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Abstract

This paper investigates thumb-index interaction on touch input devices, and more

precisely the potential of two concurrent stroke gestures, i.e. gestures in which two

fingers of the same hand concurrently draw one stroke each. We present two fundamental

studies, one using such gestures for two-dimensional control, by precisely drawing

figures, and the other for command activation, by roughly sketching figures. Results

give a first analysis of user performance on 35 gestures with a varying complexity based

on numbers of turns and symmetries. All 35 gestures, were grouped into six families.

From these results we classify these families and propose new guidelines for designing

future mobile interfaces. For instance, favouring anchored gestures (forefinger drawing

while the thumb remains still on the surface) to increase input bandwidth when forefinger

precision is required.

Keywords: Touch interaction, User study, Stroke gesture

1. Introduction

Multitouch displays are ubiquitous. In the span of a decade, they have entered our

daily lives and became unavoidable. Whether with our phones, in our cars or at a cash

register, we use them in an extremely wide variety of tasks and contexts. The trend

towards all-touch is even likely to be reinforced, since the use of touchscreens in the5

professional context is no longer anecdotal1. As a consequence, we keep adding tasks
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that are becoming more and more complex to perform, and start using tools originally

designed for desktop computer on touchscreen (e.g., spreadsheets, text editors, ...).

However, the interaction bandwidth on touchscreen is far narrower than on desktop

computers. The vast majority of our daily interactions only rely on touches’ position.10

Screen sizes are also becoming smaller. This combination of factors can lead to mobile

applications being purposefully limited compare to their desktop counter-parts. For

instance, Adobe Photoshop (CS6) offers over 600 different commands on its desktop

version and only 35 on its tablet version (Express) [1].

It is crucial to think now about tomorrow’s multitouch interactions and avoid daily15

use of limited or non-adapted tools. It therefore comes as no surprise that an extensive

amount of research in HCI is dedicated to explore and enlarged the interaction bandwidth

of multitouch devices. To avoid the extensive use of the limited amount of screen real

estate, or the extensive use of menus, a promising solution to increase the interaction

bandwidth is to enrich the input vocabulary. Many works study new dimensions such as20

the orientation [2, 3, 4], the force exerted during a contact [5, 6], or which finger [7]

or hand part [8, 9] is interacting. However, while these new pieces of information look

promising and exiting, almost no commercially available device2 offer them.

Yet, there are ways to enrich the input vocabulary without any new technological

breakthrough. Sets of stroke gestures have been studied to issue commands [10, 11,25

12, 13], for instance left and right swipes to display next and previous pictures. More

complex gestures, like waves, circles, or spirals have also been designed even though

used less often on commercial devices [10]. The number of contacts on a screen

has also been used to enrich the input vocabulary, via simple chords [14] or more

complex continuous gestures as the well known RST (Rotate-Scale-Translate) gesture30

[15] typically implemented in picture gallery or map applications. However, while

gestures and number of contacts have been combined at times, we argue that there is

a gap between simple (e.g. two-fingers down swipes to invoke the settings menu on

Android) and complex (e.g. RST) two concurrent finger gestures that has not been

2Force sensing was available on iPhone (from 6s to XS Max) via Apple 3D Touch technologies but was

removed later on.
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studied. Filling this gap could potentially provide new gesture-based inputs to designers,35

and improve the expressivity of all off-the-shelf multitouch devices without the need for

any additional hardware.

In this work, we focus on this gap and investigate two concurrent stroke gestures

(2CSG), i.e. gestures in which two fingers of the same hand concurrently draw one

stroke each. Our goal is to provide an exploration on whether such gestures are usable or40

not, and therefore if adding a second contact (still or in motion) while already stroking

with one finger can act as a modifier. As the forefinger is the most used and studied finger

[16] for single-finger gestures, we focus on thumb-forefinger gestures. Furthermore,

from the literature we know that, due to mechanical and neuromuscular constraints, the

thumb and forefinger are a lot more independent than any other pair of fingers [17].45

Such an advantage could be leveraged for a more widespread use of 2CSG.

Our investigation is made of two separate experiments, designed to answer two main

questions: 1) can we easily perform 2CSG and 2) can 2CSG be recognized by a system.

As the number of possible gestures is virtually infinite, we first defined an atomic set of

strokes that could, if combined, represent a wide variety of 2CSG. As shown below, the50

resulting 2CSG can be grouped in five families: anchored, parallel, one-line, mirror

and misc., that we compare with a baseline family, made of single stroke gestures. The

results of our analysis allow us to derive guidelines to exploit the potential benefits of

2CSG in common situations. One takeaway, is the good performance of the anchored

family (i.e., adding a static thumb while performing strokes with the forefinger) which55

is a good option to increase input bandwidth when forefinger precision is required.

Our work investigates whether a simple gesture system that can work on any touch

devices without requiring special hardware could be achieved. It proposes two main

contributions: 1) two experiments that investigate the potential benefits and drawbacks

of thumb-forefinger multitouch gestures, and 2) guidelines on the use of such gestures.60

After presenting the related work, we detail each experiment and its quantitative and

qualitative results. These results are then discussed, and used to derive guidelines.
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2. Related Work

When it comes to multi-finger gestures, research mainly focuses on the continuous

control of an integral task. As defined by Jacob et al. in 1994 [18], an integral task is65

a manipulation of several attributes that combine perceptually. For instance, x and y

coordinates of a position, or value and chroma of a color are perceived integrally, while

size and lightness are not [19]. In 1985, Krueger et al. introduced the early version of

what is known today as the RST (Rotate Scale Translate) technique [20], and Moscovich

et al. were among the first to investigate this concurrent and continuous control with70

two-fingers [21]. In 2008, they compared uni-manual and bi-manual versions [22].

They proved that uni-manual (thumb + forefinger of the same hand) outperforms bi-

manual (one forefinger per hand) in integral tasks. They showed that users were capable

of simultaneously adjusting the orientation, spread, and position of the thumb and

forefinger of the same hand on touch-screens to control rotation, scale and translation75

(RST) of a 2D object. Knoedel et al. compared indirect and direct versions and showed

that direct mapping shortens completion times while indirect mapping provides a better

precision. In both cases, users’ trajectories are comparable [15]. This RST gesture has

had many variations [23, 24] and is one of the most iconic use of two-fingers interaction

on tactile surfaces, mostly used to manipulate 2D content like maps or images. However,80

in RST gestures, only the difference between the starting and the end states matters. The

output is simply an interpretation of this difference to update virtual object caracteristics

(e.g. size or position). The path has little importance, which does not correspond to our

objective of studying the expressivity of 2CSG.

