Studies and guidelines for two concurrent stroke gestures

Alix Goguey, Michael Ortega

To cite this version:

Alix Goguey, Michael Ortega. Studies and guidelines for two concurrent stroke gestures. International Journal of Human-Computer Studies, 2023, 170, pp.102942. 10.1016/j.ijhcs.2022.102942 . hal-04031673

HAL Id: hal-04031673

https://hal.science/hal-04031673

Submitted on 17 Mar 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Studies and Guidelines for Two Concurrent Stroke Gestures

Alix Goguey ${ }^{\text {a }}$, Michael Ortega ${ }^{\text {a,b,* }}$
${ }^{a}$ Université Grenoble Alpes, Laboratoire d'Informatique de Grenoble
${ }^{b}$ CNRS

Abstract

This paper investigates thumb-index interaction on touch input devices, and more precisely the potential of two concurrent stroke gestures, i.e. gestures in which two fingers of the same hand concurrently draw one stroke each. We present two fundamental studies, one using such gestures for two-dimensional control, by precisely drawing figures, and the other for command activation, by roughly sketching figures. Results give a first analysis of user performance on 35 gestures with a varying complexity based on numbers of turns and symmetries. All 35 gestures, were grouped into six families. From these results we classify these families and propose new guidelines for designing future mobile interfaces. For instance, favouring anchored gestures (forefinger drawing while the thumb remains still on the surface) to increase input bandwidth when forefinger precision is required.

Keywords: Touch interaction, User study, Stroke gesture

1. Introduction

Multitouch displays are ubiquitous. In the span of a decade, they have entered our daily lives and became unavoidable. Whether with our phones, in our cars or at a cash register, we use them in an extremely wide variety of tasks and contexts. The trend towards all-touch is even likely to be reinforced, since the use of touchscreens in the professional context is no longer anecdota ${ }^{1}$. As a consequence, we keep adding tasks

[^0]that are becoming more and more complex to perform, and start using tools originally designed for desktop computer on touchscreen (e.g., spreadsheets, text editors, ...). However, the interaction bandwidth on touchscreen is far narrower than on desktop computers. The vast majority of our daily interactions only rely on touches' position. Screen sizes are also becoming smaller. This combination of factors can lead to mobile applications being purposefully limited compare to their desktop counter-parts. For instance, Adobe Photoshop (CS6) offers over 600 different commands on its desktop version and only 35 on its tablet version (Express) [1].

It is crucial to think now about tomorrow's multitouch interactions and avoid daily use of limited or non-adapted tools. It therefore comes as no surprise that an extensive amount of research in HCI is dedicated to explore and enlarged the interaction bandwidth of multitouch devices. To avoid the extensive use of the limited amount of screen real estate, or the extensive use of menus, a promising solution to increase the interaction bandwidth is to enrich the input vocabulary. Many works study new dimensions such as the orientation [2, 3, 4], the force exerted during a contact [5, 6], or which finger [7] or hand part [8, 9] is interacting. However, while these new pieces of information look promising and exiting, almost no commercially available device ${ }^{2}$ offer them.

Yet, there are ways to enrich the input vocabulary without any new technological breakthrough. Sets of stroke gestures have been studied to issue commands [10, 11 , 12, 13], for instance left and right swipes to display next and previous pictures. More complex gestures, like waves, circles, or spirals have also been designed even though used less often on commercial devices [10]. The number of contacts on a screen has also been used to enrich the input vocabulary, via simple chords [14] or more complex continuous gestures as the well known RST (Rotate-Scale-Translate) gesture [15] typically implemented in picture gallery or map applications. However, while gestures and number of contacts have been combined at times, we argue that there is a gap between simple (e.g. two-fingers down swipes to invoke the settings menu on Android) and complex (e.g. RST) two concurrent finger gestures that has not been

[^1]studied. Filling this gap could potentially provide new gesture-based inputs to designers, and improve the expressivity of all off-the-shelf multitouch devices without the need for any additional hardware.

In this work, we focus on this gap and investigate two concurrent stroke gestures (2CSG), i.e. gestures in which two fingers of the same hand concurrently draw one not, and therefore if adding a second contact (still or in motion) while already stroking with one finger can act as a modifier. As the forefinger is the most used and studied finger [16] for single-finger gestures, we focus on thumb-forefinger gestures. Furthermore, from the literature we know that, due to mechanical and neuromuscular constraints, the resulting 2CSG can be grouped in five families: anchored, parallel, one-line, mirror and misc., that we compare with a baseline family, made of single stroke gestures. The results of our analysis allow us to derive guidelines to exploit the potential benefits of 2CSG in common situations. One takeaway, is the good performance of the anchored is a good option to increase input bandwidth when forefinger precision is required.

Our work investigates whether a simple gesture system that can work on any touch devices without requiring special hardware could be achieved. It proposes two main contributions: 1) two experiments that investigate the potential benefits and drawbacks of thumb-forefinger multitouch gestures, and 2) guidelines on the use of such gestures. After presenting the related work, we detail each experiment and its quantitative and qualitative results. These results are then discussed, and used to derive guidelines.

2. Related Work

When it comes to multi-finger gestures, research mainly focuses on the continuous (RST) of a 2D object. Knoedel et al. compared indirect and direct versions and showed that direct mapping shortens completion times while indirect mapping provides a better precision. In both cases, users' trajectories are comparable [15]. This RST gesture has had many variations [23, 24] and is one of the most iconic use of two-fingers interaction on tactile surfaces, mostly used to manipulate 2D content like maps or images. However, in RST gestures, only the difference between the starting and the end states matters. The output is simply an interpretation of this difference to update virtual object caracteristics (e.g. size or position). The path has little importance, which does not correspond to our objective of studying the expressivity of 2CSG.
${ }_{85}$
2.1. Two Concurrent Stroke Gestures: $2 C S G$

An extensive amount of research focus on single-stroke gestures (e.g. [25, 26, 27, 10, 11]). For example, in 1994 Kurtenbach et al. proposed a study with marking menus, in which the direction of the stroke determines a menu item [25]. In 2009, Appert et al. studied 16 'stroke shortcuts', i.e. shortcuts triggered by simple single strokes, like a 90 line, a pig-tail, a 'w' or a two-turns spiral [10]. In 2010, Li et al. triggered shorcuts with more complex drawings: a user could draw several strokes, but sequentially and with one finger only [11].

In comparison, very few works study multi-strokes gestures. In 2011, Banovic et al. proposed a Multifinger Pie Menu Interaction [28]. The technique relies on chords counting the number of fingers in contact with the surface, as in FingerCount [14]. Furthermore, relative positions between the contacts are interpreted, as in Arpège [29], and as such it paves the way towards 2CSG. In Multifinger Pie Menu Interaction, each finger has its own role: one anchors the menu while the second selects an item. The interaction has been tested with several finger combinations and timings. Results showed that an anchored thumb combined with a forefinger, middle or ring finger was among the best finger combination, and while chording simultaneously (as opposed to sequentially) was more error prone, it did yield faster time.

With Pin-and-Cross, Luo et al. made one more step towards 2CSG [30]. This technique combines one or more static touches (i.e. "pins", usually made with the forefinger), with a stroke gesture (i.e. "cross", usually made with the middle finger). The stroke gesture crosses a radial target which issues a command. Both fingers performing a Pin-and-Cross are from the same hand. Authors compared a Pin-and-Cross contextual menu to a Marking Menu and partial Pie Menu: Pin-and-cross is 27% faster. Even though, the stroke part is a simple straingth line, this work provides a promising glimpse on the potential use of 2CSG.

In their 2014 experiment, Rekik et al. gave the very first elements on the difficulty of drawing figures with two or more fingers [31]. They showed that, although gestures produced with multiple fingers are larger in size and take more time to perform compared to single-touch gestures, two-finger gestures should be equally exploited, as they were perceived not more difficult to produce. Unfortunately, almost all of the multi-strokes gestures proposed in the experiment, such as the ball or the butterfly tie, were not achievable with concurrent stroke gestures of single-hand fingers. Only the double line figure could have been performed with two concurrent strokes of the same hand, but it has not been tested. Therefore, there are no results on the use of 2CSG. More recently, Leiva et al. proposed a model for predicting the expected user completion time of multi-strokes gestures [32]. They conducted an experiment on 82 figures. However, as in the previous study, none was crafted for concurrent stroke gestures.

Finally one could argue that if all fingers stay together and follow the same trajectory,
study results on single-stroke gestures could stand for multi-stroke gestures. For instance, two-finger swipes used on recent tablet devices to control multitasking, and single-finger swipes have very similar time of execution [33]. These types of multi-finger gestures manipulate one attribute at a time (the trajectory), and as such, the number of fingers acts as a modifier (e.g. single-finger bezel swipe down to show android notification and two-finger bezel-swipe down to show the parameters).

The research literature shows benefits on using two-points gestures, one-point-onestroke gestures, and two-fingers control. However to the best of our knowledge, there is little to no results on the potential of 2 CSG , or that could directly be transferred from studies on single-stroke gestures to 2CSG.

