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Abstract. Sensitization, a non-associative learning widely observed
across phylogeny, is fundamental for adaptation and, thus, survival of liv-
ing organisms. This paper investigates one form of sensitization, namely
pseudo-conditioning, in order to present a new computational model
inspired by its characteristics. We develop this model as part of the
Iterant Deformable Sensorimotor Medium (IDSM), a recently developed
abstract model of sensorimotor behavior formation. The characteristics
of the presented model are studied and analyzed in the light of our long
term objective of investigating new unsupervised learning mechanisms
for artificial autonomous agents.

Keywords: Non-associative learning · sensitization · pseudo-conditioning
· artificial agent · adaptive behavior acquisition · embodiment.

1 Introduction

What drives the behavior of an organism? That fundamental question has been
addressed in the literature for a variety of organisms and through different angles.
For some species, part of the answer lies in the associative learning mechanisms but
there also exists more widespread non-associative learning mechanisms ([1,2,7]).
Behavior, in its simplest expression, is a spatio-temporal sequence of motor
responses triggered by sensory signals. Habituation and sensitization, the first
translating behaviorally in a response decrease while the second in a response
increase, are two non-associative learning mechanisms so widely observed in
the phylogeny that it suggests their fundamental role in behavioral learning
([6,16,18,4]).

Sensitization, described in more details in section 2, translates as an increase
in response with two flavours. It is defined as either the enhancement of the
response to a repeated stimulus (site-specific sensitization) or as a generalization
of this response to another stimulus (pseudo-conditioning). Hence, sensitization,
rather than habituation, appears as an interesting mechanism to investigate
how an agent can broaden its behavioral responses. Moreover, while site-specific
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sensitization is anchored on a single stimulus, pseudo-conditioning transfers
the response to other stimuli. We can then see pseudo-conditioning as a first
step toward generalization. For example, in the context of an agent exploring
an environment, pseudo-conditioning would permit an agent to test actions on
previously neutral stimuli, possibly discovering new opportunities.

In the context of autonomous artificial agents, there are several papers mod-
eling sensitization [10,20,21,17,3,13], some of them reviewed in [15]. However,
most of them use the word sensitization to designate site-specific sensitization
exclusively. As far as we know, only the sensitization model of [3] deals with
pseudo-conditioning.

The works of [10,20], which have been released at the same period of the
work of Rescorla on classical conditioning [19], are the first computer models
of both habituation and site-specific sensitization. The behavioral responses,
consistent with biological measurements, are a mix of habituation and site-
specific sensitization where habituation is more pronounced for low intensity
stimuli, and sensitization for high intensity stimuli.

In a recent review of cognitive architectures ([15]), two models of sensitization
are mentioned. In the first, Attentive and Self-Modifying cognitive architecture
(ASMO, see [17]), habituation and site-specific sensitization essentially use a
"significance" function of the stimulus rather than its intensity, which allows
habituation to strong stimuli and site-specific sensitization to weak stimuli. This
makes it easier for their robot to stay focused on its target, favoring stimuli close to
the target (deemed significant) over others that became more easily ignored. In the
second, Self-Aware and Self-Effecting agent (SASE, see [21]), the authors formalize
six mental architectures from the simplest to the most complex, all based on
Markov Decision Processes. Starting with architectures type-4, their conceptual
models are said to allow for habituation and site-specific sensitization, but this
type-4 architecture is also compatible with classical conditioning, instrumental
conditioning, planing and reasoning. Besides, only the simplest architectures (up
to type-2) are experimented with, habituation and sensitization both requiring
at least type-4 architecture.

In [13], both habituation and site-specific sensitization are modeled for a
neuromorphic processor. A weak, repeated stimulus leads to habituation of the
neuron activity, whereas a strong stimulus leads to the site-specific sensitization
of the neuron activity. They show that such architecture lead to more robust
hardware with better aging properties.

All these works use site-specific sensitization along with habituation, but do
not mention pseudo-conditioning. The neuro-physiological models of Hawkins [11]
can account for a variety of learning mechanisms including pseudo-conditioning.
They bring in the suggestion that non-associative learning forms the breeding
ground for the emergence of other forms of learning, especially associative condi-
tioning. In the "Autonomous Robot Based on Inspirations from Biology" (ARBIB,
see [3]), habituation and pseudo-conditioning are modeled with a spiking neural
network, along with classical conditioning. The neurons encode reflexes, and are
implemented on a Khepera robot to observe the resulting behaviors. Conscious
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of the daunting complexity of models too faithful to the physiological modeling,
Damper et al. relied on spiking neural networks to abstract the physiological
mechanisms, but this is still a rather complex model. It is also unclear to which
extend their model can exploit non associative learning without relying on the
mechanisms needed for classical conditioning.