2.1. Two Concurrent Stroke Gestures: 2CSG85

An extensive amount of research focus on single-stroke gestures (e.g. [25, 26, 27,

10, 11]). For example, in 1994 Kurtenbach et al. proposed a study with marking menus,

in which the direction of the stroke determines a menu item [25]. In 2009, Appert et al.

studied 16 ‘stroke shortcuts’, i.e. shortcuts triggered by simple single strokes, like a

line, a pig-tail, a ‘w’ or a two-turns spiral [10]. In 2010, Li et al. triggered shorcuts with90

more complex drawings: a user could draw several strokes, but sequentially and with

one finger only [11].
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In comparison, very few works study multi-strokes gestures. In 2011, Banovic

et al. proposed a Multifinger Pie Menu Interaction [28]. The technique relies on chords

counting the number of fingers in contact with the surface, as in FingerCount [14].95

Furthermore, relative positions between the contacts are interpreted, as in Arpège [29],

and as such it paves the way towards 2CSG. In Multifinger Pie Menu Interaction, each

finger has its own role: one anchors the menu while the second selects an item. The

interaction has been tested with several finger combinations and timings. Results showed

that an anchored thumb combined with a forefinger, middle or ring finger was among the100

best finger combination, and while chording simultaneously (as opposed to sequentially)

was more error prone, it did yield faster time.

With Pin-and-Cross, Luo et al. made one more step towards 2CSG [30]. This

technique combines one or more static touches (i.e. “pins”, usually made with the

forefinger), with a stroke gesture (i.e. “cross”, usually made with the middle finger). The105

stroke gesture crosses a radial target which issues a command. Both fingers performing

a Pin-and-Cross are from the same hand. Authors compared a Pin-and-Cross contextual

menu to a Marking Menu and partial Pie Menu: Pin-and-cross is 27% faster. Even

though, the stroke part is a simple straingth line, this work provides a promising glimpse

on the potential use of 2CSG.110

In their 2014 experiment, Rekik et al. gave the very first elements on the difficulty

of drawing figures with two or more fingers [31]. They showed that, although gestures

produced with multiple fingers are larger in size and take more time to perform compared

to single-touch gestures, two-finger gestures should be equally exploited, as they were

perceived not more difficult to produce. Unfortunately, almost all of the multi-strokes115

gestures proposed in the experiment, such as the ball or the butterfly tie, were not

achievable with concurrent stroke gestures of single-hand fingers. Only the double

line figure could have been performed with two concurrent strokes of the same hand,

but it has not been tested. Therefore, there are no results on the use of 2CSG. More

recently, Leiva et al. proposed a model for predicting the expected user completion time120

of multi-strokes gestures [32]. They conducted an experiment on 82 figures. However,

as in the previous study, none was crafted for concurrent stroke gestures.

Finally one could argue that if all fingers stay together and follow the same trajectory,
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study results on single-stroke gestures could stand for multi-stroke gestures. For instance,

two-finger swipes used on recent tablet devices to control multitasking, and single-finger125

swipes have very similar time of execution [33]. These types of multi-finger gestures

manipulate one attribute at a time (the trajectory), and as such, the number of fingers

acts as a modifier (e.g. single-finger bezel swipe down to show android notification and

two-finger bezel-swipe down to show the parameters).

The research literature shows benefits on using two-points gestures, one-point-one-130

stroke gestures, and two-fingers control. However to the best of our knowledge, there is

little to no results on the potential of 2CSG, or that could directly be transferred from

studies on single-stroke gestures to 2CSG.

3. Gesture Set and Notation

The number of strokes is virtually infinite as many parameters come into play. To135

design gestures representative enough while keeping the number of variations manage-

able, we defined a set of 35 strokes, basing difficulty on the 1982 Viviani and Terzuolo’s

conclusion that the time needed to complete a drawing decreases with the radius of

curvature [34]. We therefore varied the radius of curvature between the strokes and

within the strokes (i.e. inflection points). As a result, we used straight lines ( ), half140

circles ( and ) and waves ( and ).

We combined these strokes to create 25 combinations in which UpStrokes are dedi-

cated to the forefinger while DownStrokes are dedicated to the thumb. For completeness,

we added two DownStrokes: , acting as a baseline in which the forefinger performs a

single stroke with no contact of the thumb; and , using the thumb as an anchor (i.e. a145

fixed contact) while the forefinger performs a single stroke. In the end, our studies use a

total of 35 combinations (see Figure 1).

In this paper, we use the following notation to refer to a combination of strokes: Su
Sd

= UpStroke
DownStroke . For instance, refers to a drawn by the forefinger and no thumb in

contact ( ), refers to a drawn by the forefinger and a drawn by the thumb.150

All the 35 combinations can be grouped in the following 2CSG families:
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baseline: only one stroke drawn by the forefinger.

anchored: one stroke drawn by the forefinger while the thumb remains still on

the surface.155

parallel: the forefinger and the thumb draw the same strokes.

one-line: one of the two strokes is a straight line.

160

mirror: the forefinger and the thumb draw mirrored strokes.

misc.: the forefinger and the thumb draw unrelated strokes, and no straight line.

4. Hypothesis165

We decided to construct our gesture set from a single-stroke-shape difficulty point

of view (from Viviani and Terzuolo’s research [34]), and derived all possible combi-

nations which allow us to group them based on their conceptual similarities. We did

not use existing taxonomies to derive our families to avoid clustering difficult stroke

combination (as shown below). However, we use them to help us form hypothesis on170

user performance.

Freeman et al. [35] proposed a taxonomy (built on [36]) which can be used to

classify our gesture set prior to our study, into three categories:

• {single-finger, static, path}: it includes baseline gestures, because they use only

one finger, and the hand translates while its pose remains the same all along the175

path;

• {multi-finger, static, path}: it includes parallel gestures, because they use two

fingers, and the hand translates while its pose remains the same all along the path;
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Figure 1: The 35 stroke combinations used in both studies. Top strokes represent forefinger

movements. Bottom strokes represent thumb movements. The left column shows the base-

line, i.e. a single finger stroke made with the forefinger while the thumb does not touch the

surface. In the second column, the thumb is anchored effectively acting as a still contact.

Background colors each represent a different 2CSG family, and will be used as identifier

in the paper.
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• {multi-finger, dynamic, path}: it includes anchored, one-line, mirror and misc.

gestures, because the hand translates while the relative position of the fingers180

changes.

Hypothesis 1 (H1): We expect decreasing performance between baseline, parallel

and the remaining families.

Hypothesis 2 (H2): baseline and parallel families only differ from one property

(i.e., single- vs multi-finger). Since only one contact is added (i.e., the thumb), we hy-185

pothesized that gestures from the parallel family should only imply a small mechanical

constraint and very low additional cognitive load since both strokes are identical. We

therefore expect baseline and parallel to have similar performance.

More recently, Rekik et al. introduced a taxonomy with the parallelism and sequen-190

tiality concepts [37]. However, the induced classification is trial-dependent since the

strategy used while performing the gesture is an important feature for the categorization

process, and can result in one stroke-combination being potentially categorized differ-

ently after each trial. In this taxonomy, two of our gesture families can be classified in

unique categories (baseline and anchored) but none of the other families.195

• {E, 1H, M, 1F, 1F}: it includes baseline gestures, because they are elementary

atomic movements (E), made with one hand (1H), a moving forefinger (M) per

stroke (1F) and per hand (1F).

• {C, 1H, R*M, 2F, 1F}: it includes anchored gestures, because they are compound

gestures (C) that uses two fingers (2F) of the same hand (1H), one finger per200

stroke (1F), a static thumb (R) with a moving forefinger (M), which results in

parallel gestures (R*M).