3. Gesture Set and Notation

The number of strokes is virtually infinite as many parameters come into play. To design gestures representative enough while keeping the number of variations manageable, we defined a set of 35 strokes, basing difficulty on the 1982 Viviani and Terzuolo's conclusion that the time needed to complete a drawing decreases with the radius of curvature [34]. We therefore varied the radius of curvature between the strokes and within the strokes (i.e. inflection points). As a result, we used straight lines (-), half circles $(\backsim$ and \frown) and waves (\backsim and \sim).

We combined these strokes to create 25 combinations in which UpStrokes are dedicated to the forefinger while DownStrokes are dedicated to the thumb. For completeness, we added two DownStrokes: \otimes, acting as a baseline in which the forefinger performs a single stroke with no contact of the thumb; and • , using the thumb as an anchor (i.e. a fixed contact) while the forefinger performs a single stroke. In the end, our studies use a total of 35 combinations (see Figure 11.

In this paper, we use the following notation to refer to a combination of strokes: ${\underset{S_{d}}{S_{u}}}_{S_{d}}$ $=\begin{gathered}\text { UpStroke } \\ \text { DownStroke }\end{gathered}$. For instance, $\widehat{\otimes}$ refers to a \frown drawn by the forefinger and no thumb in contact $(\otimes), \simeq$ refers to a \sim drawn by the forefinger and a - drawn by the thumb.

All the 35 combinations can be grouped in the following 2CSG families:
baseline：only one stroke drawn by the forefinger．
$\bar{\otimes} \underset{\otimes}{\otimes} \bumpeq \overbrace{\otimes}$
anchored：one stroke drawn by the forefinger while the thumb remains still on the surface．

parallel：the forefinger and the thumb draw the same strokes．
二 $\asymp \curvearrowleft \backsim ~$
one－line：one of the two strokes is a straight line．
〔 $\simeq \simeq \simeq \bar{\backsim} \sim \bar{\sim}$
mirror：the forefinger and the thumb draw mirrored strokes．
\smile こ～～
misc．：the forefinger and the thumb draw unrelated strokes，and no straight line．

4．Hypothesis

We decided to construct our gesture set from a single－stroke－shape difficulty point of view（from Viviani and Terzuolo＇s research［34］），and derived all possible combi－ nations which allow us to group them based on their conceptual similarities．We did not use existing taxonomies to derive our families to avoid clustering difficult stroke combination（as shown below）．However，we use them to help us form hypothesis on user performance．

Freeman et al．［35］proposed a taxonomy（built on［36］）which can be used to classify our gesture set prior to our study，into three categories：
－\｛single－finger，static，path\}: it includes baseline gestures, because they use only one finger，and the hand translates while its pose remains the same all along the path；
－\｛multi－finger，static，path\}: it includes parallel gestures, because they use two fingers，and the hand translates while its pose remains the same all along the path；

Figure 1: The 35 stroke combinations used in both studies. Top strokes represent forefinger movements. Bottom strokes represent thumb movements. The left column shows the baseline, i.e. a single finger stroke made with the forefinger while the thumb does not touch the surface. In the second column, the thumb is anchored effectively acting as a still contact. Background colors each represent a different 2CSG family, and will be used as identifier in the paper.

- \{multi-finger, dynamic, path\}: it includes anchored, one-line, mirror and misc. gestures, because the hand translates while the relative position of the fingers changes.

Hypothesis 1 (H1): We expect decreasing performance between baseline, parallel and the remaining families.

Hypothesis 2 (H2): baseline and parallel families only differ from one property (i.e., single- vs multi-finger). Since only one contact is added (i.e., the thumb), we hypothesized that gestures from the parallel family should only imply a small mechanical constraint and very low additional cognitive load since both strokes are identical. We therefore expect baseline and parallel to have similar performance.

More recently, Rekik et al. introduced a taxonomy with the parallelism and sequentiality concepts [37]. However, the induced classification is trial-dependent since the strategy used while performing the gesture is an important feature for the categorization process, and can result in one stroke-combination being potentially categorized differently after each trial. In this taxonomy, two of our gesture families can be classified in unique categories (baseline and anchored) but none of the other families.

- $\{\boldsymbol{E}, \mathbf{1 H}, \mathbf{M}, \mathbf{1 F}, \mathbf{1 F}\}$: it includes baseline gestures, because they are elementary atomic movements (E), made with one hand $(1 \mathrm{H})$, a moving forefinger (M) per stroke (1F) and per hand (1F).
- $\left\{\boldsymbol{C}, \mathbf{1 H}, \boldsymbol{R}^{*} \boldsymbol{M}, \mathbf{2 F}, \mathbf{1 F}\right\}$: it includes anchored gestures, because they are compound gestures (C) that uses two fingers $(2 \mathrm{~F})$ of the same hand $(1 \mathrm{H})$, one finger per stroke (1F), a static thumb (R) with a moving forefinger (M), which results in parallel gestures $\left(\mathrm{R}^{*} \mathrm{M}\right)$.
- $\left\{\boldsymbol{C}, \mathbf{1 H}, \boldsymbol{M}^{*} \boldsymbol{M}\right.$ or $\left.\boldsymbol{M} \boldsymbol{+} \boldsymbol{M}, \mathbf{2 F}, \mathbf{1 F}\right\}$: it includes the remaining families, because they are compound gestures (C) that uses two fingers $(2 \mathrm{~F})$ of the same hand $(1 \mathrm{H})$, one finger per stroke (1F), a moving thumb (M) and a moving forefinger (M). However, both fingers can move in parallel $\left(M^{*} M\right)$ or sequentially $(M+M)$.

Hypothesis 3 (H3): Rekik et al. observed several users' strategy from their study. In particular, they relate that "participants combined the movements of their fingers
simultaneously, in [...] symmetric" gestures. They also relate parallelism when fingers

5. Study 1: Precision

This study aims at evaluating how difficult to draw is a 2CSG. We particularly observe (1) drawing performance, (2) how stroke complexity and combinations affect parallelism and drawing strategies, and (3) how concurrent movements made by the thumb affect forefinger drawings.

The experiment consists in a serie of trials in which participants are asked to reproduce 2 CSG . As described previously, each trial prompts a combination of 2 concurrent strokes: five UpStrokes: $-\smile, \frown, \backsim$ and \sim; and seven DownStrokes: - ,
$235 \smile, \frown, \curvearrowleft, \sim$, ${ }^{2}$ and \otimes.

Figure 2: Example of a trial from study 1. a : the initial display consists of two starting areas, with different diameters, and the stroke skeletons. b : blue strokes display first touch events, i.e. finger trajectories. When a participant slid her fingers into the starting areas, the areas turned green, and tunnels and ending areas appeared. c : the forefinger reached the ending area of the upper stroke, which turned green, while the thumb is still sliding into the bottom tunnel. d : both fingers reached their ending areas. The application background turned green, indicating that the trial was completed.

5.1. Combination sizes

Figure 3 shows the interface used by the participants. The combinations to complete are displayed in the center of the display with dashed-lines. In order to impose a level of precision, we displayed tunnels around the lines.

To determine the drawing width, we use the following constraints:

1. ensuring a capped finger separation of 90 mm (empirically found to be the maximum comfortable thumb-forefinger distance).
2. no tunnel overlapping (at worst, only the external 1 mm thick tunnel strokes would overlap).
3. using perfect shapes (semi circles).
4. vertically centering strokes on their respective drawing zones.

Following all four constraints, the dashed-lines start and end points are therefore spread 75 mm apart on the horizontal axis. We tested 2 tunnel Widths (except for \bullet and \otimes): 10 and 14 mm (50 and 70 pixels respectively). The tunnel Widths are also used as diameters of the starting and ending area circles, respectively on the left and right side of the strokes. For • , participants were required to keep their thumb inside the starting area while the forefinger was completing the UpStroke. For \otimes, the thumb was not in contact

Figure 3: Interface of study 1. Progression is displayed on the bottom-left corner. The twostrokes combination is centred, displayed with dashed-lines, and surrounded by tunnels of different widths. Blue lines represent the strokes that have been drawn by the participant. In the example, both the forefinger and thumb have entered and are in their starting areas (green).
with the surface.

5.2. Procedure

After completing a short demographic survey, participants were presented with the touch interface on which they would perform the trials. The device was placed in front of the participants, laid flat on a table. While describing and showing several 2CSG combinations, the experimenter gave the following instructions:

- Participants were asked to draw with their dominant hand, using their forefinger for the UpStrokes and their thumb for the DownStrokes.
- For each trial, a participant that was not satisfied (e.g. bad performance or bad strategy) could lift the fingers and redo the trial as many times as needed. Our rational was to approach as much as possible ideal performance.
- To complete a trial, participants needed to draw both the UpStroke and DownStroke from their respective starting area to their respective ending area, and keep as much as possible the fingers in their tunnels. Our rational was to avoid frustrating participants when faced with hard combinations.
- A trial started when both the forefinger and the thumb were placed inside their respective starting areas (only the forefinger for \otimes), and ended when both fingers were in their respective ending areas (only the forefinger for \otimes).
- Participants were asked to complete the trials without any constraint on their strategy, as fast and accurately as possible, as long as both fingers were pressed down on the surface. For instance, one could complete the UpStroke first and then the DownStroke, or on the contrary one could draw both Strokes simultaneously (see Figure 2).

