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Tristan Gillard1,2, Jérémy Fix1,3 and Alain Dutech1,4

Abstract
Habituation, a non-associative learning widely observed across phylogeny, is fundamental for adaptation and, thus,
survival of living organisms. This paper investigates the main characteristics of habituation in order to present three new
computational models inspired by habituation. We develop these models as part of the Iterant Deformable Sensorimotor
Medium (IDSM), a recently developed abstract model of behavior formation. The characteristics of these models are
studied and analyzed. Our long term objective is to research new unsupervised learning mechanisms for artificial
learning agents.
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1 Introduction
Habituation is a widespread form of learning in living
organisms (Rankin et al. 2009). Habituation can be
approximated as the decline in response to a repeated
stimulus, and we describe in more details what habituation
is in section 2. In addition to mammals, habituation has
also been observed in animals without a central nervous
system and even in unicellular organisms, e.g. the blob
Physarum polycephalum (Vogel and Dussutour 2016) and
other protozoa (Eisenstein et al. 2001). This suggests the
hypothesis that habituation is a fundamental mechanism
for any living organism, as one of the ways to adapt to
changes in its environment. Indeed, the Rescorla-Wagner
model of classical conditioning, a more complex learning
process, is based in part on the existence of a habituation
mechanism (Hall and Rodrı́guez 2020; Vogel et al. 2019).

As such, habituation could be used as an inspiration source
to incorporate new adaptation mechanisms into artificial
agents or robots facing real world challenges provided we
have access to computational models of habituation. The
objective of this work is thus to propose computational
models inspired by habituation and analyse their properties.
In a future work, we will explore how these models can help
artificial agents acquire and develop new behaviors.

Habituation is a behavioral property which has been
studied for quite a long time (Thompson 2009). The work of
Rescorla-Wagner led to the Sometimes Opponent Processes
model (SOP) (Wagner 1981). In this conceptual model,
habituation is the result of some elements representing the
stimulus being in “refractory state” (state A2 of the SOP
model) for some time after the presentation of a stimulus.
Thus, when the stimulus is presented again shortly after,
these elements can no longer contribute to the response
behavior, lessening its intensity. Other mathematical models
of habituation using differential equations have been
explored by (Stanley 1976) and refined later by (Wang 1993)
in order to incorporate long-term effects.

More operational models have been proposed, mostly
using neuron like formalism. A first approach consists in
incorporating a sensor memory which builds up with the
repeated presentation of a stimulus and that ultimately
modulates the expressiveness of a motor response. This
approach has for example been explored in (Marsland et al.
1999). In their paper, the authors consider both a simple
linear integrator to modulate the synaptic efficacy of their
modeled neurons and also a non-linear model introduced
by (Wang and Hsu 1990) which can account for long-term
habituation effects. Their neuronal model of habituation is
applied on a mobile robot and habituation is observed in the
robot behavior: it eventually stops responding to repeated
stimuli. The model shows hierarchy of habituation (training
with a stimulus of a given intensity leads to habituation to
lower intensity stimuli, but not to higher intensity stimuli).

The same authors also see habituation as a mean to
detect novelty by learning what is “normal” in the robot’s
environment (Marsland et al. 2000). This second model is
based on the Habituating Self-Organizing Map as a novelty
filter using habituation, and they experiment on a Nomad 200
mobile robot exploring corridors.

(Marsland 2009) explores how these previous models, to
which he adds a growing version of the Habituating Self-
Organizing Map, can tackle problems like novelty detection,
recency detection and temporal learning. Novelty detection
can be achieved, as well as recency detection (detection of
a recent prior occurrence of an event). However, temporal
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learning (“learning when the temporal context of inputs is
important”) is discussed but not experimentally addressed in
that work.

(Bi et al. 2017) design habituation neurons. The activity
of these neurons is inhibited when they frequently receive
an input vector which is close to their average input vector.
In the context of deep convolution neural networks, the
authors insert habituation layers between the inner product
layers of the head of the network. They report an increase
in performance of such “habituation” networks. (Hong et al.
2020) uses the same approach on a neuromorphic processor
and shows that habituation neurons lead to more robust
hardware with better aging properties.

In this paper, we use some ideas developed in these
previous models (i.e. sensor memory and novelty effect)
to propose new computational mechanisms inspired by
habituation as described by biologists. We plug our
propositions to an existing conceptual model of habits
formation called Iterant Deformable Sensorimotor Medium
(IDSM) (Egbert and Barandiaran 2014). We are interested
in artificial agents that can acquire new behaviors and the
IDSM framework specifically addresses the problem of using
a simple kind of basic behaviors: habits. In the IDSM
model, habits are seen as self-reinforcing repetitive patterns
of behavior and its authors draw analogy from the self-
organization of living processes to propose a model for habit
embodiment as self-maintaining precarious sensorimotor
structures that emerge from cyclic patterns (Barandiaran
and Di Paolo 2014; Egbert 2018). IDSM performs well for
memorizing new behaviors and reinforcing them so as to
replaying them later. But it has some limitations when it
comes to generating new behaviors. Our motivation is to add
learning or adaptation mechanisms to the IDSM framework
so as to open the possibility for the artificial agent to produce
new behaviors.