• {C, 1H, M*M or M+M, 2F, 1F}: it includes the remaining families, because they

are compound gestures (C) that uses two fingers (2F) of the same hand (1H),

one finger per stroke (1F), a moving thumb (M) and a moving forefinger (M).205

However, both fingers can move in parallel (M*M) or sequentially (M+M).

Hypothesis 3 (H3): Rekik et al. observed several users’ strategy from their study.

In particular, they relate that “participants combined the movements of their fingers
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simultaneously, in [...] symmetric” gestures. They also relate parallelism when fingers

make the same atomic movement. We can therefore hypothesize that the two strokes of210

both parallel and mirror families should be mostly drawn simultaneously, while the

strokes of both one-line and misc. should be drawn sequentially.

We cannot make any assumptions on a correlation between performance and strate-

gies. For instance, using parallelism instead of sequentiality let one think she may save

time, but there is no guaranty on movement speed nor the induced cognitive load. Even215

if both mirror and parallel families most likely would use parallelism strategies, we

thus cannot hypothesize on their performance against one-line or misc. based on the

strategy prism only.

Hypothesis 4 (H4): Because of the mechanical constraint of a fixed finger, anchored

gestures should be slower to perform than the baseline. However, once fixed the anchor220

takes a very small cognitive bandwidth. We therefore hypothesize that performance

of anchored gestures should be slower but quite close to baseline, and faster than the

other families.

Hypothesis 5 (H5): Given H2 and given H4, we hypothesize that anchored and225

parallel will yield similar performance.

5. Study 1: Precision

This study aims at evaluating how difficult to draw is a 2CSG. We particularly

observe (1) drawing performance, (2) how stroke complexity and combinations affect

parallelism and drawing strategies, and (3) how concurrent movements made by the230

thumb affect forefinger drawings.

The experiment consists in a serie of trials in which participants are asked to

reproduce 2CSG. As described previously, each trial prompts a combination of 2

concurrent strokes: five UpStrokes: , , , and ; and seven DownStrokes: ,

, , , , and .235
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Figure 2: Example of a trial from study 1. a: the initial display consists of two starting

areas, with different diameters, and the stroke skeletons. b: blue strokes display first touch

events, i.e. finger trajectories. When a participant slid her fingers into the starting areas,

the areas turned green, and tunnels and ending areas appeared. c: the forefinger reached

the ending area of the upper stroke, which turned green, while the thumb is still sliding into

the bottom tunnel. d: both fingers reached their ending areas. The application background

turned green, indicating that the trial was completed.

5.1. Combination sizes

Figure 3 shows the interface used by the participants. The combinations to complete

are displayed in the center of the display with dashed-lines. In order to impose a level

of precision, we displayed tunnels around the lines.

To determine the drawing width, we use the following constraints:240

1. ensuring a capped finger separation of 90mm (empirically found to be the maxi-

mum comfortable thumb-forefinger distance).

2. no tunnel overlapping (at worst, only the external 1mm thick tunnel strokes would

overlap).

3. using perfect shapes (semi circles).245

4. vertically centering strokes on their respective drawing zones.

Following all four constraints, the dashed-lines start and end points are therefore spread

75mm apart on the horizontal axis. We tested 2 tunnel Widths (except for and ): 10

and 14mm (50 and 70 pixels respectively). The tunnel Widths are also used as diameters

of the starting and ending area circles, respectively on the left and right side of the250

strokes. For , participants were required to keep their thumb inside the starting area

while the forefinger was completing the UpStroke. For , the thumb was not in contact

11



Figure 3: Interface of study 1. Progression is displayed on the bottom-left corner. The two-

strokes combination is centred, displayed with dashed-lines, and surrounded by tunnels of

different widths. Blue lines represent the strokes that have been drawn by the participant.

In the example, both the forefinger and thumb have entered and are in their starting areas

(green).
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with the surface.

5.2. Procedure

After completing a short demographic survey, participants were presented with the255

touch interface on which they would perform the trials. The device was placed in front

of the participants, laid flat on a table. While describing and showing several 2CSG

combinations, the experimenter gave the following instructions:

• Participants were asked to draw with their dominant hand, using their forefinger

for the UpStrokes and their thumb for the DownStrokes.260

• For each trial, a participant that was not satisfied (e.g. bad performance or bad

strategy) could lift the fingers and redo the trial as many times as needed. Our

rational was to approach as much as possible ideal performance.

• To complete a trial, participants needed to draw both the UpStroke and DownStroke

from their respective starting area to their respective ending area, and keep as265

much as possible the fingers in their tunnels. Our rational was to avoid frustrating

participants when faced with hard combinations.

• A trial started when both the forefinger and the thumb were placed inside their

respective starting areas (only the forefinger for ), and ended when both fingers

were in their respective ending areas (only the forefinger for ).270

• Participants were asked to complete the trials without any constraint on their

strategy, as fast and accurately as possible, as long as both fingers were pressed

down on the surface. For instance, one could complete the UpStroke first and then

the DownStroke, or on the contrary one could draw both Strokes simultaneously

(see Figure 2).275

After the instructions, and before starting the recordings, participants went through

a random serie of trials to get familiar with the task.

All the above phases typically lasted less than 5 minutes. Then participants went

through all the trials, and could take a break if needed after each trial. After the

completion of all the trials, the experimenter conducted a debriefing session, in which he280
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asked about the strategies participants developed, and the difficulties they encountered.

In total, the experiment lasted from 30 to 45 minutes.

5.3. Experimental Design

Each combination of strokes and tunnel widths was repeated twice. The experiment

used a 5 Ups × 2 Widths × (5 Downs × 2 Widths + 2 Downs) × 2 Repetitions within-285

subject design. The order of the 240 trials was randomized with the constraint that 2

Repetitions of the same factor combination could not appear twice in a row. A total of

3360 trials were logged across all participants.

5.4. Participants and Apparatus

We recruited 14 participants (mean age 27.71 years, SD=3.91 years; no left-handed;290

4 females).

All the participants owned a smartphone and used it everyday. 4 participants owned

and used a tablet everyday. Participants barely used two-finger interactions in their daily

life, apart from RST gestures in maps and picture applications.

The study was conducted on a 1st generation 11 inches iPad pro (Retina display: 2388295

× 1668 px resolution at 264ppi). The software was written in HTML/CSS/JavaScript.

Logs were sent through a web-socket to a python-written server running on a MacBook

Pro 13inch fifth generation (Intel Core i5).

5.5. Results and first analyses

This section presents both quantitative and qualitative results. For quantitative300

results, we explore (1) basic performance, with completion times and success rates, and

(2) concurrency i.e. how much strokes are made concurrently. A successful trial means

that the two concurrent strokes were fully drawn within the tunnel boundaries during the

ideal attempt. For qualitative results, we explore (1) fatigue and discomfort, (2) drawing

strategies, and (3) perceived complexity.305
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Figure 4: Mean time ratios and 95% CI for all the different combinations of Strokes. Ratios

correspond to the mean of: completion times for a given combination divided by the mean

completion time of the corresponding baseline.