After the instructions, and before starting the recordings, participants went through a random serie of trials to get familiar with the task.

All the above phases typically lasted less than 5 minutes. Then participants went through all the trials, and could take a break if needed after each trial. After the completion of all the trials, the experimenter conducted a debriefing session, in which he
asked about the strategies participants developed, and the difficulties they encountered. In total, the experiment lasted from 30 to 45 minutes.

5.3. Experimental Design

Each combination of strokes and tunnel widths was repeated twice. The experiment used a 5 Ups $\times 2$ Widths $\times(5$ Downs $\times 2$ Widths +2 Downs $) \times 2$ Repetitions withinsubject design. The order of the $\mathbf{2 4 0}$ trials was randomized with the constraint that 2 Repetitions of the same factor combination could not appear twice in a row. A total of 3360 trials were logged across all participants.

5.4. Participants and Apparatus

We recruited 14 participants (mean age 27.71 years, $\mathrm{SD}=3.91$ years; no left-handed; 4 females).

All the participants owned a smartphone and used it everyday. 4 participants owned and used a tablet everyday. Participants barely used two-finger interactions in their daily life, apart from RST gestures in maps and picture applications.

The study was conducted on a $1^{\text {st }}$ generation 11 inches iPad pro (Retina display: 2388 $\times 1668 \mathrm{px}$ resolution at 264 ppi). The software was written in HTML/CSS/JavaScript. Logs were sent through a web-socket to a python-written server running on a MacBook Pro 13inch fifth generation (Intel Core i5).

5.5. Results and first analyses

This section presents both quantitative and qualitative results. For quantitative results, we explore (1) basic performance, with completion times and success rates, and (2) concurrency i.e. how much strokes are made concurrently. A successful trial means that the two concurrent strokes were fully drawn within the tunnel boundaries during the ideal attempt. For qualitative results, we explore (1) fatigue and discomfort, (2) drawing strategies, and (3) perceived complexity.

Figure 4: Mean time ratios and $\mathbf{9 5 \%}$ CI for all the different combinations of Strokes. Ratios correspond to the mean of: completion times for a given combination divided by the mean completion time of the corresponding baseline.

5.5.1. Performance

We computed the mean trial completion time for the 35 combinations, and we also broke it down for each tunnel Widths combinations. We performed the same calculations for success rate.

Following Dragicevic's advice on statistical communication for HCI [38], we use estimation methods to derive 95% confidence intervals (CIs) rather than traditional null hypothesis statistical testing. Figures 4 and 5 shows the mean ratios as percentages and 95% CI of time and success rate for each combination of Strokes with their respective \otimes conditions (i.e. baseline conditions).

As expected, we observe in Figure 6 that the tighter the tunnels the higher the completion times and the lower the success rates.

As expected as well, we observe an increase in time and error as more complex Downs are introduced (Figure 4). When a second shape is introduced, completion time

Figure 5: Mean success ratios and $\mathbf{9 5 \%}$ CI for all the different combinations of Strokes. Ratios correspond to the mean of: success rates for a given combination divided by the mean success rate of the corresponding baseline.

Figure 6: Mean time (resp. success) ratios and $\mathbf{9 5 \%}$ CI for all the different combinations of Widths. Ratios correspond to the mean of: completion time (resp. success rates) for a given combination divided by the mean completion time (resp. success rate) of the combination with the larger Width.
doubles or more for all conditions except for Downs with •. The greatest increases come from introducing curvy Downs when the forefinger follows a - path (Figure 4 leftmost graph); however, time values increase to level similar to combinations involving a down -.

5.5.2. Concurrency

In order to investigate whether a 2 CSG system that can work on any touch devices without requiring special hardware, we first need to study whether two strokes can be performed simultaneously. We therefore need a metric to measure "how much" concurrent two strokes are. We use a tailored metric, inspired from the M-metric presented by Masliah and Milgram [39], to quantify users concurrency between the up and down strokes. It computes the difference of progression of each finger through time. We call this new metric the C-metric, for 'Concurrency' metric. The goal of our C-metric is to output a normalized value quantifying how much 'concurrently' strokes have been performed.

The metric is based on the drawing progression of each stroke at any given time of

Figure 7: Three theoretical examples of trial completions: 1- Up stroke has been completely drawing before the down one; 2-Both strokes have been drawn concurrently all along; 3A 3 phases completion: half of the up stroke alone, the full down stroke, and second half of the up stroke. The grey diamond shows the convex hull of $P T$, i.e. no trial could give a curve out of the diamond. Note: scales of the x - and y-axis are different.
the trial: $L_{s}(t)$, where $s \in\{$ up, down $\}$, and $t \in[0,1]$.
A stroke progression value, P, is therefore:

$$
\begin{equation*}
P_{s}(t)=\frac{L_{s}(t)}{L_{s}(1)} \tag{1}
\end{equation*}
$$

P_{s} is normalized: at the beginning of the trial $P_{s}(0)=0$, and at the end $P_{s}(1)=1$. We can therefore compute PT, a function that gives the completion of a trial at a given time by:

$$
\begin{equation*}
\mathrm{PT}(t)=P_{\mathrm{up}}(t)-P_{\mathrm{down}}(t) \tag{2}
\end{equation*}
$$

Figure 7 shows examples of PT for three theoretical trials:

1. the curve with a perfect isosceles shape refers to a trial in which the up stroke has been completely drawn before the down one;
2. the horizontal line refers to a trial in which both strokes have been done concurrently all along;
3. the curve with a 'squared wave' shape refers to a trial with the following sequence: half of the up stroke completed first, the down stroke completed in one go, and the second half of the up stroke was completed.

Figure 8 shows the mean PT of all the trials of the experiment, for each user and each combination. One can observe that most of the curves are skewed upwards, which means that most of the trials started moving the forefinger first.

We defined a concurrency metric C which corresponds to the normalized length of PT from 0 to 1 . Considering the worst case, i.e. concurrency is never used (e.g. both curves 1 and 3), the total length of the PT curve is: $\max (\mathrm{PT})=2 \sqrt{0.5^{2}+1^{2}}$. In the best case, i.e. concurrency is used from start to finish (e.g. curve 2$), \min (\mathrm{PT})=1$. The concurrency metric C is therefore:

$$
\begin{equation*}
C=1-\frac{\operatorname{Len}(\mathrm{PT})-\min (\mathrm{PT})}{\max (\mathrm{PT})-\min (\mathrm{PT})}=1-\frac{\operatorname{Len}(\mathrm{PT})-1}{2 \sqrt{1.25}-1} \tag{3}
\end{equation*}
$$

where $C \in[0,1]$. $C=0$ means no concurrency at all while $C=1$ means the two strokes has been drawn simultaneously, at the same progression speed, all along the trial.

Figure 9 shows the distributions and estimated density of the C-metric across the different combinations. One can see a clear tendency to complete paths simultaneously when both strokes are identical (parallel strategy): distributions on the diagonal are skewed leftwards. For any other combinations, distributions are more spread out but participants still seem to prefer performing strokes somewhat concurrently. Only a few chose sequential strategy. For some combinations, e.g. \smile or \smile, the two strategies are clearely identifiable and in the group of participants that used the sequential strategy their movements were almost never concurrent (C very close to 0). Another observation we can make is that sequential strategy is more used with $\frown, ~ こ, ~ こ, ~ \preceq, ~ \succeq$ and \approx, when fingers need to move away from one another at the beginning of the movement.

5.6. Concurrency with Heat-Maps

In order to hightlight the behaviour of the fingers in sequential and parallel strategies, we computed heat-maps of the contact positions on the screen during all trials (Figure 10).

Figure 8: Mean progression (i.e. PT) of each user during trials across the different combinations. The bold blue line represents the mean progression across participants and the light blue area, the $\mathbf{9 5 \%}$ CI.

Figure 9: Distributions of the \boldsymbol{C}-metric across the different combinations of strokes. Each color represents a single user. The blue line represents the estimated density function.

Figure 10: Heat-map of all touch events logged during study 1. Red and blue colors correspond to the UpStrokes and DownStrokes respectively. Each shade represents isoproportions of the density in increment of $\mathbf{1 0 \%}$ (from the lightest shades to the darkest).

These positions were extracted from all the touch events logged during the experiments. Each touch event contained both the forefinger and thumb positions. Hot-spots (i.e. darker colored areas) show areas of high event density. In the diagonal, corresponding to the parallel family, hotspots tends to be spread out around the apexes (i.e. mid-points of arcs). Given the concurrency metric results indicating the use of concurrent strategies, users most likely slowed down when reaching apexes. In the remaining families, hot spots are sharper and localized differently. Given the more mitigated concurrency metric results, we hypothesize that these hotspots most likely corresponds to stopping points used for sequential drawings of the strokes. They appear in the extremities (e.g. 3rd column and 4th row in figure 10 indicating that strokes were started and ended at different times, and the apexes (e.g. 5th column and 2nd row in figure 10 indicating that difficulties normally requiring careful tracing becomes too difficult when shapes are mixed. It concurs with our previous observations: 2CSG performance is linked to the number of turns and figure symmetry.