In this context, we propose two family of extensions to
the IDSM framework inspired by habituation. One is based
on the idea of having a sensor memory which impacts
the response triggered by a stimulus, especially if it is
a stimulus that is continuously activated for a long time.
The second approach we explore is based on the idea
that surprising events trigger habituation by lowering the
amplitude of response that would be normally triggered,
and addresses brief and repeated stimuli. This paper is
structured as follows. We start by recalling the biological
definition of habituation and its behavioral correlates in
section 2. The Iterant Deformable Sensorimotor Medium
(IDSM) framework is then described in section 3. The two
proposed family of models are detailed in section 4 and
various experiments are presented and analyzed in section 5.
We conclude the paper with a discussion on our models.
The code used for the experiments of this paper is available
online*.

2 Habituation

2.1 The characteristics of habituation
Habituation (see (Rankin et al. 2009) as revised description
of (Thompson and Spencer 1966)) is a non-associative
learning mechanism observed within numerous and various
species.

The short definition of habituation is from the behavioral
perspective: a decline of the organism’s response to a
repeated stimulus. In this paper, we will also focus on another
important characteristic of habituation, namely spontaneous
recovery, that is, the ability of the response to recover at least
partially in the absence of the stimulus. Although apparently
simple, habituation involves several other characteristics
as described by (McDiarmid et al. 2019) and given in
table 1. Even though not directly addressed in this work,
these characteristics are discussed in light of our models in
section 6.

Here are some examples of relatively simple organisms
using habituation. The natural expansion of the Physarum
polycephalum (also known as the blob) is interrupted in the
presence of a repulsive substance (quinine or caffeine). After
prolonged exposure to this substance, the blob manages to
diminish this repulsion, which allows it to pass through it
(and potentially to access food or other sources of interest):
there is habituation (Vogel and Dussutour 2016). Another
example is the worm Caenorhabditis elegans whose escape
response to vibratory stimulation diminishes with prolonged
exposure (Rankin et al. 1990).

Habituation, as a non-associative learning mechanism,
involves only one stimulus and the agent’s response to this
stimulus. This is in contrast with associative learning, such as
classical conditioning, which leads to associate a response (a
conditioned response) to an initially neutral stimulus (hence
becoming a conditioned stimulus).

In this study, we propose formal models that focus on the
two main characteristics of habituation, namely the decrease
of the response to a repeated stimulus and the spontaneous
recovery.

2.2 Expected behaviors
In this part, we illustrate the behavior we expect from our
models inspired by habituation using a thought experiment,
illustrated on figure 1. As a reminder, we target a decrease
in response when a stimulus is active and partial recovery
of the response when the stimulus is absent. We use a setup
with a simple agent, with only one motor and one sensor.
There is one stimulus in the environment that can be either
on or off. When the stimulus is active, the agent perceives
it with a constant value whatever the agent’s position in the
environment. The agent can move along a unique dimension,
up or down. Its reflex behavior is to move up in the absence
of stimulus and to go down when the agent perceives the
stimulus.

In such a context, successful habituation should result in
inhibiting the downward motion response after a continuous
or repeated presentation of the stimulus.

In figure 1, we consider two setups and, for each, we
show how the agent is expected to behave when there is no
stimulus (always the top trajectory), when there is a stimulus
and no habituation (always the bottom trajectory) and when
there is a stimulus and habituation. When a stimulus is
presented, it can be either continuous or repeated and, to

∗https://gitlab.inria.fr/openbiscuit/papercode/
2021_habituationgillard
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1. Habituation: repeated application of a stimulus results in a progressive decrease in one or more parameters
of a response to an asymptotic level.

2. Spontaneous recovery: if stimulation is stopped the response recovers at least partially.
3. Potentiation of habituation: repeated blocks of habituation training and spontaneous recovery lead to

progressively deeper and more rapid habituation.
4. Interstimulus interval effect: with the same stimulus properties, high-frequency stimulation leads to more

rapid and/or more pronounced response decrement and more rapid spontaneous recovery.
5. Intensity of stimulus effect: the less intense the stimulus, the more rapid and/or more pronounced the

behavioral response decrement. Very intense stimuli may not show response decrement.
6. Below-zero habituation: even after the response has decremented to no response or to asymptotic level,

the effects of stimulation may continue to accumulate (for example, by delaying the onset of spontaneous
recovery).

7. Stimulus specificity: the response decrement shows some stimulus specificity.
8. Dishabituation: if a novel or a noxious stimulus is inserted into a series of habituating stimuli there is an

increase in the decremented response to the original stimulus.
9. Habituation of dishabituation: if a response is repeatedly habituated and dishabituated, the magnitude of

the dishabituation decreases.
10. Long-term habituation: some stimulus repetition protocols may result in properties of the response

decrement lasting hours, days or weeks (e.g. faster rehabituation than baseline, smaller initial responses
than baseline, smaller mean responses than baseline, less frequent responses than baseline).

Table 1. Characteristics of habituation from (McDiarmid et al. 2019; Rankin et al. 2009)

Illustration of habituation and spontaneous recovery

(a) With continuous stimulus (b) With repeated stimulus (active 2 time units, inactive 2 time units)

Figure 1. Illustration of the expected behaviors with or without habituation learning

ease readability, the periods when the stimulus is active are
represented with a colored background.

In the first setup (Figure 1a), the stimulus is continuously
on. In the second setup (Figure 1b), the stimulus is repeatedly
activated for half of the time. The top (no stimulus) and
bottom (no habituation) trajectories serve as a reference. An
agent with habituation learning should start by following the
bottom trajectory, then should gradually break away and tend
toward the top trajectory, to finally be parallel to it once it
reaches maximum velocity if the stimulus is totally ignored.
Note that these plots are not the results of simulation but are
“hand-drawn” to illustrate the properties of habituation we
focus on in this paper.