5.5.1. Performance

We computed the mean trial completion time for the 35 combinations, and we also

broke it down for each tunnel Widths combinations. We performed the same calculations

for success rate.

Following Dragicevic’s advice on statistical communication for HCI [38], we use310

estimation methods to derive 95% confidence intervals (CIs) rather than traditional null

hypothesis statistical testing. Figures 4 and 5 shows the mean ratios as percentages and

95% CI of time and success rate for each combination of Strokes with their respective

conditions (i.e. baseline conditions).

As expected, we observe in Figure 6 that the tighter the tunnels the higher the315

completion times and the lower the success rates.

As expected as well, we observe an increase in time and error as more complex

Downs are introduced (Figure 4). When a second shape is introduced, completion time
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Figure 5: Mean success ratios and 95% CI for all the different combinations of Strokes.

Ratios correspond to the mean of: success rates for a given combination divided by the

mean success rate of the corresponding baseline.
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doubles or more for all conditions except for Downs with . The greatest increases

come from introducing curvy Downs when the forefinger follows a path (Figure 4320

leftmost graph); however, time values increase to level similar to combinations involving

a down .

5.5.2. Concurrency

In order to investigate whether a 2CSG system that can work on any touch devices

without requiring special hardware, we first need to study whether two strokes can325

be performed simultaneously. We therefore need a metric to measure “how much”

concurrent two strokes are. We use a tailored metric, inspired from the M-metric

presented by Masliah and Milgram [39], to quantify users concurrency between the

up and down strokes. It computes the difference of progression of each finger through

time. We call this new metric the C-metric, for ‘Concurrency’ metric. The goal of our330

C-metric is to output a normalized value quantifying how much ‘concurrently’ strokes

have been performed.

The metric is based on the drawing progression of each stroke at any given time of
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Figure 7: Three theoretical examples of trial completions: 1- Up stroke has been completely

drawing before the down one; 2- Both strokes have been drawn concurrently all along; 3-

A 3 phases completion: half of the up stroke alone, the full down stroke, and second half

of the up stroke. The grey diamond shows the convex hull of PT, i.e. no trial could give a

curve out of the diamond. Note: scales of the x- and y-axis are different.

the trial: Ls(t), where s ∈ {up,down}, and t ∈ [0,1].

A stroke progression value, P, is therefore:

Ps(t) =
Ls(t)
Ls(1)

(1)

Ps is normalized: at the beginning of the trial Ps(0) = 0, and at the end Ps(1) = 1.335

We can therefore compute PT, a function that gives the completion of a trial at a given

time by:

PT(t) = Pup(t)−Pdown(t) (2)

Figure 7 shows examples of PT for three theoretical trials:

1. the curve with a perfect isosceles shape refers to a trial in which the up stroke has

been completely drawn before the down one;340

2. the horizontal line refers to a trial in which both strokes have been done concur-

rently all along;
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3. the curve with a ‘squared wave’ shape refers to a trial with the following sequence:

half of the up stroke completed first, the down stroke completed in one go, and

the second half of the up stroke was completed.345

Figure 8 shows the mean PT of all the trials of the experiment, for each user and

each combination. One can observe that most of the curves are skewed upwards, which

means that most of the trials started moving the forefinger first.

We defined a concurrency metric C which corresponds to the normalized length of

PT from 0 to 1. Considering the worst case, i.e. concurrency is never used (e.g. both350

curves 1 and 3), the total length of the PT curve is: max(PT) = 2
√

0.52 +12. In the

best case, i.e. concurrency is used from start to finish (e.g. curve 2), min(PT) = 1. The

concurrency metric C is therefore:

C = 1− Len(PT)−min(PT)

max(PT)−min(PT)
= 1− Len(PT)−1

2
√

1.25−1
(3)

where C ∈ [0,1]. C = 0 means no concurrency at all while C = 1 means the two

strokes has been drawn simultaneously, at the same progression speed, all along the355

trial.

Figure 9 shows the distributions and estimated density of the C-metric across the

different combinations. One can see a clear tendency to complete paths simultaneously

when both strokes are identical (parallel strategy): distributions on the diagonal are

skewed leftwards. For any other combinations, distributions are more spread out but360

participants still seem to prefer performing strokes somewhat concurrently. Only a few

chose sequential strategy. For some combinations, e.g. or , the two strategies

are clearely identifiable and in the group of participants that used the sequential strategy

their movements were almost never concurrent (C very close to 0). Another observation

we can make is that sequential strategy is more used with , , , ,365

and , when fingers need to move away from one another at the beginning of the

movement.

5.6. Concurrency with Heat-Maps

In order to hightlight the behaviour of the fingers in sequential and parallel strategies,

we computed heat-maps of the contact positions on the screen during all trials (Figure 10).370
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Figure 8: Mean progression (i.e. PT) of each user during trials across the different com-

binations. The bold blue line represents the mean progression across participants and the

light blue area, the 95% CI.
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Figure 9: Distributions of the C-metric across the different combinations of strokes. Each

color represents a single user. The blue line represents the estimated density function.
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75 mm

Figure 10: Heat-map of all touch events logged during study 1. Red and blue colors

correspond to the UpStrokes and DownStrokes respectively. Each shade represents iso-

proportions of the density in increment of 10% (from the lightest shades to the darkest).
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These positions were extracted from all the touch events logged during the experiments.

Each touch event contained both the forefinger and thumb positions. Hot-spots (i.e.

darker colored areas) show areas of high event density. In the diagonal, corresponding

to the parallel family, hotspots tends to be spread out around the apexes (i.e. mid-points

of arcs). Given the concurrency metric results indicating the use of concurrent strategies,375

users most likely slowed down when reaching apexes. In the remaining families, hot

spots are sharper and localized differently. Given the more mitigated concurrency metric

results, we hypothesize that these hotspots most likely corresponds to stopping points

used for sequential drawings of the strokes. They appear in the extremities (e.g. 3rd

column and 4th row in figure 10) indicating that strokes were started and ended at380

different times, and the apexes (e.g. 5th column and 2nd row in figure 10) indicating

that difficulties normally requiring careful tracing becomes too difficult when shapes

are mixed. It concurs with our previous observations: 2CSG performance is linked to

the number of turns and figure symmetry.

5.7. Qualitative results385

Because of personal timing constraints (not due to a specific behaviour during the

experiment), 3 participants were not able to commit to the debriefing session. Therefore

this section presents the results of 11 of the 14 participants (mean age 27.54 years,

SD=4.22 years; no left-handed; 2 females).

5.7.1. Fatigue and discomfort390

7 participants perceived a little fatigue during the experiment. 4 perceived it on the

thumb, from a slight discomfort to a feeling of an onset of tendinitis. The 3 others felt a

global fatigue (arm, eyes, shoulder), and one of them mentioned that this fatigue could

have influenced its strategy: independently from the figures, his/her gestures were more

sequential for the last trials (developed in the following sub-section).395

3 participants have been disturbed by a third finger (ring or little of the interacting

hand) that touched the tablet during the steering interaction. This case is managed by

the software in a similar way than when one finger leaves the tablet while the gesture

is not complete: the software stops the trial, forcing the participant to re-start the trial
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immediately. However, this issue mainly appeared in the first trials, and participants400

progressively corrected their hand position.