5.7. Qualitative results

Because of personal timing constraints (not due to a specific behaviour during the experiment), 3 participants were not able to commit to the debriefing session. Therefore this section presents the results of 11 of the 14 participants (mean age 27.54 years, $\mathrm{SD}=4.22$ years; no left-handed; 2 females).

5.7.1. Fatigue and discomfort

7 participants perceived a little fatigue during the experiment. 4 perceived it on the thumb, from a slight discomfort to a feeling of an onset of tendinitis. The 3 others felt a global fatigue (arm, eyes, shoulder), and one of them mentioned that this fatigue could have influenced its strategy: independently from the figures, his/her gestures were more sequential for the last trials (developed in the following sub-section).

3 participants have been disturbed by a third finger (ring or little of the interacting hand) that touched the tablet during the steering interaction. This case is managed by the software in a similar way than when one finger leaves the tablet while the gesture is not complete: the software stops the trial, forcing the participant to re-start the trial
immediately. However, this issue mainly appeared in the first trials, and participants progressively corrected their hand position.

Since all participants were right-handed and were asked to draw the figures from left to right, they could have been disturbed by their hand occluding the figure, especially during the beginning of the gesture. However, only one participant mentioned it during the debriefing.

5.7.2. Strategies

Without any influence from the experimenter, all participants thought about strategies to optimize their efficiency. During the interviews, we learned that they considered concurrency and sequentiality. 1 participant used sequential drawings only. Another participant used concurrent drawings until (s)he felt a global fatigue and therefore switch to sequential only. For the other 9 participants, the method depended on the figure complexity, and more precisely on the eye movements imposed by the figures. Indeed, they used the concurrency by default, until the figure complexity forced the eyes to jump too frequently between the two strokes. At this level of complexity, they felt it would be more efficient and relaxing to decrease the eye-jump frequency by making longer drawings one finger at a time.

5.7.3. Perceived complexity

First, only 4 participants felt impacted by the tunnel width, and 5 of the others explicitly said they didn't pay attention to it. This could suggest that either both widths were wide enough to not pose problems, or that the following the paths was more challenging that meeting the required precision.

During the interview, we ask participants about combinations complexity. Without any suggestion from the interviewer, they spontaneously created families of complexity, and most of the participants made the same families as we mention above. As expected, all participants highlighted the "one-finger group", i.e. the baseline family as the easiest combinations to perform. In this group, complexity increases with the number of turns, i.e. the $\bar{\otimes}$ is the easiest, followed by $\underset{\otimes}{\smile}$ and $\overparen{\otimes}$. Then \bumpeq and $\approx \approx$ are the hardest.

6 participants mentioned the "fixed-thumb group", i.e. the anchored family, and felt

Figure 11: The majority graph from the classification of the $\mathbf{6}$ categories. Arrows mean 'classified more times easier', and the vertical ordering gives the final classification: baseline is the easier, and misc. the harder.
it "just a bit harder than the 'one-stroke group' (i.e. the one-line family). 1 participant felt a discomfort in his/her wrist and said that "fixing the thumb twists the hand".

All participants proposed a family of "identical-strokes", i.e. the parallel family. 9 participants ranked it just after baseline and anchored in terms of complexity. They expressed that, thanks to the constant distance between the fingers, this kind of combination is closed to the baseline.

Another family has been proposed by 9 participants, and ranked fourth. They call it the "symmetrical group", i.e. our mirror family, and rank it after parallel.

All participants said that the hardest combinations are the one with no straight line, no identical strokes, and no symmetry, i.e. our misc. family Here all the participants had to use the sequential drawing method. According to 3 participants, this could be due to the difference between the number of inflection points in the up and down strokes.

These groupings suggests that participants perceived a similar complexity for the remaining gestures, i.e. the one-line family. Considering the interviews, this family should be classified in between mirror and misc.

Finally, even if not all participants mentioned all 6 families, they all used a classifi- cation of 3 to 6 elements. Using their classifications, we created a majority graph [40]. In this graph, showed in Figure 11, each node is one of the 6 families, and an arrow from A to B means that 'A has been classified easier than B more times than B has been classified easier than A'. Applying the Copeland rules [41, 42], which consists in counting the number of out-coming arcs per node, we computed a global classification represented by the horizontal position of the nodes (from the easiest, i.e. leftmost node, to the hardest, i.e. rightmost node).

The complexity classification therefore is (from the easiest family to the hardest one): baseline, anchored, parallel, mirror, one-line and misc. In order to corroborate these observations, we computed the mean time, mean C-metric and mean error rate for each family. Results are shown in Figure 12.

The three figures present the same tendency, and corroborate the hypothesis for 5 of the 6 families. Unexpectedly, mirror has been overestimated, especially for time and error rate. According to the quantitative results, it places penultimate, close to misc. At first glance, one could consider the participants had been biased by symmetry, which gives an illusion of simplicity to the figure. However, considering the C-metric indicator in Figure 12, and considering that complexity implies sequential drawings, the mirror group seems correctly placed on the majority graph of Figure 11 .

This confirms that participants made a direct link between complexity and concurrency. For the 9 participants that made a link between drawing strategy and complexity, all confirm they used concurrent drawing with parallel. 4 of them still used it with mirror, and 2 others with one-line. All participants used sequential drawing with misc.

6. Study 2: Recognition

In this second study we aim at evaluating how 2CSG could be used for command activation, and more precisely: how complexity affects performance, recognition and learnability.

We used the same set of 35 combinations, and participants had to complete them with the forefinger and the thumb of their dominant hand. In order to force a command-

Figure 12: (left) Mean movement times and 95% CI for each family, classified from left to right by increasing perceived complexity.'mirror' seems to be overestimated by the participants. (center) Mean C-metrics and 95% CI for each family, classified from left to right by increasing perceived complexity. There seems to be a correlation between complexity and concurrency. (right) Mean Error Rates and 95% CI for each family, classified from left to right by increasing perceived complexity. Here also,'mirror'seems to be overestimated by the participants.

Figure 13: Interface of the second study. Participants can use all of the blue area to draw the top-right figure. Progression and participant's id are displayed on bottom-left.
like gesture, each trial needed to be done in less than two seconds. This time limit aimed at pressuring users just enough. It was empirically determined: one second was too fast, and pilot users did not even start trying; three seconds was too slow, and pilot users started slowing down and decomposing their gestures, which let them conscientize their movement. Exceeding the time cancelled the trial which had then to be repeated.

Figure 13 shows the interface of the experiment. Each combination to complete was successively displayed as a thumbnail on the top right corner of the screen. 2CSG could be performed anywhere on the screen. There were no starting, ending areas, nor visual feedback of the gesture during or after completion. The blue background turned green when the trial was completed in the time allowed, and turned red if time limit was exceeded, letting the participant know that the trial had to be done again.

We decided a display sequence of the combinations that consisted of 3 phases:

1. All the 35 combinations were randomly displayed once. If the time limit was exceeded, the combination was queued and prompted again later to ensure each trial was completed once.
2. Each combination was displayed again to be repeated 10 times in a row. The combinations order was the same than in phase 1 (taking into account reordering due to timing issue). If the time limit was exceeded, the same combination was proposed straight away until reaching 10 successfull repetitions.
3. Identical to phase 1.

This specific ordering aimed at observing different facets in the learning process of 2CSG. It allowed to distinguish four kinds of gesture perception by participants:

- New: a combination a participant sees for the first time, i.e. all the trials of phase 1,
- Known: a combination a participant already encountered once, i.e.. the first trial of each combination in phase 2),
- Trained: a combination participants trained on, i.e. the last trial of each combination in phase 2, after 9 repetitions,
- Familiar: a combination participants trained on previously, i.e. all the trials of phase 3.

6.1. Procedure

The experimental procedure was identical to the previous study. The experimenter started with a short demographic survey, showed next the interface and several 2CSG and finally gave the same instructions except:

- As there is no starting, ending area, nor tunnels, a trial could start and finish anywhere on the device screen. The size of the performed combination was up to the participant, and limited by the screen size only.
- The recording started when both the forefinger and thumb were in contact with the screen (or only the forefinger for \otimes). It ended when one finger was lift up.
- There was no training session, and it was not allowed to train on the table, nor any other surface to ensure that phase 1 trials were the first attempts.

There was no constraint on the tablet orientation, but all participants needed to complete the UpStrokes with their forefingers and the DownStrokes with their thumb along the horizontal axis of the tablet, to ensure rotation-invariance.

When all the trials were completed, the experimenter conducted a debriefing session, in which he asked about the strategies developed as well as the difficulties encountered depending on the combinations that were presented. In total, the experiment lasted from 30 to 45 minutes.

6.2. Experimental Design

The experiment used a 5 Ups $\times 7$ Downs $\times 2$ Repetitions (phase 1 and 3) +5 Ups \times 7 Downs $\times 10$ Repetitions (phase 2) within-subject design. A total of 6300 trials were logged across all participants.