3 IDSM

3.1 Formal description

The Iterant Deformable Sensorimotor Medium (or IDSM
for short) of (Egbert and Barandiaran 2014) is a conceptual
model of habits formation from an artificial agent perspective
as self-reinforcing sensorimotor behavioral patterns. It
is an intermediate model between neuronal models and
macroscopic behavior models.

The IDSM works in the sensorimotor space SM of
the agent. As depicted on figure 2, the environment
state SE perceived by the agent is translated into the
sensorimotor state xSM which comprises both sensor and

Prepared using sagej.cls
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Environnement

IDSM

Figure 2. An IDSM works in the sensorimotor space of the
agent. According to the current sensorimotor position xSM and
to the various nodes of the IDSM, it produces commands µ that
control the agent behavior in its environment. SE is the
complete state of the environment.

x

current SM pos

nodes

xSM

Figure 3. An IDSM is built from a collection of nodes N i which
influence the agent dynamics with a velocity V i and attraction
Ai components.

motor components. In the sensorimotor space, the IDSM
uses xSM and some nodes that store preferred sensorimotor
alterations to compute a command µ. This command µ,
when applied on the agent in its environment will alter the
environment and the agent.

Formally, a node N of the IDSM is defined as:

N = 〈p,v, w〉 (1)

with

• p a vector indicating the node’s position in
sensorimotor space SM,

• v a vector indicating the desired velocity in
sensorimotor space SM at the position p,

• w a scalar indicating the node’s weight, which
balances its influence relatively to the other nodes
within the computation of the dynamic of the agent.

The sensorimotor space is normalized and each dimension
(either sensor or motor) lies in the range [0, 1].

As illustrated on figure 3 the influence of each node
consists of two components: an attraction component Ai

and a velocity component V i. These components impact the
agent’s velocity, the attraction component seeking to attract
the agent towards its positionNp and the velocity component
seeking to align the agent’s velocity with Nv . The amplitude
of the components is modulated by the distance of the agent

to the node (the closer the higher) and by the weight of the
nodeNw (equations (2)-(7)). The velocity commandµ of the
agent, normalized in the sensorimotor space SM, is given by:

µ̇(t) =
dµ

dt
=

{
V (xSM )+A(xSM )

φN (xSM ) if φN (xSM ) > ε

0 otherwise
(2)

with the velocity V and attraction A components defined
by equations (3)-(8).

V (xSM ) =
∑
N
ξN (xSM ).[Nv]µ (3)

A(xSM ) =
∑
N
ξN (xSM ).[Γ(Np − xSM , Nv)]µ (4)

ξN (xSM ) = ω(Nw).d(Np,xSM ) (5)

ω(Nw) =
2

1 + exp(−kωNw)
(6)

d(Np,xSM ) =
2

1 + exp(kd‖Np − xSM‖2)
(7)

Γ(a, Nv) =

{
a−

〈
a, Nv

‖Nv‖

〉
Nv

‖Nv‖ if Nv 6= 0

a otherwise
(8)

with kω = 0.025 and kd = 30. Here, [x]µ denotes the
motor projection of the a vector x in sensorimotor space.
The function Γ(x,y) keeps only the component of x which
is perpendicular to y.

In equation (2), the local density of the nodes φN (xSM )
is computed using:

φN (xSM ) =
∑
N
ξN (xSM ) (9)

The differential equation (2) is integrated with forward
Euler using ∆t = 0.1.

It should be noted that, unlike the original article, we do
not vary the weights over time in our experiments and we do
not create new nodes to simplify the analysis of our models.
Therefore we do not describe these mechanisms here, but
they are available in our code as options.

3.2 Model instantiation
For our experiments, we build an IDSM with two nodes as
shown on Figure 4. The two nodes are defined by:

• N1 = 〈p =

[
1
1

]
,v =

[
−1
0

]
, w = 0〉,

• N2 = 〈p =

[
0
0

]
,v =

[
1
0

]
, w = 0〉.

These two nodes lead to an agent’s dynamics shown by the
steam plot and produces the expected behavior: if the agent
perceives the stimulus (the sensory response is s = 1), its
velocity decreases as N1 is the most influential node; if the
agent does not perceive the stimulus (the sensory response
is s = 0), its velocity increases as N2 is the most influential
node.

Prepared using sagej.cls
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Figure 4. For our experiment, we consider an IDSM with two
nodes. See text for details.

4 Models

In order to integrate habituation as defined in section 2 into
the IDSM, we propose three models. In the first one (see
section 4.1), a sensor memory inhibits the perception of the
stimulus. In the other two, habituation occurs through the
weakening of nodes influence, either by adding an energy
component to the IDSM (see section 4.2.1) or through
weight modification (see section 4.2.2). The model with
sensor memory was designed with continuous stimuli in
mind whereas the models with nodes penalty were designed
to handle repeated stimuli.