Since all participants were right-handed and were asked to draw the figures from left

to right, they could have been disturbed by their hand occluding the figure, especially

during the beginning of the gesture. However, only one participant mentioned it during

the debriefing.405

5.7.2. Strategies

Without any influence from the experimenter, all participants thought about strategies

to optimize their efficiency. During the interviews, we learned that they considered

concurrency and sequentiality. 1 participant used sequential drawings only. Another

participant used concurrent drawings until (s)he felt a global fatigue and therefore switch410

to sequential only. For the other 9 participants, the method depended on the figure

complexity, and more precisely on the eye movements imposed by the figures. Indeed,

they used the concurrency by default, until the figure complexity forced the eyes to jump

too frequently between the two strokes. At this level of complexity, they felt it would

be more efficient and relaxing to decrease the eye-jump frequency by making longer415

drawings one finger at a time.

5.7.3. Perceived complexity

First, only 4 participants felt impacted by the tunnel width, and 5 of the others

explicitly said they didn’t pay attention to it. This could suggest that either both widths

were wide enough to not pose problems, or that the following the paths was more420

challenging that meeting the required precision.

During the interview, we ask participants about combinations complexity. Without

any suggestion from the interviewer, they spontaneously created families of complexity,

and most of the participants made the same families as we mention above. As expected,

all participants highlighted the “one-finger group”, i.e. the baseline family as the easiest425

combinations to perform. In this group, complexity increases with the number of turns,

i.e. the is the easiest, followed by and . Then and are the hardest.

6 participants mentioned the “fixed-thumb group”, i.e. the anchored family, and felt
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baseline anchored parallel one-linemirror misc.

Figure 11: The majority graph from the classification of the 6 categories. Arrows mean

‘classified more times easier’, and the vertical ordering gives the final classification: base-

line is the easier, and misc. the harder.

it “just a bit harder than the ‘one-stroke group’ (i.e. the one-line family). 1 participant

felt a discomfort in his/her wrist and said that “fixing the thumb twists the hand”.430

All participants proposed a family of “identical-strokes”, i.e. the parallel fam-

ily. 9 participants ranked it just after baseline and anchored in terms of complexity.

They expressed that, thanks to the constant distance between the fingers, this kind of

combination is closed to the baseline.

Another family has been proposed by 9 participants, and ranked fourth. They call it435

the “symmetrical group”, i.e. our mirror family, and rank it after parallel.

All participants said that the hardest combinations are the one with no straight line,

no identical strokes, and no symmetry, i.e. our misc. family Here all the participants

had to use the sequential drawing method. According to 3 participants, this could be due

to the difference between the number of inflection points in the up and down strokes.440

These groupings suggests that participants perceived a similar complexity for the

remaining gestures, i.e. the one-line family. Considering the interviews, this family

should be classified in between mirror and misc.

25



Finally, even if not all participants mentioned all 6 families, they all used a classifi-

cation of 3 to 6 elements. Using their classifications, we created a majority graph [40].445

In this graph, showed in Figure 11, each node is one of the 6 families, and an arrow

from A to B means that ‘A has been classified easier than B more times than B has

been classified easier than A’. Applying the Copeland rules [41, 42], which consists in

counting the number of out-coming arcs per node, we computed a global classification

represented by the horizontal position of the nodes (from the easiest, i.e. leftmost node,450

to the hardest, i.e. rightmost node).

The complexity classification therefore is (from the easiest family to the hardest

one): baseline, anchored, parallel, mirror, one-line and misc. In order to corroborate

these observations, we computed the mean time, mean C-metric and mean error rate for

each family. Results are shown in Figure 12.455

The three figures present the same tendency, and corroborate the hypothesis for 5 of

the 6 families. Unexpectedly, mirror has been overestimated, especially for time and

error rate. According to the quantitative results, it places penultimate, close to misc. At

first glance, one could consider the participants had been biased by symmetry, which

gives an illusion of simplicity to the figure. However, considering the C-metric indicator460

in Figure 12, and considering that complexity implies sequential drawings, the mirror

group seems correctly placed on the majority graph of Figure 11.

This confirms that participants made a direct link between complexity and concur-

rency. For the 9 participants that made a link between drawing strategy and complexity,

all confirm they used concurrent drawing with parallel. 4 of them still used it with465

mirror, and 2 others with one-line. All participants used sequential drawing with misc.

6. Study 2: Recognition

In this second study we aim at evaluating how 2CSG could be used for command

activation, and more precisely: how complexity affects performance, recognition and

learnability.470

We used the same set of 35 combinations, and participants had to complete them

with the forefinger and the thumb of their dominant hand. In order to force a command-
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Figure 12: (left) Mean movement times and 95% CI for each family, classified from left to

right by increasing perceived complexity.‘mirror’ seems to be overestimated by the partici-

pants. (center) Mean C-metrics and 95% CI for each family, classified from left to right by

increasing perceived complexity. There seems to be a correlation between complexity and

concurrency. (right) Mean Error Rates and 95% CI for each family, classified from left to

right by increasing perceived complexity. Here also,‘mirror’ seems to be overestimated by

the participants.
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Figure 13: Interface of the second study. Participants can use all of the blue area to draw

the top-right figure. Progression and participant’s id are displayed on bottom-left.

like gesture, each trial needed to be done in less than two seconds. This time limit aimed

at pressuring users just enough. It was empirically determined: one second was too fast,

and pilot users did not even start trying; three seconds was too slow, and pilot users475

started slowing down and decomposing their gestures, which let them conscientize their

movement. Exceeding the time cancelled the trial which had then to be repeated.

Figure 13 shows the interface of the experiment. Each combination to complete

was successively displayed as a thumbnail on the top right corner of the screen. 2CSG

could be performed anywhere on the screen. There were no starting, ending areas, nor480

visual feedback of the gesture during or after completion. The blue background turned

green when the trial was completed in the time allowed, and turned red if time limit was

exceeded, letting the participant know that the trial had to be done again.

We decided a display sequence of the combinations that consisted of 3 phases:

1. All the 35 combinations were randomly displayed once. If the time limit was485

exceeded, the combination was queued and prompted again later to ensure each

trial was completed once.
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2. Each combination was displayed again to be repeated 10 times in a row. The

combinations order was the same than in phase 1 (taking into account reordering

due to timing issue). If the time limit was exceeded, the same combination was490

proposed straight away until reaching 10 successfull repetitions.

3. Identical to phase 1.

This specific ordering aimed at observing different facets in the learning process of

2CSG. It allowed to distinguish four kinds of gesture perception by participants:

• New: a combination a participant sees for the first time, i.e. all the trials of phase495

1,

• Known: a combination a participant already encountered once, i.e.. the first trial

of each combination in phase 2),

• Trained: a combination participants trained on, i.e. the last trial of each combina-

tion in phase 2, after 9 repetitions,500

• Familiar: a combination participants trained on previously, i.e. all the trials of

phase 3.