6.3. Participants and Apparatus

We recruited 15 new participants (mean age $30, \mathrm{SD}=6.3$ years; 2 left-handed; 8 females) that did not participate in study 1. All but one participant owned a smartphone and used it every day. Only 7 participants owned a tablet and used it every day. Participants barely used two-finger interactions in their daily life, apart for RST gestures in map and picture applications.

As in the previous experiment, the study was conducted on a $1^{\text {st }}$ generation 11 inches iPad pro (Retina display: $2388 \times 1668 \mathrm{px}$ resolution at 264 ppi). The software was also written in HTML/CSS/JavaScript, and logged events through a web-socket sent to a python-written server running on a MacBook Pro 13inch fifth generation (Intel Core i5).

6.4. Analysis procedure

In the following we describe the two metrics we designed to explore recognition efficiency of 2CSG compared to single stroke gestures.

6.4.1. Recognition Score (Reco)

To assess gesture recognition rates in our study, we used state-of-the-art algorithms. In general there are two types of recognizers families: state machines, suited to recognize continuous gestures, such as Proton [43, 44]; or matching algorithms, which compare strokes to templates such as the $\$$-family [45, 46, 47, 48, 49]. Our goal was to compare each individual strokes to an ideal stroke, without taking into account the relative positioning, scale, and orientation of the two strokes composing a 2CSG. We, therefore,

6.4.2. Score of Similarity (Sim)

In order to quantify how DownStrokes influence the recognition of UpStrokes, we compute a score of similarity (Sim). For a trial, this score is the ratio of Score $\left(\mathrm{S}_{\mathrm{u}}\right)$ with the mean Reco of the corresponding baseline:

$$
\begin{equation*}
\operatorname{Sim}\binom{S_{u}}{S_{d}}=\frac{\operatorname{Score}\left(S_{u}\right)}{\operatorname{Mean} \operatorname{Reco}\binom{S_{\mathrm{u}}}{\otimes}} \tag{6}
\end{equation*}
$$

6.5. Quantitative results

6.5.1. Recognition Score (Reco)

In Figure 14-left, cells show the Reco score of each combinations. The top row corresponds to the baseline family. To confirm that the complexity of our set of strokes

Figure 14: (left) Mean Recognition Scores (i.e. Reco) for all the different combinations of Strokes. (center) Mean Recognition Scores of the UpStrokes only (i.e. Score $\left(\mathrm{S}_{\mathrm{u}}\right)$) for all the different combinations of Strokes. (right) Mean Scores of Similarity (i.e. Sim) for all the different combinations of Strokes.
varies with radius of curvatures and inflection points, we ran a one-way ANOVA. It shows a significant effect of stroke on $\operatorname{Reco}\left(F_{4,11}=127, p<.001\right)$. Post-hoc Tukey tests, reveals differences between $\bar{\otimes}$ and the the rest (all $p<.001$), as well as between the group $[\stackrel{\otimes}{\otimes}, \overparen{\otimes}]$ and the group $[\stackrel{\curvearrowright}{\curvearrowleft}, \widetilde{\otimes}]$ (all $p<.001$). As expected, it seems that Reco decreases when curvature and inflection points increase.

A one-way ANOVA showed significant effect of DownStroke on Reco ($F_{6,9}=186$, $p<.001, \eta_{p}^{2}=.16$ large effect size). Post-hoc Tukey tests, reveals:

- no difference between \otimes and • ,
- differences between the group [\otimes, \bullet] and the rest (all $p<.001$),
- differences between - and the rest (all $p<.001$),
- differences between \smile and $[\sim, \backsim]$ (both $p<.001$)

A one-way ANOVA showed significant effect of 2CSG family on the recognition scores ($F_{5,10}=340, p<.001, \eta_{p}^{2}=0.23$ large effect size). Post-hoc Tukey tests, reveals:

- no difference between baseline, anchored and parallel,
- differences between the group [baseline, anchored, parallel] and the rest (all
$p<.001$),
- differences between one-line and the rest (all $p<.001$)

These trends can be observed in Figure 14 left:

- we observe that baseline (first row), anchored (second row) and parallel (diagonal from 二 to \approx) obtain better mean scores than the remaining groups.
- as expected, lowest scores are for the misc. family, especially when combining strokes with a different number of inflection points. For example, \simeq and \curvearrowleft had the worst scores (0.47 and 0.46 resp.).

6.5.2. Score of Similarity (Sim)

In Figure 14 right, cells show the mean scores of similarity (Sim) for each combinations.

Overall, as expected adding DownStrokes lower the UpStroke recognition score. The more complex the DownStroke the lower the score is. However simple DownStrokes such as • and - do not affect the recognition score drastically which may be leveraged as ways to modify command gesture sets.

Figure 14 right illustrates relatively unexpected results on how DownStrokes affect UpStrokes. First, considering the lower-left corner, and the color gradient from left to right in general, one can see that the more complex a $U p$ stroke is the less its score is affected by the DownStrokes. For instance, comparing $\bar{\frown}$ and \curvearrowleft, one can see that \frown affects a lot more $-(56.7 \%)$ than $\backsim(73.4 \%)$. Also,- is the most affected stroke in general. This result can be explained by the extreme simplicity of,$- \smile$ and \curvearrowleft : the simpler a stroke is, the more a small variation can affect the recognizer.

Next, the second line of the matrix shows the influence of \bullet. While using \bullet only consists of drawing single strokes with the forefinger while the thumb is fixed on the tablet, it still influences the UpStrokes, and similarities vary from 82.5% to 95.1%.

Finally, while we expected making the same stroke with the two fingers should not influence much the $\$ 1$ score of $U p s$, the diagonal of the matrix shows that the difference with a single stroke can be up to 8.7% (for \smile and \approx).

6.5.3. 2CSG Families Analysis

After grouping shape combinations based on 2CSG families, we look at the comple- tion time, Reco, and Sim. We focus the analysis on two factors: Families and Repetitions of the combination. Levels for the Repetitions factor are 1 (trial of phase 1), 2 to 11 (trials of phase 2) and 12 (trial of phase 3).

Mean completion times by Families are: baseline 523ms ($\mathrm{SD}=257 \mathrm{~ms}$), anchored $757 \mathrm{~ms}(\mathrm{SD}=283 \mathrm{~ms})$, parallel $670 \mathrm{~ms}(\mathrm{SD}=319 \mathrm{~ms})$, one-line $1040 \mathrm{~ms}(\mathrm{SD}=354 \mathrm{~ms})$, mirror $1175 \mathrm{~ms}(\mathrm{SD}=346 \mathrm{~ms})$, misc. $1320 \mathrm{~ms}(\mathrm{SD}=387 \mathrm{~ms})$.

Mean completion times by Repetitions are: 11159 ms ($\mathrm{SD}=468 \mathrm{~ms}$), 2976 ms $(\mathrm{SD}=448 \mathrm{~ms}), \mathbf{3} 959 \mathrm{~ms}(\mathrm{SD}=454 \mathrm{~ms}), 4939 \mathrm{~ms}(\mathrm{SD}=435 \mathrm{~ms}), \mathbf{5} 945 \mathrm{~ms}(\mathrm{SD}=437 \mathrm{~ms}), 6$ $943 \mathrm{~ms}(\mathrm{SD}=432 \mathrm{~ms}), 7928 \mathrm{~ms}(\mathrm{SD}=424 \mathrm{~ms}), 8928 \mathrm{~ms}(\mathrm{SD}=428 \mathrm{~ms}), 9915 \mathrm{~ms}(\mathrm{SD}=416 \mathrm{~ms})$, 10 912ms (SD=427ms), $11877 \mathrm{~ms}(\mathrm{SD}=410 \mathrm{~ms}), 12941 \mathrm{~ms}(\mathrm{SD}=239 \mathrm{~ms})$.

A one-way ANOVA showed significant main effect of Family ($F_{5,10}=888, p<.001$, $\eta_{p}^{2}=0.4$ medium effect size) and Repetition ($F_{11,4}=18, p<.001, \eta_{p}^{2}=0.02$ barely no effect size) on the completion time. However, there was no interaction between Family and Repetition. Post-hoc Tukey tests, reveals differences between all Family (all $p<.001$). As for the Repetition, the first repetition was significantly slower than the other (all $p<.001$), but no further difference were found.

Mean Reco by Families are: baseline 0.79 ($\mathrm{SD}=0.21$), anchored 0.79 ($\mathrm{SD}=0.16$), parallel $0.76(\mathrm{SD}=0.21)$, one-line $0.63(\mathrm{SD}=0.25)$, mirror $0.53(\mathrm{SD}=0.22)$, misc. 0.51 ($\mathrm{SD}=0.22$).