4.1 Habituation through sensor memory

As habituation is defined as a decrease in response to a
repeated stimulus, the first model we propose is based on
a sensor memory δ, integrating the value of the sensor,
and decreasing the agent’s perception of the stimulus. This
decrease in perception ultimately causes a decrease in the
expression of the response. The sensor memory δ keeps track
of the evolution of the perceived stimulus. In this model, the
sensor value seen by the IDSM is the habituated sensor value
hs, which is modulated by a function (habituation factor h)
of the difference between the sensor value and its mean over
a recent time window (which is the sensor memory δ). The
closer the sensor memory δ is to the sensor value, the more
the motor response is inhibited, without altering the nodes in
the IDSM (habituation).If the stimulus is switched off, the
sensor memory δ will decrease and then the motor response
recovers progressively (spontaneous recovery).

The sensor memory δ is computed as a low-pass filter over
the non-habituated sensor value nhs:

dδ

dt
(xE , t) = β(nhs(xE)− δ(xE , t)) (10)

with β = 0.25. The higher this parameter is (between 0 and
1), the higher the model sensitivity to stimulus variations and
the faster it reaches asymptotic level.

The habituated sensor value hs, used as the sensor
component of the agent sensorimotor position xSM , is
computed from the sensor value nhs and the sensor memory

0.0 0.2 0.4 0.6 0.8 1.0
|| -nhs||

0.0

0.2

0.4

0.6

0.8

1.0

h

Figure 5. The habituation factor h as a function of the
difference between the sensor value nhs(xE) and the sensor
memory δ.

δ as:

hs(xE , t) = h(xE , t)nhs(xE) (11)

h(xE , t) =
1

1 + ea
(12)

a = α

(
‖δ(xE , t)− nhs(xE)‖2 −

1

2

)
(13)

with α = −10. From the plot of the habituation factor h on
Figure 5, the stimulus is completely perceived if its value
is far from the memory (large ‖δ − nhs‖) and completely
inhibited if it is equal to the sensor memory (δ ≈ nhs).

4.2 Habituation through nodes penalty
While the previous model globally affects the sensory
perception, it is also possible to implement habituation by
local mechanisms, at the node level in the IDSM. Each node
can be locally affected to produce habituation by locally
inhibiting its influence on the motor response.

The two following models are based on the concept of
surprise in the sensorimotor space. The idea is that each
time the agent is surprised by its actual position in the
sensorimotor space, the surrounding nodes are penalized.
The more often a node is penalized, the less influence it gets
on the IDSM dynamics. Our intuition is that the pre-existing
nodes encode the response behavior and when surprised, the
agent will lower the influence of this response behavior, thus
leading to habituation. To allow spontaneous recovery, this
influence is slightly recovered in time.

The surprise sur is an error between the prediction on
the expected sensorimotor state x̂SM and the observed
sensorimotor state xSM .

sur(t) = ‖xSM (t)− x̂SM (t)‖2 (14)

x̂SM (t) = xSM (t−∆t) +

[
µ̇(t−∆t)

0

]
∆t (15)

With this definition of prediction x̂SM , we may
observe that [xSM (t)]µ = [x̂SM (t)]µ and the surprise sur
always equals [xSM (t)]σ − [x̂SM (t)]σ , with [xSM (t)]σ the
projection in the sensor space.

Prepared using sagej.cls



6 Journal Title XX(X)

4.2.1 Impact on nodes energy We derive a first local
mechanism by adding an energy component Ne ∈ [0, 1]
to every node N . The influence of a node on the IDSM
dynamics depends on its energy level. The lower the energy,
the smaller the influence. The surprise sur will decrease the
nodes energy which is recovered progressively.

In practice, the velocity and attraction functions are
modified in order to take into account the nodes energy:

V (xSM ) =
∑
A
ξN (xSM ) ·Ne · [Nv]µ (16)

A(xSM ) =
∑
A
ξN (xSM ) ·Ne · [Γ(Np − xSM , Nv)]µ

(17)

The energy of every node N is consumed depending on
the surprise sur, and the proximity between the node N and
the agent sensorimotor position xSM .

ce(N, t) = ((1 + sur(t))βe − 1) · ξN (xSM ) (18)
Ne(t+ ∆t) = Ne(t) + γe∆t− ce(N, t) (19)

where βe = 4 adjusts the energy consumption and
γe = 0.05 adjusts the energy recovery, and we always keep
Ne ∈ [0, 1].

4.2.2 Impact on nodes weight We derive a second local
mechanism by modulating the weights of the nodes. The
weight value decreases when there is surprise sur and
recovers gradually over time. This model is more in line with
the original IDSM.

cw(N, t) = βw · sur(t) · ξN (xSM ) (20)
Nw(t+ ∆t) = Nw(t) + γw∆t− cw(N, t) (21)

with weight penalty value βw = 500 and weight recovery
value γw = 75. The nodes weights are kept in ]−∞, 0].

5 Experiments and results
In the present section, we explain the setup used to
evaluate habituation and spontaneous recovery in the models
presented in the previous sections, and we highlight some
characteristics of these models. Then we go a little further
exploring the interstimulus interval effect and the results of
the combination of the models.

5.1 Habituation and spontaneous recovery
experimental setup

In order to measure if our models are capable of habituation
and spontaneous recovery, we use the following protocol.

The experiment is split into different phases: stimulation
phases (with continuous or repeated stimulus) and quiet
phases (without any stimulus). First there are two stimulation
phases to evaluate habituation, and then a quiet phase
followed by a stimulation phase to evaluate spontaneous
recovery. Each phase lasts twenty time unit. To limit the
differences in experimental conditions, at the beginning of
each phase, the agent is reset to a null velocity starting
position (xE = ẋE = ẍE = 0) and a neutral sensorimotor

state xSM =

[
0.5
0

]
. Here, the choice of forcing the sensor

value to 0 is made to have identical initial conditions between
phases, in particular to compare the first and fourth phases.
This can be interpreted as the insertion of a time unit without
stimulus between each phase.