6.1. Procedure

The experimental procedure was identical to the previous study. The experimenter

started with a short demographic survey, showed next the interface and several 2CSG505

and finally gave the same instructions except:

• As there is no starting, ending area, nor tunnels, a trial could start and finish

anywhere on the device screen. The size of the performed combination was up to

the participant, and limited by the screen size only.

• The recording started when both the forefinger and thumb were in contact with510

the screen (or only the forefinger for ). It ended when one finger was lift up.

• There was no training session, and it was not allowed to train on the table, nor

any other surface to ensure that phase 1 trials were the first attempts.

There was no constraint on the tablet orientation, but all participants needed to

complete the UpStrokes with their forefingers and the DownStrokes with their thumb515

along the horizontal axis of the tablet, to ensure rotation-invariance.
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When all the trials were completed, the experimenter conducted a debriefing session,

in which he asked about the strategies developed as well as the difficulties encountered

depending on the combinations that were presented. In total, the experiment lasted from

30 to 45 minutes.520

6.2. Experimental Design

The experiment used a 5 Ups × 7 Downs × 2 Repetitions (phase 1 and 3) + 5 Ups ×

7 Downs × 10 Repetitions (phase 2) within-subject design. A total of 6300 trials were

logged across all participants.

6.3. Participants and Apparatus525

We recruited 15 new participants (mean age 30, SD=6.3 years; 2 left-handed; 8

females) that did not participate in study 1. All but one participant owned a smartphone

and used it every day. Only 7 participants owned a tablet and used it every day.

Participants barely used two-finger interactions in their daily life, apart for RST gestures

in map and picture applications.530

As in the previous experiment, the study was conducted on a 1st generation 11 inches

iPad pro (Retina display: 2388 × 1668 px resolution at 264ppi). The software was also

written in HTML/CSS/JavaScript, and logged events through a web-socket sent to a

python-written server running on a MacBook Pro 13inch fifth generation (Intel Core i5).

6.4. Analysis procedure535

In the following we describe the two metrics we designed to explore recognition

efficiency of 2CSG compared to single stroke gestures.

6.4.1. Recognition Score (Reco)

To assess gesture recognition rates in our study, we used state-of-the-art algorithms.

In general there are two types of recognizers families: state machines, suited to recognize540

continuous gestures, such as Proton [43, 44]; or matching algorithms, which compare

strokes to templates such as the $-family [45, 46, 47, 48, 49]. Our goal was to compare

each individual strokes to an ideal stroke, without taking into account the relative

positioning, scale, and orientation of the two strokes composing a 2CSG. We, therefore,
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decided to use the simplest, transparent and un-specific algorithm: $1 recognizer [45].545

It will act as a “metric” of “how close a drawn stroke is from its ideal counterpart”.

To allow $1 to compute a score for a performed stroke, we first registered 5 theo-

retical strokes: , , , and , by using lists of 40 equally spreadout points that

define the ideal drawings we showed to the participants during the experiment. Then,

for each trial, we run $1 on each Up and Down Stroke of the combination. $1 compares550

a stroke to its theoretical counterpart, and gives a score, between 0 and 1, where 1 is a

perfect match. The recognition score of a trial, Reco, is an average of the $1 score of

each stroke of its combination:

Reco(Su
Sd

) =
Score(Su)+Score(Sd)

2
(4)

To be noted, for the baseline family, Reco( Su ) is equal to Score(Su)555

As $1 is not able to detect a dot as a stroke, we defined a recognition score for the

. It uses the width of the DownStroke and the width of the UpStroke:

Score( ) = max
(

0,1− widthdown

widthup

)
(5)

6.4.2. Score of Similarity (Sim)

In order to quantify how DownStrokes influence the recognition of UpStrokes, we

compute a score of similarity (Sim). For a trial, this score is the ratio of Score(Su) with

the mean Reco of the corresponding baseline:

Sim(
Su
Sd

) =
Score(Su)

Mean Reco( Su )
(6)

560

6.5. Quantitative results

6.5.1. Recognition Score (Reco)

In Figure 14-left, cells show the Reco score of each combinations. The top row

corresponds to the baseline family. To confirm that the complexity of our set of strokes
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Figure 14: (left) Mean Recognition Scores (i.e. Reco) for all the different combinations of

Strokes. (center) Mean Recognition Scores of the UpStrokes only (i.e. Score(Su)) for all the

different combinations of Strokes. (right) Mean Scores of Similarity (i.e. Sim) for all the

different combinations of Strokes.

varies with radius of curvatures and inflection points, we ran a one-way ANOVA. It565

shows a significant effect of stroke on Reco (F4,11 = 127, p < .001). Post-hoc Tukey

tests, reveals differences between and the the rest (all p < .001), as well as between

the group [ , ] and the group [ , ] (all p < .001). As expected, it seems that

Reco decreases when curvature and inflection points increase.

A one-way ANOVA showed significant effect of DownStroke on Reco (F6,9 = 186,570

p < .001, η2
p = .16 large effect size). Post-hoc Tukey tests, reveals:

• no difference between and ,

• differences between the group [ , ] and the rest (all p < .001),

• differences between and the rest (all p < .001),

• differences between and [ , ] (both p < .001)575

A one-way ANOVA showed significant effect of 2CSG family on the recognition

scores (F5,10 = 340, p< .001, η2
p = 0.23 large effect size). Post-hoc Tukey tests, reveals:

• no difference between baseline, anchored and parallel,

• differences between the group [baseline, anchored, parallel] and the rest (all
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p < .001),580

• differences between one-line and the rest (all p < .001)

These trends can be observed in Figure 14-left:

• we observe that baseline (first row), anchored (second row) and parallel (diago-

nal from to ) obtain better mean scores than the remaining groups.

• as expected, lowest scores are for the misc. family, especially when combining585

strokes with a different number of inflection points. For example, and

had the worst scores (0.47 and 0.46 resp.).

6.5.2. Score of Similarity (Sim)

In Figure 14-right, cells show the mean scores of similarity (Sim) for each combina-

tions.590

Overall, as expected adding DownStrokes lower the UpStroke recognition score. The

more complex the DownStroke the lower the score is. However simple DownStrokes

such as and do not affect the recognition score drastically which may be leveraged

as ways to modify command gesture sets.

Figure 14-right illustrates relatively unexpected results on how DownStrokes affect595

UpStrokes. First, considering the lower-left corner, and the color gradient from left to

right in general, one can see that the more complex a Up stroke is the less its score is

affected by the DownStrokes. For instance, comparing and , one can see that

affects a lot more (56.7%) than (73.4%). Also, is the most affected stroke in

general. This result can be explained by the extreme simplicity of , and : the600

simpler a stroke is, the more a small variation can affect the recognizer.

Next, the second line of the matrix shows the influence of . While using only

consists of drawing single strokes with the forefinger while the thumb is fixed on the

tablet, it still influences the UpStrokes, and similarities vary from 82.5% to 95.1%.

Finally, while we expected making the same stroke with the two fingers should not605

influence much the $1 score of Ups, the diagonal of the matrix shows that the difference

with a single stroke can be up to 8.7% (for and ).