In this paper, we propose a new computational mechanism inspired by pseudo-
conditioning as described by biologists. As such, the proposed mechanism is
centered on the response generalization to other stimuli. We plug our proposition
to an existing conceptual model of habits formation called Iterant Deformable
Sensorimotor Medium (IDSM, see [5]), more conceptual than spiking neural net-
works but less than models in the tradition of Rescorla-Wagner. We are interested
in artificial agents that can acquire new behaviors and the IDSM framework
specifically addresses the problem of using a simple kind of basic behaviors: habits.
IDSM performs well for memorizing new behaviors and reinforcing them so as to
replaying them later. But it has some limitations when it comes to generating
new behaviors. Our motivation is to add learning or adaptation mechanisms
to the IDSM framework so as to open the possibility for the artificial agent to
produce new behaviors.

This paper is structured as follows. We start by recalling the biological def-
inition of sensitization and its behavioral correlates in section 2. The Iterant
Deformable Sensorimotor Medium (IDSM) framework is then described in sec-
tion 3. The proposed model is detailed in section 4 and various experiments are
presented and analyzed in section 5. We conclude the paper with a discussion.

2 Sensitization

Sensitization is a non-associative learning observed within numerous and various
species, including insects or single cell organisms ([18,4]). However, it is important
to note that in the literature, unlike habituation (i.e. decrease of a response to a
repetitive stimulus), sensitization refers to different phenomena ([14,12,8,2,4]).
Sensitization is defined as the enhancement of a response behavior after the
presentation of a stimulus, and can be of two forms: site-specific sensitization and
pseudo-conditioning. By definition, site-specific sensitization is the enhancement
of the behavioral response following repeated presentation of the same stimulus.

Pseudo-conditioning is a form of learning allowing a behavioral response to
a given unconditioned stimulus US to generalize, temporarily, as a response to
another conditioned stimulus CS. There are major differences with the associative
learning classical conditioning. In pseudo-conditioning the presentation of the US
alone is enough to prepare for the trigger of the unconditioned response to other
stimuli. A stimulus triggering this unconditioned response temporarily becomes a
CS. The triggered response in pseudo-conditioning is weaker than with classical
conditioning.

The figure 1 illustrates the behavioral response in case of pseudo-conditioning
with either a continuous or repeated and shorter stimulation. As shown on
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the figure, when pseudo-conditioning takes place, a previously neutral stimulus
triggers the conditioned response.

Illustration of pseudo-conditioning

(a) Continuous stimulus                                                              (b) Repeated stimulus

Fig. 1: Illustration of the expected behaviors, with or without pseudo-conditioning
learning with continuous stimuli (a) or with repeated stimuli (b, 2 time units on,
2 time units off).

3 IDSM

The Iterant Deformable Sensorimotor Medium (or IDSM for short) of [5] is a
conceptual model of habits formation from an artificial agent perspective as
self-reinforcing sensorimotor behavioral patterns. It is an intermediate model
between neuronal models and macroscopic behavior models.

The IDSM works in the sensorimotor space SM of the agent, with K =
dim(SM) the number of sensorimotor dimensions. As depicted on figure 2a, part
of the environment state SE is abstracted into a sensorimotor state SSM . In the
sensorimotor space, the IDSM uses SSM and some nodes that store preferred
sensorimotor alterations to compute a command µ. This command µ, when
applied on the agent in its environment, will alter the environment and the agent.

Formally, a node N of the IDSM is defined as N = ⟨p,v, w⟩ with p a vector
indicating the node’s position in sensorimotor space SM, v a vector indicating
the desired velocity in sensorimotor space SM at the position p, and w a scalar
indicating the node’s weight, which balances its influence relatively to the other
nodes within the computation of the dynamic of the agent. The sensorimotor
space is normalized and each dimension (either sensor or motor) lies in the range
[0, 1].