In a given experiment, the stimulation phase follows one
of the four patterns below. Note that for one experiment, all
the stimulation phases follow the same pattern.

• (a): continuous stimulus;
• (b): repetitions of 3 time units on / 1 time unit off;
• (c): repetitions of 2 time units on / 2 time units off;
• (d): repetitions of 1 time unit on / 3 time units off.

5.2 Habituation and spontaneous recovery
results

Habituation and spontaneous recovery are evaluated by
comparing the behaviors of a learning agent with a baseline
agent without learning mechanisms. The behaviors of the
agents, for each model, are given on figures 6-8.

Each figure is composed of four subplots, one for each
stimulation pattern. Each subplot has the same layout. The
top plot displays the learning agent trajectory and the control
agent trajectory. On the trajectory of the learning agent,
there are two numbers: the agent last position xE for this
phase and a score relative to the control agent. Two scores
are computed using the control agent last position xc and
its “best” last position x?c (the highest position reached by
the control agent in the absence of stimulation). zS is the
score for the stimulation phase, it measures the efficiency of
habituation and spontaneous recovery and is defined as:

zS(xE) =
xE − xc
x?c − xc

(22)

This score lies in the range [−∞; 1], with zS = 0 if the
agent behaves like the control agent and zS = 1 if the agent
is not influenced by the stimulus, hence exhibits habituation.
If the response to the stimulus is amplified, the score zS is
negative which we call reverse habituation (i.e. habituation
to the deactivation of the stimulus, hence to the upward
behavior in place of the downward behavior).
zQ is the score for the quiet phase, it measures the lasting

effect of reverse habituation and is defined as:

zQ(xE) = −(1− xE
x?c

) (23)

This scores lies in the range [−1; 0], with zQ = 0 if the
agent instantly behaves as the control agent and a negative
zQ reflects a lasting reverse habituation effect.

The second plot from the top gives information regarding
perception of the stimulus by the agent displaying the
stimulation value and the normalized sensor value of the
agent in the sensorimotor space (the second component of
xSM ). The third plot from the top shows the normalized
motor value of the agent in the sensorimotor space (the first
component of xSM ), and the velocity command µ. The last
plots give more information depending on the model (sensor
memory, energy of the nodes, weights of the nodes).
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Figure 6. Sensor memory mechanism for four different stimulation pattern. For each subplot, from top to bottom: the trajectory
of the learning and control agents, the stimulus and agent’s sensor values, the normalized motor value and velocity command
µ, the agent sensor memory δ. In each of the four cases, the learning agent quickly habituates and stops expressing the motor
response (going downward) to the stimulus and moves upward. The stimulation pattern impacts the speed and amplitude of
habituation.

For the control agent, a response behavior (downward
motion) is indeed observed with the activation of the stimulus
(phases 1, 2 and 4). During the quiet phase, we observe the
default behavior of the control agent (moving upward).

Each of the three proposed models show habituation for at
least one type of stimulation pattern.

For the sensor memory model (section 4.1), as shown
on figure 6, longer stimulus activation produces stronger
habituation. This can be explained by the fact that the sensor
memory δ approximates the mean of the stimulus activation
(i.e. 1, 0.75, 0.5 and 0.25 respectively with stimulation
patterns (a), (b), (c) and (d), see bottom plots of the four
subplots), hence its inhibition effect is accordingly stronger
with longer activation time (see equation (12) and figure 5).

Conversely, nodes penalty models (sections 4.2.1
and 4.2.2) exhibit a stronger habituation effect when the

duration of activation is strictly lower than the duration of
inactivation (i.e. with stimulation pattern (d), see figs. 7
and 8). For both models, the habituation effect depends
on the occurrence of surprising events. For the stimulation
pattern (a), there are too few surprising events to trigger
habituation. For the repeated stimuli, the ratio between
activation and inactivation duration impacts habituation
because it changes the interval covered by the motor
component in the sensorimotor space.

To illustrate that phenomenon, we consider the
sensorimotor trajectories of an agent with habituation
learning with a high (figure 9c) or low (figure 9d) ratio
of stimulus activation. In the case of a high ratio of
stimulus activation, the agent spends more time in the
top of the SM , under the influence of node N1 which
brings the agent’s sensorimotor motor component close to
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(a) Continuous stimulus with nodes energy penalty mechanism
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(b) Repeated stimulus (on 3t.u., off 1t.u.) with nodes energy penalty
mechanism
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(c) Repeated stimulus (on 2t.u., off 2t.u.) with nodes energy penalty
mechanism
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(d) Repeated stimulus (on 1t.u., off 3t.u.) with nodes energy penalty
mechanism
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Figure 7. Nodes energy penalty mechanism for four stimulation patterns. For each subplot, from top to bottom: the trajectory
of the learning and control agents, the stimulus and agent’s sensor values, the normalized motor value and velocity command
µ, the surprises, the nodes energy and the nodes ξN . In the first plot (a), the lack of surprise leads to no habituation contrary
to the last plot (d) where habituation takes places. In plots (b,c), we observe reverse habituation (because the timing of
surprising events leads to a decrease of N2 energy).