A one-way ANOVA showed significant main effect of Family ($F_{5,10}=339, p<.001$, $\eta_{p}^{2}=0.2$ small effect size) on Reco. However, there was no main effect of Repetition nor interaction between Family and Repetition. Post-hoc Tukey tests, reveals differences between baseline and [one-line, mirror, misc.] (all $p<.001$); between anchored and [one-line, mirror, misc.] (all $p<.001$); between parallel and [one-line, mirror, misc.] (all $p<.001$); between mirror and one-line ($p<.001$) and between one-line and misc. ($p<.001$). These results follow nicely participants grouping

Mean Sim by Families are: baseline $0.79(\mathrm{SD}=0.21)$, anchored $0.70(\mathrm{SD}=0.28)$, parallel $0.76(\mathrm{SD}=0.24)$, one-line $0.63(\mathrm{SD}=0.36)$, mirror $0.64(\mathrm{SD}=0.29)$, misc. 0.55
($\mathrm{SD}=0.30$).
A one-way ANOVA showed significant main effect of Family ($F_{5,10}=99, p<.001$, $\eta_{p}^{2}=0.07$ barely no effect size) on Sim. However, there was no main effect of Repetition nor interaction between Family and Repetition. Post-hoc Tukey tests, reveals differences between all Families (all $p<.001$) but one-line and mirror, and baseline and parallel.

There is no evidence of improvement nor degradation of the quality of the combinations throughout the experiment. However, there is still a decreasing trend when looking at the time. It seems that participants slightly improve in terms of completion time without affecting their drawing quality.

Given the simplicity of the shapes, and even though no feedback on successes nor failures were given, we hypothesized participants to be able to self determine whether their gestures were successful (motor-wise) or not compared to what they mentally pictured. We were therefore expected improvements over time thanks to participants self-correcting their gestures during the successive repetitions. However, we observed no differences between the four learning levels, i.e. New (or repetition 1), Known (repetition 2), Trained (repetition 11) and Familiar (repetition 12), except between New and the rest.

6.6. Qualitative results

6.6.1. Fatigue

11 participants felt some physical or mental fatigue. About physical fatigue, 3 participants felt it on their wrist, 2 on their thumb, and 1 on the hand as a whole. This fatigue was mainly caused by the high number of Repetitions, especially for participants who regularly exceeded the time limit, and therefore redid a higher number of trials. 3 participants expressed a wrist discomfort with anchored. Similarly, 2 participants expressed a thumb fatigue.

However, considering the high number of repetitions as not ecological, and considering that most of the participants expressed fatigue as "light tensions in the hand", making command activation with 2CSG does not seem physically demanding.

About mental fatigue, 5 participants complained, and correlated it to the experiment itself, i.e. the number of repetitions. However, 11 participants complained about the
stress caused by misc.. One participant said "this gestures are nearly impossible to make!".

6.6.2. Strategies

The nature of the trials do not let much room for strategy. Only four participants used sequential movements, and this was for misc. only. Indeed, as mentioned by one participant, using sequentiality takes more time and is not consistent with the command gesture principle, neither with the $2 s$ time limit. Another participant started the experiment with sequential movements, but quickly switched to parallelism. As they could rest before each trial, two participants mentally pictured the gestures before each trials, especially in phase 1 and 3.

6.6.3. Perceived complexity

As expected, the same complexity groups (our 6 families) mentionned in study 1 have also been mentioned by the participants of study 2 . All the 6 have been mentioned by 7 participants, 5 participants simply did not mentioned one-line. As expected too, baseline is always the easiest and misc. the hardest. 13 participants ranked parallel or anchored slightly harder than baseline. The two remaining participants stated that anchored was not that easy because it forces the wrist to make an arc. All the 7 participants that mentionned the 6 families placed one-line before last in their complexity scale. They mainly did so because of the frustration involved by the influence of the curved-stroke on the line-stroke. It induced feelings of lack of precision, and fear that the gesture will not be recognized. Among all the participants, 6 mentioned the influence of strokes with a higher number of turns over the ones with a lower number of turns. The typical example was \simeq where participants were convinced that a wave should appear in the resulting DownStroke.

As in study 1, we computed a majority graph, and obtained the same result illustrated in Figure 11

6.6.4. Learning

8 participants felt they were learning across phase 2 . One participant said that this phase seemed to be beneficial for all the gestures, but all said it improved performance
on medium and highly demanding gestures mainly. Also, two participants had the feeling that this learning was not "very" sustainable, and were not sure to perform trials of phase 3 as well in as the last repetition of phase 2 .

7. Discussion

Results from our experiments let us foresee how stroke complexity in 2CSG affects performance, and especially how thumb movements could be combined with concurrent forefinger strokes. In the following, we identify the takeaways from both experiments. Based on these takeaways, we propose a set of guidelines for future use of 2CSG.

Even though the 30 stroke combinations we studied cannot be exhaustive, they still provide a decent overview on how complexity affects performance both when precision is needed and when discrete commands are issued.

To ease the generalizability of our results, we grouped the stroke combinations into different families. It is to be noted that these families were spontaneously retrieved by participants when describing stroke combinations during the interview phase. This concurring grouping acts as a sanity check, therefore providing us with a sensible lens through which analyzing the results.

Finally, we opted for open-ended questions on fatigue and learning to not emphase anything in particular and let participants chose their own level of details at which they wanted to discuss. Moreover, families were not introduced to the participants, since we wanted them to group the gestures. Therefore to not influence them, we would have had to compare all pairs of combination making the experiment potentially too long. The open-ended form appeared to be the best compromise.

7.1. Family Performance

In both experiments, the anchored family yields performance that are close to the baseline (confirming H4). Adding a static thumb while performing strokes with the forefinger therefore seems to be a usable alternative. On the contrary all the other thumb gestures we studied did affect negatively performance at various degrees (partially confirming H1).

In our study focusing on precision, no other families did perform better than simply sequentially drawing strokes. While not necessarily a surprise for most of them, we did not expect this result for the one-line family (e.g. \simeq, \simeq, \simeq and $\simeq)$: drawing time increased by more than twice. Similarly, and even more unexpected, the parallel gestures have significantly worse performance than their baseline counterparts (invalidating H2). We hypothesized that to perform parallel gestures participant would fix the distance between their thumb and their index and only focus on the position of either one of these fingers. We thought that strategy to be relatively close to performing a baseline gesture. However, this strategy may have been too simplistic and overlooked the biomechanic of the hand and the angle at which participants drew their gestures (which was not controlled): maintaining a fixed distance between the thumb and the index may not be a straightforward task. As a note, results shown in figure 9 tend to partially invalidate H3: only strokes from the parallel family tend to be systematically drawn concurrently.

In our study focusing on gesture recognition, we identified more families that could be usable alternatives. While we expected to have higher recognition rates for each gestures of the baseline, we only focus on the relative changes in the recognition score as one could argue that a better recognition algorithm and more samples in the training set could be added. Therefore, considering the Similarity score of the families we tested, not only the anchored family (confirming H4 again) but the one-line and parallel ones seem promising alternatives. Perhaps these families, hard to perform but recognizable, could be used in non-frequent situations and/or critical commands (e.g., closing an app) since they should not be triggered inadvertently. We think it opens up interesting questions to explore in future iterations.

Both studies tend to show that the parallel family is more different from the anchored family than expected (thus invalidating H5), and (at least from study one) much closer to the one-line family.

7.2. Guidelines

and anchored thumb as a quasimode to explicitly issue discrete command through gestures as commonly studied in the literature (e.g., [28]) (for instance a \frown to turn the WiFi on/off); the one-line family could also extend this command interpretation quasimode;

Results on the use of 2CSG are quite anticlimactic. On the one hand we identified families of gestures that can be used and could easily be integrated to augment the interaction bandwidth on touchscreens. On the other hand stroke complexity can not be easily leverage to drastically increase this bandwidth. In the following, we provide some guidelines and example scenarios on usable 2CSG families.

When precise forefinger drawing is needed, no precision with the thumb should be required, and only the anchored family should be leveraged. The thumb can be used as a modifier, but it should be interpreted as on or off the screen. For instance, in a selection tool, the thumb can act as a quasimode for multiselection: items that cross the forefinger path are selected only if the thumb is also in contact with the screen. To be noted, that in our study we required precision for both the forefinger and the thumb. In future works, we should consider unconstrained thumb movements: while the forefinger draws with precision, can the thumb moves without constraints or need to remain static? Good performance with unconstrained thumb movements would allow the use of a modifier for longer gestures, and be used on bigger screens such as tabletops.

When issuing discrete command gestures, the anchored, one-line and parallel families can be leveraged. Simple parallel gestures have already been explored (e.g., parallel lines in various direction for multitouch marking menu [33]) and even are in use in commercial devices (e.g., accessing advanced settings through two-finger bezel swipes downwards on Android), but the use of more complex parallel 2CSG can be added to the toolbox. To the best of our knowledge, the anchored (with forefinger gestures) and one-line families have yet to be used. A system could therefore: 1) use an 2) use the parallel family as already in place (e.g., [33] and Android settings example) but with a bigger set of gestures.

7.3. Future Work

A first extension of this work, could be to further explore the 2CSG design space in order to complete our guidelines, by studying new gestures such as inclined lines (e.g. $<$ or $>$ shapes), broken lines (e.g. W shapes), or even switching roles (e.g. anchoring the forefinger instead of the thumb).

Our second study included two left-handed persons. The handedness factor did not reveal any difference. However, given our sample size, this lack of difference does not mean there is none. Future work may consider investigating the effect of handedness, however we hypothesize that the main difference is mechanical (e.g., participants either pull or push when sliding their fingers), and thus that such an experiment will not show any critical difference in performance, the performance bottleneck being arguably more due to cognitive rather than mechanical constraints.