As illustrated on figure 2b the influence of each node consists of two com-
ponents: an attraction component Ai and a velocity component V i. These
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Fig. 2: a) An IDSM works in the sensorimotor space of the agent. According to
the current sensorimotor state SSM and to the various nodes of the IDSM, it
produces commands µ that control the agent behavior in its environment. SE is
the complete state of the environment. b) An IDSM is built from a collection of
nodes N i which influence the agent dynamics with a velocity V i and attraction
Ai components.

components impact the agent’s velocity, the attraction component seeking to
attract the agent towards its position Np and the velocity component seeking to
align the agent’s velocity with Nv. The amplitude of the components is mod-
ulated by the distance of the agent to the node (the closer the higher) and by
the weight of the node Nw (equations (1)-(8)). The velocity command µ of the
agent, normalized in the sensorimotor space SM, is given by5 :

dµ

dt
=

{
V (xSM )+A(xSM )

ϕN (xSM ) if ϕN (xSM ) > ϵ

0 otherwise
(1)

V (xSM ) =
∑
N

ωdN .[Nv]
µ (2)

A(xSM ) =
∑
N

ωdN .[Γ (Np − xSM ,Nv)]
µ, (3)

ϕN (xSM ) =
∑
N

ωdN (4)

ωdN = ω(Nw).d(Np,xSM ) (5)

ω(Nw) =
2

1 + exp(−kωNw)
(6)

d(Np,xSM ) =
2

1 + exp(kd∥Np − xSM∥2)
(7)

Γ (a,Nv) =

{
a−

〈
a, Nv

∥Nv∥

〉
Nv

∥Nv∥ if Nv ̸= 0

a otherwise
(8)

5 vectors are depicted in boldface (e.g. v) or between square brackets (e.g. [f, 0, 0]) ,
[v]µ is the projection of v on the motor dimensions, and [v]σ is the projection on
the sensor dimensions. Furthermore, 1 is the vector where all components are 1 and
⟨.., ..⟩ denotes the dot product.
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where kω = 0.025 and kd = 30. The parameter kd determines the radius and
the amplitude of influence a node while kω determines the influence of a node
relative to the others. The differential equation (1) is integrated with forward
Euler using ∆t = 0.1. The function Γ (x,y) keeps only the component of x which
is perpendicular to y. In our work, we consider a simplified IDSM where the
nodes weights Nw are not adapted.

4 Model of pseudo-conditioning through generalization of
nodes

Pseudo-conditioning is a form of learning allowing a behavioral response to a given
stimulus to be expressed as response to another stimulus. As such, it is a kind of
generalization of this response to other stimuli. The following mechanism aims
at extending the response dynamics from one sensory dimension of the IDSM to
another. We propose to equip every node with an adaptive mask which determines
the extend of the influence of a node in the sensorimotor space. Although initially
specific to the sensorimotor state of the node, pseudo-conditioning adapts the
mask to widen the influence of that node. This adaptation allows the node
to become "responsive" to sensorimotor states in which it was not previously
responsive.

For the experiments on this model, there are three dimensions in the sen-
sorimotor space SM : one motor dimension and two sensor dimensions: sensor
s1 perceiving the unconditioned stimulus US and sensor s2 perceiving the con-
ditioned stimulus CS. The nodes in the sensorimotor space SM are shown on
Figure 3a, without representation of the second sensor dimension for simplicity
(we only plot the subspace m× s1, which is independent on the specific s2 value).
The two nodes are defined by:

– N1 = ⟨p = [0.5, 1, 0],v = [−0.5, 0, 0], w = 0⟩,
– N2 = ⟨p = [0, 0, 0],v = [0.5, 0, 0], w = 0⟩.

Our objective with these two nodes is to produce a default behavior of moving
upward without stimuli and downward when the unconditioned stimulus US
(perceived by sensor s1) is on. Since conditioned stimulus CS is neutral, the
dynamics is unchanged on the dimension of sensor s2. Thus the dynamics boils
down to two blocks, one above the plan s1 = 0.5, with the downward behavior
activated by the US, and the other below the plan s1 = 0.5, with the default
upward behavior.

We add a mask component Nm of dimension K with components in [0, 1] to
every node N . Nm is used to compute a virtual masked distance dm, between
the node N and the agent sensorimotor position xSM :

dm(Np,xSM ) =
2

1 + exp(kd∥Np − xSM∥2m)
(9)

∥Np − xSM∥2m =
∑
i

Nmi
2(Npi − xSMi)

2 (10)
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Fig. 3: Motor command variation (dµ) in the sensorimotor subspace m× s1 of
an IDSM with two nodes used in pseudo-conditioning experiments. Large arrows
are nodes, with the base on the Np and the length of the arrow depicting Nv. a)
with a mask Nm = [1, 1, 1]. b) with a mask Nm = [0.5, 0.5, 0.5] for N1 leading
to its stronger influence over N2.

This distance dm, which artificially decrease the sensorimotor distance between
the agent and the nodes, is used instead of d in equations 2.