0. Therefore, when the stimulus is deactivated, the agent
goes straight on the node N2, which takes full penalty.
The weakened N2 influence combined with the shorter
inactivation time reduces the distance covered by the agent
before reactivation of the stimulus. Hence, even when the
stimulus is reactivated, the agent is never close enough to
N1 for it to be penalized. Progressively, N2 is penalized,
N1 is unaffected and asymptotically, the agent oscillates
in sensorimotor space between positions with a null motor
component. This corresponds to a reverse habituation
situation where the default behavior (upward) is inhibited.

In Figure 9d with low ratio of stimulus activation, the
three first steps are the same. Then, although the node N2

undergoes a full penalty on its first “visit” by the agent, the
inactivation time is longer and sufficient for the agent to go to
m = 1. The same arguments than previously with opposite
conditions (shorter activation time and strong penalization
of N1) explain why the agent asymptotically oscillates

in sensorimotor space between positions with a motor
component equals to 1. This corresponds to the habituation
where the response behavior (downward) is inhibited.

Now lets consider the spontaneous recovery characteristic.
For the three models, evaluation of the spontaneous recovery
involves the last two phases of the protocol (the quiet phase
and the last stimulation phase). Spontaneous recovery is
expected to occur during the quiet phase and its impact
is evaluated during the following stimulation phase (phase
4). Indeed, the agents trajectories during their fourth phase
are similar to those in their first phase. This is explained
by the fact that by the end of third phase, all models core
components (sensor memory, nodes energy or nodes weight)
return to values close to those in the first phase.

As a conclusion of this section, we note that all the three
proposed models do exhibit habituation and spontaneous
recovery. The stimulation ratio impacts the amplitude of the
habituation. This impact is not the same for the three models.
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(a) Continuous stimulus with nodes weight penalty mechanism
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(b) Repeated stimulus (on 3t.u., off 1t.u.) with nodes weight penalty
mechanism
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(c) Repeated stimulus (on 2t.u., off 2t.u.) with nodes weight penalty
mechanism
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(d) Repeated stimulus (on 1t.u., off 3t.u.) with nodes weight penalty
mechanism
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Figure 8. Nodes weight penalty mechanism for four stimulation patterns. For each subplot, from top to bottom: the trajectory
of the learning and control agents, the stimulus and agent’s sensor values, the normalized motor value and velocity command
µ, the surprises, the nodes weights and the nodes ξN . In the first plot (a), the lack of surprise leads to no habituation. From
plot (b) to (d), we observe a progressive transition from reverse habituation to habituation as the penalty goes from N2 to N1.

In particular, continuous activation only triggers habituation
in the sensor memory model. Finally, it is worth noting
that the sensor memory model, through β, can adjust the
speed of habituation and of spontaneous recovery, but not
separately. The higher β is, the faster both habituation and
spontaneous recovery are. On the nodes penalty models,
the two characteristics can be regulated independently by
adjusting independently their γ (to regulate habituation) and
β (to regulate spontaneous recovery) parameters.

5.3 Interstimulus interval setup and results

We focus here on the interstimulus interval effect which is the
fourth characteristic of habituation as described in (Rankin
et al. 2009). According to biologists, there are three potential
consequences of higher frequency stimulation: more rapid
response decrement, more pronounced response decrement
and more rapid spontaneous recovery.

We test this characteristic by using a new protocol with
two phases. During the first phase, we activate the stimulus
ten times, each activation followed by an interstimulus
interval, and then we have a quiet phase to evaluate the
spontaneous recovery. The interstimulus interval value is set
either to 2, 3, 4 or 5 time units. The stimulus duration is
always of 1 time unit.

With the sensor memory model (see figure 10), the agent
behavior shows a more pronounced response decrement
when there is a higher stimulation frequency (score zS =
43% at the highest frequency, zS = 10% at the lowest).
With this protocol, it is not easy to tell if it is more rapid
or not from a behaviour perspective. Since we have access
to some internal values, our analyses can go beyond this
behavioural level. Looking at the sensor memory δ, from
highest to lowest frequencies, it takes respectively 15.9,
14.8, 14.1 and 13.6 time units after the last deactivation
of the stimulus for δ to go from respectively 0.56, 0.42,
0.35 and 0.31 to below 0.01. Thus with higher frequencies,

Prepared using sagej.cls



10 Journal Title XX(X)

0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
motor dimension m

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2
se

n
so

r 
d
im

e
n
si

o
n
 s

N2

N1

(a) Control with longer stimulus activation (3 on 1 off)
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(b) Control with shorter stimulus activation (1 on 3 off)
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(c) Nodes penalty habituation with longer stimulus activation
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(d) Nodes penalty habituation with shorter stimulus activation

Figure 9. Sensorimotor trajectories showing the impact of the ratio of stimulus activation and inactivation. Top and bottom
thick arrows represent the two nodes. Horizontal thin arrows represent the agent trajectory in the sensorimotor space, and
should always either be at s = 1 when the stimulus is on, or at s = 0 when the stimulus is off, but are spaced for better
readability. Vertical curved arrows show jump in the trajectory due to activation or inactivation of the stimulus. Arrows with big
dashes represent the cycle in which the agent ends. The agent always starts at the black dot (also vertically spaced for
readability). Top plots depict trajectories of the control agent, bottom ones are trajectories of agent with a nodes penalty model.
Bottom right illustrates habituation whereas bottom left illustrates reverse habituation.

