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Abstract 

Induced seismicity is a major concern for underground fluid injection, including injection of 
wastewater and CO2 and H2 for carbon neutrality. Machine learning (ML) appears to be 
promising for analyzing injection-induced seismic events (IISE) without explicitly solving 
complex multiphysics; however, applying ML for analyzing IISE in space and time has never 
been attempted. In this study, we apply ML to analyze IISE in Oklahoma at the basin scale. We 
applied a deep learning (DL) – Multilayer perceptron (MLP) model to correlate injection fluid 
volume and pressure with IISE at 53 areas of central and northwestern Oklahoma in different 
years. In the model, we implicitly considered the properties of geological formations (e.g., 
permeability, Young’s modulus, and strength) and fault locations by using a novel “neighboring” 
approach. In this approach, seismic events at each location correspond not only to the injection 
and seismic history of its own but also to those of the immediate neighbors. We use the MLP 
model to predict the injection-induced seismicity rate (µ) and the total seismicity rate (λ) 
defined in an empirical model. We trained the MLP model by using 12-month injection volume 
and pressure, and historical values of µ and λ of each location and its immediate neighbors, 
along with the coordinates. We then used the test data to assess the accuracy of the prediction. 
A Mean Square Error (MSE) of 0.003 was obtained for µ and 0.033 for λ. We conclude that 
the new MLP model is promising for basin-scale IISE in space and time. 

1. Introduction 

Induced seismicity is a major concern associated with industrial underground fluid injection 
activities, including wastewater injection, injection for sequestering carbon dioxide and 

hydrogen storage. As a result 
of coupled hydro-mechanical 
(HM) processes, injecting 
fluid causes pore pressure to 
increase and shear strength to 
decrease in faults, thus may 
lead to reactivation of faults if 
certain criteria are satisfied 
(Ellsworth, 2013; Rutqvist et 
al., 2016).  The induced 
seismic events due to 
wastewater fluid injection in 
Oklahoma is a typical example 
(Aochi et al., 2021). With 
sufficient data that is 
monitored in Oklahoma, we 
will use this massive amount 

of data with a focus on the central and northwestern areas (as shown in Figure 1). 

 

Figure 1. Fifty-three colored areas with at least 250 earthquakes 
of magnitude Mc ≥2.3 that were grouped into central and 
northwestern areas (Modified from (Aochi et al., 2021)) 



                                                                                            
In this study, we will explore applications of machine learning to investigate injection-induced 
seismicity in space and time at the basin scale. We will first introduce the methodology 
including the architecture of ML model that we used, and the “neighboring” approach for 
effectively considering temporal and spatial efforts in order to implicitly consider the properties 
of geological formations (e.g., permeability, Young’s modulus, and strength) and fault 
locations.  Then we will present the preliminary results of the injection-induced seismicity rate 
(µ) and the total seismicity rate (λ).  

2. Methodology 

We developed a Multilayer perceptron (MLP) model to correlate injection volume with seismic 
rate. The proposed methodology involves using a sliding window approach where we take the 
past 12 months’ data of input (injection volume and pore pressure) which gives a large amount 
of data to train the ML model. 

	
Figure 2.  Proposed MLP model which is trained using the past 12 months of injection volume and pore 
pressure and seismicity (, µ) for 5 coordinates (4 neighbors top, down, left, right). It also includes the 
latitude and longitude (i.e., the coordinates) as input for the model to learn coordinate-specific variations 

The proposed MLP model consists of three layers—the input layer, the output layer, and the 
hidden layer (dense or Fully Connected (FC) layer), as shown in Figure 2. A dense or FC layer 
is a linear operation in which every input is connected to every output by weight (Figure 3). 
This layer gives sufficient flexibility to the model to solve possible non-linear relations between 
the input (injection volume, pore pressure) and output (seismic rate). Here we use the “sliding 
window” approach where we consider the past 12months’ data along with neighbor coordinates, 
and hence the input of 122 dimensions were fed to the MLP model. 

As demonstrated in Figure 3, MLP architecture is a simple 4-layer feed-forward artificial neural 
network. The layers are an input layer having a fixed-length number of neurons (122), a dense 
layer followed by an activation layer Sigmoid, another dense layer followed by Sigmoid and 
Dropout, and the output layer with Sigmoid activation function. A Sigmoid activation inspects 
whether the result is negative or not. It transforms the negative values to zero and keeps the 
non-negative values as is. After the hidden layer, we used Sigmoid as activation before the 
information is sent to the output layer. This is to introduce non-linearity or even discontinuity 
to the linear output from the hidden layer. Sigmoid is the good function to use because it 
calculates the probability (ranging between 0 and 1) of the target output. 



                                                                                            

 
Figure 3. Multilayer Perceptron (MLP) model with one input, two hidden layers, and one output layer 

3. Preliminary Results 

As we validated the trained MLP model on the test set, the best inference obtained for the 
prediction of seismicity with provided Ground Truth is shown in Figures 4 and 5, where Ground 
Truth refers to the µ and λ obtained from the Epidemic-Type Aftershock Sequence (ETAS) 
model (Aochi et al., 2021). The variable µ is the injection-induced seismicity rate and λ is the 
total seismicity rate.  

To evaluate our model, we used the Mean Square Error (MSE) as a performance metric: 
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predicted seismicity. MSE is calculated by the sum of the square of prediction error, which is 
real output minus predicted output, and then divided by the number of data points. 

The input features consist of 12-month injection volume and pressure, and historical values of 
µ and λ of each location and its immediate neighbors along with the coordinates. Finally, we 
achieved an MSE of 0.003 for injection-induced seismicity rate (µ) and MSE of 0.033 for the 
total seismicity rate (λ) on the test data. 

Figure 4. MLP model output for µ with Green for Ground Truth, dark green for training predicted, and 
Orange for testing predicted  



                                                                                            

Figure 5. MLP model output for µ where Green - Ground Truth, dark green - training predicted, Orange 
- testing predicted 

4. Conclusions 

Induced seismicity is a significant concern for underground fluid injection. Machine learning 
appears to be promising for analyzing injection-induced seismic events (IISE) without 
explicitly solving complex multiphysics. In this study, we made the first attempt to make use 
of machine learning to analyze IISE in Oklahoma at the basin scale. First, we took the data 
involving geometric and physical data with time evolution. The data was pre-processed for the 
new “neighboring approach for effectively considering temporal and spatial efforts in order to 
implicitly consider the properties of geological formations (e.g., permeability, Young’s 
modulus, and strength) and fault locations. Meanwhile, rectangular sub-grids of these 53 areas 
were generated based on the distribution of the geological features. Then we applied a deep 
learning (DL) – Multilayer perceptron (MLP) model to correlate injection fluid volume and 
pressure with IISE at 53 areas of central and northwestern Oklahoma in different years. We 
trained the MLP model by using 12-month injection volume and pressure, and historical values 
of µ and  of each location and its immediate neighbors along with the coordinates. We then 
used the test data to assess the accuracy of the prediction. Finally, we achieved a Mean Square 
Error (MSE) of 0.003 for µ and 0.033 for λ. We conclude that the new MLP model is promising 
for basin-scale IISE in space and time. 
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