In our second study, we used a $\$ 1$ recognizer on each stroke to analyze them independently. In future works, other strategies could be envisioned to increase the interaction bandwidth. A simple example, would be to use a $\$ \mathrm{~N}$ recognizer on the whole stroke combination to investigate the strokes relative distance as a new input parameter. One could thus envision, differentiating anchored gestures depending on how far a thumb is from the stroke. The same idea could be applied to one-line and parallel families. To go even further, other properties could also be studied (e.g., relative ratios, x - and y-offsets). However, it is important to keep in mind that a potential trade-off between number of parameters and usability could arise.

Touch-device sizes give an inherent maximum distance between thumb and forefinger, which can limit mobility and precision for making a 2CSG, especially on small devices. Moreover, Chih-Chun et al. showed in 2016 that " 7 ' display [...] underperformed the 9'-11' displays" on several tasks (like drag-and-drop), even though they had the same index of difficulty [50]. As 2CSG should therefore be smaller, slower and more complex to perform on small devices, one could envision that performance could be different. However, in terms of gesture ranking and guidelines, we do not expect a significant difference in general, maybe for specific fingers only that have restrained range of movements (e.g., long nails).

We used $\$ 1$ recognizer for our purposes, but better recognition could be used for real-world system. However, our interest laid in the comparison of these scores. \$P, $\$ \mathrm{P}+$, \$Q and protractor versions, and including context awareness (mobile, wearable, low-vision, ...) could lead to faster and/or better recognition results overall, but the use of a simple recognition algorithm helps us highlight the difference in drawing themselves compared to an ideal stroke.

This paper only focuses on the motor action as a first step. Our rational behind our gesture set was to use a definition of drawning difficulty [34]. However, an elicitation study could be a complementary research, and might validate our choice of gesture or spring up new types of 2CSG, as well as scenarios and associated actions, therefore potentially leading to new guidelines. For instance, famillies that are hard to perform motor-wise may still be very much appreciated (e.g., direct link between the gesture and the action, ...).

8. Conclusion

This paper presents two experiments that investigate two concurrent stroke gestures (2CSG) benefits and limitations. While we aimed at proposing a large amount of new efficient gestures for tactile devices, we observed that making concurrent strokes with our thumb and forefinger is not as an easy task as expected. However, we still identified several families that are promising to possibly enhance precise drawing and/or command gestures. For precise drawings, anchored could be leveraged as a modifier. For command gestures, anchored, one-line and parallel could be leveraged as new quasimodes, and deserve to be studied further alongside additional gestures.

References

References

[1] J. Wagner, E. Lecolinet, T. Selker, Multi-finger chords for hand-held tablets: Recognizable and memorable, in: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI '14, Association for Computing

Machinery, New York, NY, USA, 2014, p. 2883-2892. doi:10.1145/2556288 2556958

URLhttps://doi.org/10.1145/2556288.2556958
[2] K. Seipp, K. Devlin, Landscape vs portrait mode: Which is faster to use on your smart phone?, in: Proceedings of the 15 th International Conference on Human-Computer Interaction with Mobile Devices and Services, MobileHCI '13, Association for Computing Machinery, New York, NY, USA, 2013, pp. 534-539. doi:10.1145/2493190.2494422

URLhttps://doi.org/10.1145/2493190.2494422
[3] R. Xiao, J. Schwarz, C. Harrison, Estimating 3d finger angle on commodity touchscreens, in: Proceedings of the 2015 International Conference on Interactive Tabletops \& Surfaces, ITS '15, Association for Computing Machinery, New York, NY, USA, 2015, pp. 47-50. doi: 10.1145/2817721.2817737

URLhttps://doi.org/10.1145/2817721.2817737
[4] A. Goguey, G. Casiez, D. Vogel, C. Gutwin, Characterizing Finger Pitch and Roll Orientation During Atomic Touch Actions Association for Computing Machinery, New York, NY, USA, 2018, pp. 1-12.

URLhttps://doi.org/10.1145/3173574.3174163
[5] S. Feng, G. Wilson, A. Ng, S. Brewster, Investigating pressure-based interactions with mobile phones while walking and encumbered in: Proceedings of the 17th International Conference on Human-Computer Interaction with Mobile Devices and Services Adjunct, MobileHCI '15, Association for Computing Machinery, New York, NY, USA, 2015, pp. 854-861. doi:10.1145/2786567.2793711. URL https://doi.org/10.1145/2786567.2793711
[6] A. Goguey, S. Malacria, C. Gutwin, Improving Discoverability and Expert Performance in Force-Sensitive Text Selection for Touch Devices with Mode Gauges Association for Computing Machinery, New York, NY, USA, 2018, pp. 1-12. URLhttps://doi.org/10.1145/3173574.3174051
[7] A. Goguey, D. Vogel, F. Chevalier, T. Pietrzak, N. Roussel, G. Casiez, Leveraging

- finger identification to integrate multi-touch command selection and parameter

URLhttps://doi.org/10.1145/2047196.2047279
[9] P. Ewerling, A. Kulik, B. Froehlich, Finger and hand detection for multi-touch interfaces based on maximally stable extremal regions in: Proceedings of the 2012 ACM International Conference on Interactive Tabletops and Surfaces, ITS '12, Association for Computing Machinery, New York, NY, USA, 2012, pp. 173-182.
doi:10.1145/2396636.2396663
URL https://doi.org/10.1145/2396636.2396663 manipulation. International Journal of Human-Computer Studies 99 (2017) 21-36. doi:https://doi.org/10.1016/j.ijhcs.2016.11.002

URL https://www.sciencedirect.com/science/article/pii/S1071581916301537
[8] C. Harrison, J. Schwarz, S. E. Hudson, Tapsense: Enhancing finger interaction on touch surfaces, in: Proceedings of the 24th Annual ACM Symposium on User Interface Software and Technology, UIST '11, Association for Computing Machinery, New York, NY, USA, 2011, pp. 627-636. doi: 10.1145/2047196. 2047279 delimiters for selection-action pen gesture phrases in scriboli, in: Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems, CHI '05, Association for Computing Machinery, New York, NY, USA, 2005, pp. 451-460. doi:10.1145/1054972.1055035

URLhttps://doi.org/10.1145/1054972.1055035
[13] D. Goldberg, C. Richardson, Touch-typing with a stylus, in: Proceedings of the INTERACT '93 and CHI '93 Conference on Human Factors in Computing Systems, CHI '93, Association for Computing Machinery, New York, NY, USA, 1993, pp. 80-87. doi:10.1145/169059.169093

URL https://doi.org/10.1145/169059.169093
[14] G. Bailly, E. Lecolinet, Y. Guiard, Finger-count \& radial-stroke shortcuts: 2 techniques for augmenting linear menus on multi-touch surfaces in: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Association for Computing Machinery, New York, NY, USA, 2010, pp. 591-594.

URLhttps://doi.org/10.1145/1753326.1753414
[15] S. Knoedel, M. Hachet, Multi-touch rst in 2d and 3d spaces: Studying the impact of directness on user performance, in: 2011 IEEE Symposium on 3D User Interfaces (3DUI), 2011, pp. 75-78. doi:10.1109/3DUI.2011.5759220
[16] A. Goguey, M. Nancel, G. Casiez, D. Vogel, The performance and preference of different fingers and chords for pointing, dragging, and object transformation, in: Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems, CHI '16, Association for Computing Machinery, New York, NY, USA, 2016, pp. 4250-4261. doi:10.1145/2858036.2858194 URLhttps://doi.org/10.1145/2858036.2858194
[17] C. Lang, M. Schieber, Human finger independence: limitations due to passive mechanical coupling versus active neuromuscular control., Journal of neurophysiology 925 (2004) 2802-10.
[18] R. J. K. Jacob, L. E. Sibert, D. C. McFarlane, M. P. Mullen, Integrality and separability of input devices, ACM Trans. Comput.-Hum. Interact. 1 (1) (1994)

3-26. doi:10.1145/174630.174631.
URL https://doi.org/10.1145/174630.174631
[19] S. Handel, S. Imai, The free classification of analyzable and unanalyzable stimuli, Attention, Perception, \& Psychophysics (1972).
[20] M. W. Krueger, T. Gionfriddo, K. Hinrichsen, Videoplace-an artificial reality, in: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI '85, Association for Computing Machinery, New York, NY, USA, 1985, pp. 35-40. doi:10.1145/317456.317463

URL https://doi.org/10.1145/317456.317463
[21] T. Moscovich, J. F. Hughes, Multi-finger cursor techniques, in: Proceedings Graphics Interface, 2006.
[22] T. Moscovich, J. F. Hughes, Indirect mappings of multi-touch input using one and two hands in: Proceeding of the twenty-sixth annual CHI conference on Human factors in computing systems - CHI '08, ACM Press, New York, New York, USA, 2008, p. 1275. doi:10.1145/1357054.1357254.