33



6.5.3. 2CSG Families Analysis

After grouping shape combinations based on 2CSG families, we look at the comple-

tion time, Reco, and Sim. We focus the analysis on two factors: Families and Repetitions610

of the combination. Levels for the Repetitions factor are 1 (trial of phase 1), 2 to 11

(trials of phase 2) and 12 (trial of phase 3).

Mean completion times by Families are: baseline 523ms (SD=257ms), anchored

757ms (SD=283ms), parallel 670ms (SD=319ms), one-line 1040ms (SD=354ms), mir-

ror 1175ms (SD=346ms), misc. 1320ms (SD=387ms).615

Mean completion times by Repetitions are: 1 1159ms (SD=468ms), 2 976ms

(SD=448ms), 3 959ms (SD=454ms), 4 939ms (SD=435ms), 5 945ms (SD=437ms), 6

943ms (SD=432ms), 7 928ms (SD=424ms), 8 928ms (SD=428ms), 9 915ms (SD=416ms),

10 912ms (SD=427ms), 11 877ms (SD=410ms), 12 941ms (SD=239ms).

A one-way ANOVA showed significant main effect of Family (F5,10 = 888, p< .001,620

η2
p = 0.4 medium effect size) and Repetition (F11,4 = 18,p < .001, η2

p = 0.02 barely

no effect size) on the completion time. However, there was no interaction between

Family and Repetition. Post-hoc Tukey tests, reveals differences between all Family (all

p < .001). As for the Repetition, the first repetition was significantly slower than the

other (all p < .001), but no further difference were found.625

Mean Reco by Families are: baseline 0.79 (SD=0.21), anchored 0.79 (SD=0.16),

parallel 0.76 (SD=0.21), one-line 0.63 (SD=0.25), mirror 0.53 (SD=0.22), misc. 0.51

(SD=0.22).

A one-way ANOVA showed significant main effect of Family (F5,10 = 339, p< .001,

η2
p = 0.2 small effect size) on Reco. However, there was no main effect of Repetition630

nor interaction between Family and Repetition. Post-hoc Tukey tests, reveals differences

between baseline and [one-line, mirror, misc.] (all p < .001); between anchored

and [one-line, mirror, misc.] (all p < .001); between parallel and [one-line, mirror,

misc.] (all p < .001); between mirror and one-line (p < .001) and between one-line

and misc. (p < .001). These results follow nicely participants grouping635

Mean Sim by Families are: baseline 0.79 (SD=0.21), anchored 0.70 (SD=0.28),

parallel 0.76 (SD=0.24), one-line 0.63 (SD=0.36), mirror 0.64 (SD=0.29), misc. 0.55
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(SD=0.30).

A one-way ANOVA showed significant main effect of Family (F5,10 = 99, p < .001,

η2
p = 0.07 barely no effect size) on Sim. However, there was no main effect of Repetition640

nor interaction between Family and Repetition. Post-hoc Tukey tests, reveals differences

between all Families (all p < .001) but one-line and mirror, and baseline and parallel.

There is no evidence of improvement nor degradation of the quality of the com-

binations throughout the experiment. However, there is still a decreasing trend when

looking at the time. It seems that participants slightly improve in terms of completion645

time without affecting their drawing quality.

Given the simplicity of the shapes, and even though no feedback on successes nor

failures were given, we hypothesized participants to be able to self determine whether

their gestures were successful (motor-wise) or not compared to what they mentally

pictured. We were therefore expected improvements over time thanks to participants650

self-correcting their gestures during the successive repetitions. However, we observed

no differences between the four learning levels, i.e. New (or repetition 1), Known

(repetition 2), Trained (repetition 11) and Familiar (repetition 12), except between

New and the rest.

6.6. Qualitative results655

6.6.1. Fatigue

11 participants felt some physical or mental fatigue. About physical fatigue, 3

participants felt it on their wrist, 2 on their thumb, and 1 on the hand as a whole. This

fatigue was mainly caused by the high number of Repetitions, especially for participants

who regularly exceeded the time limit, and therefore redid a higher number of trials.660

3 participants expressed a wrist discomfort with anchored. Similarly, 2 participants

expressed a thumb fatigue.

However, considering the high number of repetitions as not ecological, and con-

sidering that most of the participants expressed fatigue as “light tensions in the hand”,

making command activation with 2CSG does not seem physically demanding.665

About mental fatigue, 5 participants complained, and correlated it to the experiment

itself, i.e. the number of repetitions. However, 11 participants complained about the
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stress caused by misc.. One participant said “this gestures are nearly impossible to

make!”.

6.6.2. Strategies670

The nature of the trials do not let much room for strategy. Only four participants

used sequential movements, and this was for misc. only. Indeed, as mentioned by

one participant, using sequentiality takes more time and is not consistent with the

command gesture principle, neither with the 2s time limit. Another participant started

the experiment with sequential movements, but quickly switched to parallelism. As they675

could rest before each trial, two participants mentally pictured the gestures before each

trials, especially in phase 1 and 3.

6.6.3. Perceived complexity

As expected, the same complexity groups (our 6 families) mentionned in study 1

have also been mentioned by the participants of study 2. All the 6 have been mentioned680

by 7 participants, 5 participants simply did not mentioned one-line. As expected

too, baseline is always the easiest and misc. the hardest. 13 participants ranked

parallel or anchored slightly harder than baseline. The two remaining participants

stated that anchored was not that easy because it forces the wrist to make an arc. All

the 7 participants that mentionned the 6 families placed one-line before last in their685

complexity scale. They mainly did so because of the frustration involved by the influence

of the curved-stroke on the line-stroke. It induced feelings of lack of precision, and fear

that the gesture will not be recognized. Among all the participants, 6 mentioned the

influence of strokes with a higher number of turns over the ones with a lower number

of turns. The typical example was where participants were convinced that a wave690

should appear in the resulting DownStroke.

As in study 1, we computed a majority graph, and obtained the same result illustrated

in Figure 11.

6.6.4. Learning

8 participants felt they were learning across phase 2. One participant said that this695

phase seemed to be beneficial for all the gestures, but all said it improved performance

36



on medium and highly demanding gestures mainly. Also, two participants had the

feeling that this learning was not “very” sustainable, and were not sure to perform trials

of phase 3 as well in as the last repetition of phase 2.

7. Discussion700

Results from our experiments let us foresee how stroke complexity in 2CSG affects

performance, and especially how thumb movements could be combined with concurrent

forefinger strokes. In the following, we identify the takeaways from both experiments.

Based on these takeaways, we propose a set of guidelines for future use of 2CSG.

Even though the 30 stroke combinations we studied cannot be exhaustive, they still705

provide a decent overview on how complexity affects performance both when precision

is needed and when discrete commands are issued.

To ease the generalizability of our results, we grouped the stroke combinations into

different families. It is to be noted that these families were spontaneously retrieved

by participants when describing stroke combinations during the interview phase. This710

concurring grouping acts as a sanity check, therefore providing us with a sensible lens

through which analyzing the results.

Finally, we opted for open-ended questions on fatigue and learning to not emphase

anything in particular and let participants chose their own level of details at which they

wanted to discuss. Moreover, families were not introduced to the participants, since we715

wanted them to group the gestures. Therefore to not influence them, we would have had

to compare all pairs of combination making the experiment potentially too long. The

open-ended form appeared to be the best compromise.