It follows that for a given dimension i, the most specific the associated mask
component can be is Nmi = 1 (i.e. the distance between Npi and xSMi is fully
taken into account). And the most general the associated mask component can
be is Nmi = 0 (i.e. the distance between Npi and xSMi is completely ignored,
as if Npi = xSMi).

A node starts with its mask equal to 1, the most specific possible. Then the
mask is modified following:

fgen = (
√
Kσ − ∥[xSM ]σ − [Np]

σ∥)βmωdmN (11)
∂Nm

∂t
(xSM , t) = γm · 1− fgen ·Nm (12)

Parameters βm and γm adjust respectively the generalization and the special-
ization of the masks and are set to βm = 3 and γm = 0.05. Each of the mask
components is kept in [0, 1].

Thus, the smaller the masked distance between a node N and the sensorimotor
position of the agent xSM , the more the mask of the node Nm is decreased (and
so becomes generalized). Specialization (i.e. increase) of the mask occurs slightly
over time. Fig. 3b shows the modification of the subspace m× s1 dynamics when
the mask of node N1 is generalized to Nm = [0.5, 0.5, 0.5]. The block of the
default behavior is partly reduced to a quarter of ellipsoid with N2 as its center.
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5 Experiments and results

5.1 Setup

In order to measure if our models are capable of pseudo-conditioning, we use
the following protocol. What we seek to evaluate is the ability of the model to
produce a generalized response to a previously neutral stimulus (the conditioned
stimulus CS, perceived by sensor s2), after continuous or repeated presentation
of a non-neutral stimulus (the unconditioned stimulus US, perceived by sensor
s1).

The experiment is split into three phases of twenty time units. During the
first phase, the CS is presented, to observe the agent behavior prior to pseudo-
conditioning. The CS is then replaced by the US during the second phase. Lastly,
the CS is presented again during the third phase. When either the CS or US is
active, its value is set to 1. To limit the differences in experimental conditions, at
the beginning of each phase, the agent is reset to a null velocity starting position
(xE = ẋE = ẍE = 0) and a sensorimotor state xSM = [0.5, 0, 0]. Here, the
choice of forcing the sensor value to 0 is made to have identical initial conditions
between phases, in particular to compare the first and third phases. This can be
interpreted as the insertion of a time unit without stimulus between each phase.
As explained in section 4, the IDSM is modified accordingly.

In a given experiment, the stimulation follows one of the four patterns below.
Note that for every experiment, all the stimulation (whether CS or US) follow
the same pattern.

– (a): continuous stimulus;
– (b): repetitions of 3 time units on / 1 time unit off;
– (c): repetitions of 2 time units on / 2 time units off;
– (d): repetitions of 1 time unit on / 3 time units off.

5.2 Results

The results can be seen on figs. 4 and 5. For the control agent, the default behavior
(upward motion) is observed during the first and third phase, with presentation
of the CS. During the second phase, with presentation of the US, a response
behavior (downward motion) is observed.

Each figure is composed of four subplots, one for each stimulation pattern.
Each subplot has the same layout. The top plot displays the learning agent
trajectory and the control agent trajectory. The second plot from the top gives
information regarding perception of both stimuli by the agent. The third plot
from the top shows the normalized motor value of the agent in the sensorimotor
space (the first component of xSM ), and the velocity command µ. In order not
to overload the figure unnecessarily, the last plot shows the evolution of the nodes
masks reduced only to their motor component (the mask of other dimensions,
i.e. first sensor sensible to the US and second sensor sensible to the CS, having
exactly the same values).
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Fig. 4: Results for activation patterns (a) and (b). From top to bottom: agents
trajectories, sensory activation, motor command and masks. After time 40, the
stronger generalisation of N1 compared to N2 (see masks plot), leads to pseudo-
conditionned behavior of the agent, seen as "learning" to move downward when
the CS is perceived.
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(c) Repeated stimulus (on 2t.u., off 2t.u.) (d) Repeated stimulus (on 1t.u., off 3t.u.)
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Fig. 5: Results for activation patterns (c) and (d) where the activation time equal
or superior to the deactivation time. From top to bottom: agents trajectories,
sensory activation, motor command and masks. These patterns highlight that in
phase 2 the generalization of masks leads to equal contributions of the 2 nodes
and so, to the immobility of the agent. In phase 3, masks values strongly inhibit
the expression of the moving down behavior.
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With all the patterns of stimulation, the behavior of the learning agent during
the third phase (i.e. presentation of the CS following presentation of the US)
is a mix between its behaviors of the first and second phases, starting as a
"US influenced" behavior and ending as a "CS influenced" behavior (default
behavior).