URLhttp://portal.acm.org/citation.cfm?doid=1357054.1357254
[23] M. A. Nacenta, P. Baudisch, H. Benko, A. Wilson, Separability of spatial manipulations in multi-touch interfaces, in: Proceedings of Graphics Interface 2009, GI '09, Canadian Information Processing Society, CAN, 2009, pp. 175-182.
[24] V. Rusnák, C. Appert, O. Chapuis, E. Pietriga, Designing coherent gesture sets for multi-scale navigation on tabletops, in: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, CHI '18, Association for Computing

■ Machinery, New York, NY, USA, 2018, pp. 1-12. doi:10.1145/3173574. 3173716

URLhttps://doi.org/10.1145/3173574.3173716
[25] G. Kurtenbach, W. Buxton, User learning and performance with marking menus, in: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI '94, Association for Computing Machinery, New York, NY, USA,

1994, pp. 258-264. doi:10.1145/191666.191759
URL https://doi.org/10.1145/191666.191759
[26] R. Zeleznik, T. Miller, Fluid inking: augmenting the medium of free-form inking with gestures, in: Proceedings of Graphics Interface 2006, GI 2006, Canadian Human-Computer Communications Society, Toronto, Ontario, Canada, 2006, pp. 155-162.
[27] P. O. Kristensson, S. Zhai, Command strokes with and without preview: Using pen gestures on keyboard for command selection, in: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI '07, Association for Computing Machinery, New York, NY, USA, 2007, pp. 1137-1146. doi: 10.1145/1240624.1240797. URLhttps://doi.org/10.1145/1240624.1240797
[28] N. Banovic, F. C. Y. Li, D. Dearman, K. Yatani, K. N. Truong, Design of unimanual multi-finger pie menu interaction, in: Proceedings of the ACM International Conference on Interactive Tabletops and Surfaces, ITS '11, Association for Computing Machinery, New York, NY, USA, 2011, pp. 120-129. doi:10.1145/2076354.2076378

URLhttps://doi.org/10.1145/2076354.2076378
[29] E. Ghomi, S. Huot, O. Bau, M. Beaudouin-Lafon, W. E. Mackay, Arpège: Learning multitouch chord gestures vocabularies in: Proceedings of the 2013 ACM International Conference on Interactive Tabletops and Surfaces, ITS '13, Association for Computing Machinery, New York, NY, USA, 2013, pp. 209-218. doi:10.1145/2512349.2512795 URLhttps://doi.org/10.1145/2512349.2512795
[30] Y. Luo, D. Vogel, Pin-and-cross: A unimanual multitouch technique combining static touches with crossing selection in: Proceedings of the 28th Annual ACM Symposium on User Interface Software \& Technology, UIST '15, Association for Computing Machinery, New York, NY, USA, 2015, pp. 323-332. doi:10.1145/
2807442.2807444

URL https://doi.org/10.1145/2807442.2807444
[31] Y. Rekik, R. daniel Vatavu, L. Grisoni, Understanding users'perceived difficulty of multi-touch gesture articulation, in: In ICMI'12, ACM, 2014.
[32] L. A. Leiva, D. Martín-Albo, R.-D. Vatavu, Gato: Predicting human performance with multistroke and multitouch gesture input, in: Proceedings of the 20th International Conference on Human-Computer Interaction with Mobile Devices and Services, MobileHCI '18, Association for Computing Machinery, New York, NY, USA, 2018. doi:10.1145/3229434.3229478 URLhttps://doi.org/10.1145/3229434.3229478
[33] G. J. Lepinski, T. Grossman, G. Fitzmaurice, The design and evaluation of multitouch marking menus, in: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI '10, Association for Computing Machinery, New York, NY, USA, 2010, pp. 2233-2242. doi:10.1145/1753326.1753663. URLhttps://doi.org/10.1145/1753326.1753663
[34] P. Viviani, C. Terzuolo, Trajectory determines movement dynamics, Neuroscience (1982). doi:10.1016/0306-4522(82)90277-9.
[35] D. Freeman, H. Benko, M. R. Morris, D. Wigdor, Shadowguides: Visualizations for in-situ learning of multi-touch and whole-hand gestures, in: Proceedings of the ACM International Conference on Interactive Tabletops and Surfaces, ITS '09, Association for Computing Machinery, New York, NY, USA, 2009, p. 165-172. doi:10.1145/1731903.1731935

URLhttps://doi.org/10.1145/1731903.1731935
[36] J. O. Wobbrock, M. R. Morris, A. D. Wilson, User-defined gestures for surface computing, in: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI '09, Association for Computing Machinery, New York, NY, USA, 2009, p. 1083-1092. doi:10.1145/1518701.1518866. URLhttps://doi.org/10.1145/1518701.1518866
[37] Y. Rekik, L. Grisoni, N. Roussel, Towards many gestures to one command: A user study for tabletops, in: P. Kotzé, G. Marsden, G. Lindgaard, J. Wesson, M. Winckler (Eds.), Human-Computer Interaction - INTERACT 2013, Springer Berlin Heidelberg, Berlin, Heidelberg, 2013, pp. 246-263.
[38] P. Dragicevic, Fair Statistical Communication in HCI, Springer International Publishing, Cham, 2016, pp. 291-330. doi:10.1007/978-3-319-26633-6_ 13.

URLhttps://doi.org/10.1007/978-3-319-26633-6_13
[39] M. R. Masliah, P. Milgram, Measuring the allocation of control in a 6 degree-of-freedom docking experiment, in: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI '00, Association for Computing

■ Machinery, New York, NY, USA, 2000, pp. 25-32. doi:10.1145/332040. 332403

URL https://doi.org/10.1145/332040.332403
[40] W. S. Zwicker, Introduction to the theory of voting, in: F. Brandt, V. Conitzer, U. Endriss, J. Lang, A. D. Procaccia (Eds.), Handbook of Computational Social Choice, Cambridge University Press, 2016, Ch. 1.
[41] A. H. Copeland, A reasonable social welfare function, Tech. rep., mimeo, 1951. University of Michigan (1951).
[42] D. G. Saari, V. R. Merlin, The copeland method: I.: Relationships and the dictionary, Economic Theory 8 (1) (1996) 51-76. URL http://www.jstor.org/stable/25054952
[43] K. Kin, B. Hartmann, T. DeRose, M. Agrawala, Proton: Multitouch gestures as regular expressions in: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI '12, Association for Computing Machinery, New York, NY, USA, 2012, pp. 2885-2894. doi:10.1145/2207676.2208694

URL https://doi.org/10.1145/2207676.2208694
[44] K. Kin, B. Hartmann, T. DeRose, M. Agrawala, Proton++: A customizable declarative multitouch framework, in: Proceedings of the 25th Annual ACM Symposium on User Interface Software and Technology, UIST ' 12 , Association for Computing Machinery, New York, NY, USA, 2012, pp. 477-486. doi:10.1145/2380116.2380176 URLhttps://doi.org/10.1145/2380116.2380176
[45] J. O. Wobbrock, A. D. Wilson, Y. Li, Gestures without libraries, toolkits or training: A \$1 recognizer for user interface prototypes, in: Proceedings of the 20th Annual ACM Symposium on User Interface Software and Technology, UIST '07, Association for Computing Machinery, New York, NY, USA, 2007, pp. 159-168. doi:10.1145/1294211.1294238 URL https://doi.org/10.1145/1294211.1294238
[46] Y. Li, Protractor: A Fast and Accurate Gesture Recognizer, Association for Computing Machinery, New York, NY, USA, 2010, pp. 2169-2172. URL https://doi.org/10.1145/1753326.1753654
[47] L. Anthony, J. O. Wobbrock, A lightweight multistroke recognizer for user interface prototypes, in: Proceedings of Graphics Interface 2010, GI '10, Canadian Information Processing Society, CAN, 2010, pp. 245-252.
[48] R.-D. Vatavu, L. Anthony, J. O. Wobbrock, Gestures as point clouds: A \$p recognizer for user interface prototypes, in: Proceedings of the 14th ACM International Conference on Multimodal Interaction, ICMI ’12, Association for Computing Machinery, New York, NY, USA, 2012, p. 273-280. doi: 10.1145/2388676.2388732 URLhttps://doi.org/10.1145/2388676.2388732 invariant stroke-gesture recognizer for low-resource devices, in: Proceedings of the 20th International Conference on Human-Computer Interaction with Mobile Devices and Services, MobileHCI '18, Association for Computing Machinery,

New York, NY, USA, 2018. doi:10.1145/3229434.3229465
URLhttps://doi.org/10.1145/3229434.3229465
[50] C.-C. Lai, L.-W. Kuo, Size effects and scale effects on the usability of tablets in finger pointing and dragging tasks, in: F. Rebelo, M. Soares (Eds.), Advances in Ergonomics in Design, Springer International Publishing, Cham, 2016, pp. 109-120.

[^0]: * Corresponding author

 Email addresses: alix.goguey@univ-grenoble-alpes.fr (Alix Goguey), michael.ortega@imag.fr (Michael Ortega)
 ${ }^{1}$ Wikipedia: Fourth Industrial Revolution

[^1]: ${ }^{2}$ Force sensing was available on iPhone (from 6s to XS Max) via Apple 3D Touch technologies but was removed later on.