7.1. Family Performance

In both experiments, the anchored family yields performance that are close to the720

baseline (confirming H4). Adding a static thumb while performing strokes with the

forefinger therefore seems to be a usable alternative. On the contrary all the other thumb

gestures we studied did affect negatively performance at various degrees (partially

confirming H1).
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In our study focusing on precision, no other families did perform better than simply725

sequentially drawing strokes. While not necessarily a surprise for most of them, we

did not expect this result for the one-line family (e.g. , , and ): drawing

time increased by more than twice. Similarly, and even more unexpected, the parallel

gestures have significantly worse performance than their baseline counterparts (invali-

dating H2). We hypothesized that to perform parallel gestures participant would fix the730

distance between their thumb and their index and only focus on the position of either

one of these fingers. We thought that strategy to be relatively close to performing a

baseline gesture. However, this strategy may have been too simplistic and overlooked

the biomechanic of the hand and the angle at which participants drew their gestures

(which was not controlled): maintaining a fixed distance between the thumb and the735

index may not be a straightforward task. As a note, results shown in figure 9 tend to

partially invalidate H3: only strokes from the parallel family tend to be systematically

drawn concurrently.

In our study focusing on gesture recognition, we identified more families that could740

be usable alternatives. While we expected to have higher recognition rates for each

gestures of the baseline, we only focus on the relative changes in the recognition score

as one could argue that a better recognition algorithm and more samples in the training

set could be added. Therefore, considering the Similarity score of the families we tested,

not only the anchored family (confirming H4 again) but the one-line and parallel ones745

seem promising alternatives. Perhaps these families, hard to perform but recognizable,

could be used in non-frequent situations and/or critical commands (e.g., closing an

app) since they should not be triggered inadvertently. We think it opens up interesting

questions to explore in future iterations.

750

Both studies tend to show that the parallel family is more different from the an-

chored family than expected (thus invalidating H5), and (at least from study one) much

closer to the one-line family.
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7.2. Guidelines

Results on the use of 2CSG are quite anticlimactic. On the one hand we identified755

families of gestures that can be used and could easily be integrated to augment the

interaction bandwidth on touchscreens. On the other hand stroke complexity can not

be easily leverage to drastically increase this bandwidth. In the following, we provide

some guidelines and example scenarios on usable 2CSG families.

When precise forefinger drawing is needed, no precision with the thumb should be760

required, and only the anchored family should be leveraged. The thumb can be used as

a modifier, but it should be interpreted as on or off the screen. For instance, in a selection

tool, the thumb can act as a quasimode for multiselection: items that cross the forefinger

path are selected only if the thumb is also in contact with the screen. To be noted, that in

our study we required precision for both the forefinger and the thumb. In future works,765

we should consider unconstrained thumb movements: while the forefinger draws with

precision, can the thumb moves without constraints or need to remain static? Good

performance with unconstrained thumb movements would allow the use of a modifier

for longer gestures, and be used on bigger screens such as tabletops.

When issuing discrete command gestures, the anchored, one-line and parallel770

families can be leveraged. Simple parallel gestures have already been explored (e.g.,

parallel lines in various direction for multitouch marking menu [33]) and even are in

use in commercial devices (e.g., accessing advanced settings through two-finger bezel

swipes downwards on Android), but the use of more complex parallel 2CSG can be

added to the toolbox. To the best of our knowledge, the anchored (with forefinger775

gestures) and one-line families have yet to be used. A system could therefore: 1) use an

anchored thumb as a quasimode to explicitly issue discrete command through gestures

as commonly studied in the literature (e.g., [28]) (for instance a to turn the WiFi

on/off); the one-line family could also extend this command interpretation quasimode;

2) use the parallel family as already in place (e.g., [33] and Android settings example)780

but with a bigger set of gestures.
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7.3. Future Work

A first extension of this work, could be to further explore the 2CSG design space in

order to complete our guidelines, by studying new gestures such as inclined lines (e.g.

< or > shapes), broken lines (e.g. W shapes), or even switching roles (e.g. anchoring785

the forefinger instead of the thumb).

Our second study included two left-handed persons. The handedness factor did not

reveal any difference. However, given our sample size, this lack of difference does not

mean there is none. Future work may consider investigating the effect of handedness,

however we hypothesize that the main difference is mechanical (e.g., participants either790

pull or push when sliding their fingers), and thus that such an experiment will not show

any critical difference in performance, the performance bottleneck being arguably more

due to cognitive rather than mechanical constraints.

In our second study, we used a $1 recognizer on each stroke to analyze them indepen-

dently. In future works, other strategies could be envisioned to increase the interaction795

bandwidth. A simple example, would be to use a $N recognizer on the whole stroke

combination to investigate the strokes relative distance as a new input parameter. One

could thus envision, differentiating anchored gestures depending on how far a thumb

is from the stroke. The same idea could be applied to one-line and parallel families.

To go even further, other properties could also be studied (e.g., relative ratios, x- and800

y-offsets). However, it is important to keep in mind that a potential trade-off between

number of parameters and usability could arise.

Touch-device sizes give an inherent maximum distance between thumb and fore-

finger, which can limit mobility and precision for making a 2CSG, especially on small805

devices. Moreover, Chih-Chun et al. showed in 2016 that “7’ display [...] underper-

formed the 9’-11’ displays” on several tasks (like drag-and-drop), even though they had

the same index of difficulty [50]. As 2CSG should therefore be smaller, slower and

more complex to perform on small devices, one could envision that performance could

be different. However, in terms of gesture ranking and guidelines, we do not expect a810

significant difference in general, maybe for specific fingers only that have restrained

range of movements (e.g., long nails).
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We used $1 recognizer for our purposes, but better recognition could be used for

real-world system. However, our interest laid in the comparison of these scores. $P,

$P+, $Q and protractor versions, and including context awareness (mobile, wearable,815

low-vision, ...) could lead to faster and/or better recognition results overall, but the use of

a simple recognition algorithm helps us highlight the difference in drawing themselves

compared to an ideal stroke.

This paper only focuses on the motor action as a first step. Our rational behind our

gesture set was to use a definition of drawning difficulty [34]. However, an elicitation820

study could be a complementary research, and might validate our choice of gesture or

spring up new types of 2CSG, as well as scenarios and associated actions, therefore

potentially leading to new guidelines. For instance, famillies that are hard to perform

motor-wise may still be very much appreciated (e.g., direct link between the gesture

and the action, ...).825

8. Conclusion

This paper presents two experiments that investigate two concurrent stroke ges-

tures (2CSG) benefits and limitations. While we aimed at proposing a large amount of

new efficient gestures for tactile devices, we observed that making concurrent strokes

with our thumb and forefinger is not as an easy task as expected. However, we still830

identified several families that are promising to possibly enhance precise drawing and/or

command gestures. For precise drawings, anchored could be leveraged as a modifier.

For command gestures, anchored, one-line and parallel could be leveraged as new

quasimodes, and deserve to be studied further alongside additional gestures.
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