In figure 4a, pseudo-conditioning has no influence in first and second phases.
The pseudo-conditioning occurs as expected in the last phase, allowing the
agent to experiment a "new" behavior (i.e. temporarily modified dynamics in
the sensorimotor space SM): going downward while perceiving only the CS.
The evolution of the masks shows that only the node N1, responsible for the
response to the US, is maximally generalized. At all times, the mask of N1 is
more generalized than the mask of N2. Constant specialization of the mask of N1

allows the default behavior to be expressed again at the end of the third phase.
The node N2, responsible for default downward behavior, only generalizes slightly
and temporarily following the reset of the agent at the start of each phase.

In all repeated patterns (see figs. 4b and 5), the mask of node N2 generalizes
each time there is no active stimulus. In the pattern (b), with the shorter
deactivation time between stimulus activation, the learning agent in the second
phase does not respond to deactivation of the stimulus since N1 stays more
generalized than N2 and behaves as if the US was activated continuously during
the first two deactivation. However, the balance between nodes generalisation
during the third deactivation allows N2 to become "stronger" than N1, hence the
switch in the expressed behavior. In the patterns (c) and (d), with the longer
deactivation time, generalization of node N2 leads to a tie between the two nodes
influences, which results in weaker motor commands and extends the time needed
for the agent to move.

In all patterns, we observe that the resulting behavior in third phase is
the result of the ratio of influence between the generalization of N1 when US is
perceived, and the generalization of N2 when no stimuli are present. We thus have
a mechanism of generalization of behavior which is activated more or less strongly
according to the time of expression of the behavior in a certain sensorimotor
context.

6 Discussion

We have proposed a model to provide pseudo-conditioning (with nodes masks)
to an agent based on the IDSM. Since IDSM is a conceptual model, our model is
easier to read than models based on neural networks.

The generalization of the nodes through the masks results in a transfer of
the behavioral response from the stimulus initially triggering it to other stimuli.
Nevertheless, our model also allows for the generalization of masks of nodes which
are "linked" to no stimuli (sensori components of the position of such nodes are
all set to 0). We do not know if it makes sense from the point of view of biology,
since by definition pseudo-conditioning occurs after a stimulus has induced a
response behavior.
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The mask mechanism we propose for pseudo-conditioning leads to a widespread
generalization: once a node is fully generalized it impacts the behavior of the
agent equally everywhere in the sensorimotor space. This generalized behavior is
only counterbalanced by the existence of other nodes (through the usual IDSM
equations). This "competition" between nodes may not be sufficiently strong to
preserve other existing behaviors. In such a case, it may be needed to introduce a
specialization mechanism shaping the sensorimotor regions where the node should
actually generalize, or restrict the dimensions on which to do so. For example,
specialization could be triggered by the discrepancy between the component Nv

of node N and the last movement of the agent in the sensorimotor space SM ,
since such difference would mean that the motor command stored in N is not in
line with the current environment. Adding another non-associative learning like
habituation (i.e. inhibition of the response to a repeatedly presented stimulus)
could also help prevent over-generalization by minimising the impact of the
repetitions of low-intensity stimuli. We started to work on those non-associative
learning ([9]). Moreover the dual-process theory (see [10]) and the behavioral
homeostasis theory (see [8,6]) are works studying how non-associative learning
fit together and what could be the impacts of such association.

Alternatively to the masks model, even in the context of the IDSM, we
may have proposed other mechanisms allowing the same pseudo-conditioning as
experimented in this paper. As the aim is to adapt the sensorimotor region of
influence of a node, we could have simply defined and adapted one kd per node,
which would have resulted in similar results. However, the mask mechanism is
strictly more general in the sense that it allows (although not illustrated here) to
generalize along certain dimensions while still being specific along others.

Note that the results of our experiments depend strongly on many parameters.
The number of nodes, their positions, the various IDSM parameters are very
inter-dependant and were carefully chosen. We considered a very simple IDSM
for experimenting the mask mechanism and more complex settings with more
nodes and more complex behaviors remain to be studied. In addition, the original
IDSM model includes an evolution of the weights and the generation of new
nodes which were here removed to ease the analysis. The idea is that the mask
mechanism should allow the agent to experiment known behaviors in unknown
situations, which will eventually be memorized by the creation of new nodes.

To conclude, the presented mechanisms could be seen as a first step to allow
a reflex-based agent to "experiment" different behaviors in various situations
depending on its recent experience. Further studies are needed to explore to
which extend such non-associative mechanisms allow for an agent to extend
its behavioral repertoire. Our work is a proof of concept since we considered
very simple environments and we still need to explore the applicability of these
mechanisms in more complex and challenging environments.
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