the spontaneous recovery takes longer, but its rate is faster:
respectively 0.035, 0.028, 0.024 and 0.022. This recovery
rate r is calculated according to the following formula:

r =
δ1 − δ2

t
(24)

with δ1 the value of δ after the last deactivation of the
stimulus, δ2 the first value below 0.01 and t the time needed
for the decrease between δ1 and δ2. The general tendency
of δ is to increase until it oscillates around its asymptotic
mean value. This mean value is higher for higher stimulation

frequencies. The interstimulus interval values are always too
short for δ to return to 0, so it accumulates during every
stimulus activation. The amount accumulated during the one
time unit of activation depends on the difference between the
start value and the asymptotic mean value. A crude way to
evaluate the more rapid habituation effect is to measure the
number of activation cycles or the time needed for δ to reach
its asymptotic mean value. In both cases, higher frequencies
lead to less rapid habituation with this model: respectively,
from higher to lower frequencies, 8.8, 6.7, 4.7 and 0.9 time
units needed to go to the respective mean values (0.5, 0.33,
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(a) Repeated stimulus (on 1t.u., off 1t.u.) with sensor memory
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(c) Repeated stimulus (on 1t.u., off 3t.u.) with sensor memory
mechanism
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(d) Repeated stimulus (on 1t.u., off 4t.u.) with sensor memory
mechanism
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Figure 10. Test of the interstimulus interval effect with the sensor memory mechanism. For each subplot, from top to bottom:
the trajectory of the learning and control agents, the stimulus and agent’s sensor values, the normalized motor value and
velocity command µ, the agent sensor memory δ. Habituation decreases as the interstimulus interval increases, keeping a
constant activation time. Note the duration of the experiments vary from 40 t.u. to 70 t.u. .

0.25 and 0.2), hence fifth, third, second and first activation
cycle.

For the nodes energy penalty model (see figure 11), except
the unique case of reverse habituation in stimulation pattern
(a), there is a more rapid response decrement, but not a
significantly more pronounced response decrement since the
score zS is roughly equals to 80%. Indeed, with interstimulus
intervals of figures 11b, 11c and 11d, the asymptotic level of
the node N1 energy is reached at the fourth activation of the
stimulus. It is more rapid since this fourth activation occurs
earlier with shorter interstimulus intervals. In the quiet phase,
the spontaneous recovery is never more rapid, it is exactly
the same (i.e. 20 time units) with all interstimulus intervals.
It was expected as the energy recovery rate is constant.

In the case of the nodes weight penalty model (see
figure 12), with decreasing frequency the agent goes
from reverse habituation (zS = −10%) to more and more

pronounced habituation (zS = 75% at the lowest frequency).
In the quiet phase, the spontaneous recovery is never more
rapid, as the weight recovery rate is constant. The rapidity
aspect of the response is more complex to analyse. The lower
the frequency, the more the sensorimotor trajectory of the
agent is confined to the right side (motor component close to
1) of the sensorimotor space. The nodeN1 is inhibited earlier
in the case of high frequency, but the penalty is stronger in
the case of low frequency. The global effect on the speed of
response decrement is difficult to evaluate.

Overall, our models never show the complete
interstimulus interval effect. The more rapid spontaneous
recovery is never displayed, except if we consider its faster
rate with the sensor memory model. In fact, in our models,
the interstimulus interval effect depends mostly on the
spontaneous recovery, and in particular on how, or when, it
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(a) Repeated stimulus (on 1t.u., off 1t.u.) with nodes energy penalty
mechanism
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(b) Repeated stimulus (on 1t.u., off 2t.u.) with nodes energy penalty
mechanism
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(c) Repeated stimulus (on 1t.u., off 3t.u.) with nodes energy penalty
mechanism
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(d) Repeated stimulus (on 1t.u., off 4t.u.) with nodes energy penalty
mechanism
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Figure 11. Test of the interstimulus interval effect with the nodes energy penalty mechanism. For each subplot, from top to
bottom: the trajectory of the learning and control agents, the stimulus and agent’s sensor values, the normalized motor value
and velocity command µ, the surprises, the nodes energy and the nodes ξN . For plot (a), we observe reverse habituation.
From plots (b) to (d), as interstimulus interval increases, habituation is less rapid to setup. Note the duration of the experiments
vary from 40 t.u. to 70 t.u. .

takes place: permanently (nodes penalty models), or directly
after a the last perceived stimulus (sensor memory model).

5.4 Combination of models
Each of our models have its own properties, which allow
the agent to habituate more or less effectively depending on
the stimulation pattern (see section 5.2). But these simple
models do not solve all cases: with fixed parameters, there
will always be a situation where the habituation will be more
difficult to achieve. This section explores some combination
of our models to obtain habituation with all the stimulation
patterns. These combinations are all the easier to achieve as
the habituation mechanisms are complementary since they
have an impact on components that are independent of each
other.

We combine the sensor memory mechanism with each
of the nodes penalty models (see figs. 13 and 14). The

first observed result is that there is no loss: the habituation
resulting of such combination is always equal or better than
the habituation of the same models used individually. Indeed,
the habituation score zS of figs. 13 and 14 are always greater
or equal than the habituation scores of figs. 6 to 8.

