids.
But considering the possibility of negative evidence should

not be neglected. We found that a sufficiently capable
instrument (with a lower detection threshold ≈10−7 mol L−1)
could help in challenging the hypothesis of Earth-like biotic
processes taking place in Enceladus’s ocean. As a result of the
detection of sufficiently little or no glycine, this hypothesis
would have to change into a more complex one and be tested
against a different observable.
Lastly, our model considers a mono-metabolic, chemoauto-

trophic ecosystem, as do most estimates of cell density and
biomass in Enceladus’s ocean. Microbial ecosystems on Earth
usually contain more than one species and contain both primary
producers and heterotrophic consumers. Whether the presence
of heterotrophs in Enceladus’s ocean would significantly affect
estimates of cell density and of the concentration of organic
molecules exiting the local environment is not known. We
believe that the ecological modeling approach used here
provides an important first step in modeling a more complex
ecosystem that would include heterotrophs. Such future work
will accomplish the explicit and rigorous coupling of
methanogenic primary production and anaerobic fermentation.
No current evidence points toward Enceladus’s ocean being

uninhabitable, or even uninhabited by Earth-like life. But a
mission that would have the capacity to challenge this hypothesis
could yield valuable science even in the event of negative results.
Mission concepts currently under consideration suggest that such
a mission is not beyond reach in the near future.

Appendix A
Scale-free Properties of the Physical Model

A.1. Abiotic Quantities Are Insensitive to Any Scale Parameter

The ML model presented in this article has some scale-free
properties that arise from the parameterization of the flux of HF
into the ML Jf. The shape parameters of the function Jf(u)
ensure that the total dissipated flux is equal to a particular value
F and that the center of the ML is composed of 100% HF.
These assumptions alone suffice to prove that (i) the range of
thermal and chemical conditions existing around the vent is
always from 100% HF to 100% seawater and (ii) abiotic
concentrations in the initial ocean plume are entirely
determined by the concentrations and temperature of the HF
and seawater. Rewriting Equation (7) for the HF-to-seawater
mixing ratio x* at steady state,

*
*

x
x u J u udu
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dissipated by the vent, F. A consequence of the independence
of abiotic concentrations from vent power F is that patchiness
has no effect on the abiotic concentrations in the initial ocean
plume. The range of chemical and thermal conditions existing
around the plume is also unchanged since the parameterization
of the function Jf ensures that x

*(0)= 1 and x*(∞ )= 0.
Moreover, the total flux of any solute i coming out of the ML

(equal to ∫JcCi) scales linearly with dissipated power F. As a
consequence, the flux of i coming out of the hydrothermal
environment is the same for a single vent dissipating FW and
for the sum of an arbitrary number n of weaker vents each
dissipating F/n W.

A.2. Relevant Biological Quantities Are Also Scale Independent

Equation (18) shows that the expression of the biomass
concentration at steady state follows

* *


B
q

J C C J C C
1

, A2f f
eD

o
eD

c o
eD

eD
cat

( ( ) ( )) ( )
r

= - + -

where eD is the electron donor (H2 for methanogenesis) and
YeD=− 1 as a convention. Keeping in mind that both Jf and Jc
scale with  , B* thus scales with 1 .

At the same time, using the expression of c in Equation (5),
the typical volume scale of the ML follows

 c , A32 ( )p µ

so that the quantity of cells (or biomass) in the hydrothermal
environment is not sensitive to the chosen vertical scale ò. This
analytical intuition extends to all fluxes and concentrations in
the initial ocean plume and is verified by numerical simula-
tions. Like in the abiotic case, all biological absolute quantities
(except concentrations) scale linearly with F, and thus, again,
the sum of n vents is equivalent to a single n times more
powerful vent.

Appendix B
Dead Cell Entrainment

Here we expand Equations (24) and (25) to separate dead
cells into two categories. Some of the dead cells remain
attached, and some are entrained by the circulating fluid and
may end up in the ocean plume and be ejected through the
cracks. We assume that this entrainment occurs with a fixed
rate (or probability) η. The concentration of the fixed dead cells
Ndfix follows

dN

dt
Nd N , B1d

d
fix

fix ( )h= -

and the concentration of free-floating dead cells Ndent follows


dN

dt
N

J
N . B2d

cdent
fix dent ( )h

r
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At the steady state,

* *N N
d
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=

Thus,
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
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d

J
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c
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=

which is the same expression as in Equation (25), showing that
the steady-state concentration of dead cells in the plume is
insensitive to entrainment rate (but the total concentration of
dead cells in the ML would adjust to be higher).
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