Besides, in the cases where a nodes penalty mechanism
alone would result in reverse habituation (negative zS ,
with stimulation patterns (b) or (c)), the combined model
does result in habituation. This is mainly explained by an
asymmetry in the surprise value which is bigger at the
activation of the stimulus than at its deactivation. In our
definition of surprise (eq. 14) and implementation of the
predicted next state (eq. 15), and as illustrated on fig. 15,
surprise equals the difference between two successive sensor
value (represented by cross on the figure). By building up
during stimulus activation, the sensor memory δ causes
a decrease in the habituated sensor value (represented by
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(a) Repeated stimulus (on 1t.u., off 1t.u.) with nodes weight penalty
mechanism
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(b) Repeated stimulus (on 1t.u., off 2t.u.) with nodes weight penalty
mechanism
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(c) Repeated stimulus (on 1t.u., off 3t.u.) with nodes weight penalty
mechanism
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(d) Repeated stimulus (on 1t.u., off 4t.u.) with nodes weight penalty
mechanism
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Figure 12. Test of the interstimulus interval effect with the nodes weight penalty mechanism. For each subplot, from top to
bottom: the trajectory of the learning and control agents, the stimulus and agent’s sensor values, the normalized motor value
and velocity command µ, the surprises, the nodes weights and the nodes ξN . For all plots except (a), habituation takes place
but relies on a more subtile interaction between the N1 and N2 penalties than the other experiments. See the main text for
more details. Note the duration of the experiments vary from 40 t.u. to 70 t.u. .

cross). As a consequence, surprise value is lower at stimulus
deactivation than at stimulus activation. Node N2 is less
inhibited than node N1 because node N2 is penalized by
the weaker deactivation surprise while node N1 is penalized
by the stronger activation surprise. As a result, the node
penalty mechanism favors habituation in place of reverse
habituation.

6 Discussion

In this section, we first discuss some differences between our
models. Then we give our thoughts about the characteristics
of habituation not covered in the result section and whose
study could be interested along two lines: either for modelers
who would like to extend our work or because those
properties might also be fundamental for behaving agents.

6.1 Models comparison
Our models are designed at the abstract level of the IDSM.
In this, they are different from most of the related work cited
in the introduction (Marsland et al. (1999), Wang and Hsu
(1990), Bi et al. (2017), Hong et al. (2020)) that work on the
level of neurons or synapses. One slight advantage is that our
models, being more conceptual, can be easier to analyze and
understand, but, as discussed now, an in depth understanding
of our models can still be complex. On the other hand, many
of these related works are more advanced than ours in term
of their practical application : contrarily to (Marsland et al.
2000) we are still far from using our IDSM with habituation
in a robotic setting.

6.1.1 Sensor memory vs nodes penalty The different
models we propose were designed to allow habituation
in response to different stimuli: the sensor memory to
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(a) Continuous stimulus with sensor memory and nodes energy
penalty mechanisms
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nodes energy penalty mechanisms
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(c) Repeated stimulus (on 2t.u., off 2t.u.) with sensor memory and
nodes energy penalty mechanisms

0

20 16.1; zS=66% 18.8; zS=93% 19.6; zQ=0% 16.1; zS=66%

0

1

0

5

0

1

0

1

0 10 20 30 40 50 60 70 80
Time

0

1

(d) Repeated stimulus (on 1t.u., off 3t.u.) with sensor memory and
nodes energy penalty mechanisms

Control trajectories

Agent trajectories

Agent sensor

Stimulus

Agent motor

Velocity command 

Agent surprise

Agent 

N1 [1.0, 1.0] energy

N2 [0.0, 0.0] energy

N1 [1.0, 1.0] 

N2 [0.0, 0.0] 

Figure 13. Sensor memory and nodes energy penalty mechanisms. For each subplot, from top to bottom: the trajectory of the
learning and control agents, the stimulus and agent’s sensor values, the normalized motor value and velocity command µ, the
agent sensor memory δ and the surprises, the nodes energy and the nodes ξN . For each pattern, habituation is either the
same or stronger that the one observed for each model considered alone. The particular cases of reverse habituation of nodes
penalty on energy fig. 7 becomes regular habituation.

specifically address a continuous stimulus and the nodes
penalty to specifically address a repeated stimulus. But some
differences go beyond this.

To begin with, while the nodes penalty models impact
the sensorimotor dynamics (the velocity field shown for
example on fig. 4), the sensor memory model alters the
sensorimotor state with no modifications on the nodes (hence
no modifications on the sensorimotor dynamics). With the
sensor memory, we artificially change the sensor position
of the agent in the sensorimotor space, which then imply
a change in the motor response. In a nodes penalty model,
first the nodes influence is impacted, then this affects the
dynamics, which in turn affects the motor response.

Another difference is that with the sensor memory model,
habituation occurs depending on the stimulus intensity
value, whereas for nodes penalty models, with the surprise
mechanism, habituation occurs depending on the change in

the stimulus intensity. Therefore, the nodes penalty models
can account for habituation in case of a sudden decrease of
stimulus intensity, as observed for example with Zebrafish
larvae which show habituation to sudden decreases in
illumination (see (Randlett et al. 2019)), while the sensor
memory model alone could not.

It is also that inability of the nodes penalty models to be
sensitive to the absolute value of the stimulus intensity that
allows them to produce what we called reverse habituation.
Another consequence for the nodes penalty models is that
spontaneous recovery can happen also when the stimulus
is still active (and not only when the stimulus is inactive).
In this very case, these two feature can be seen as a
disadvantage because they prevent habituation to occur. But,
having at our disposal several different mechanisms is also
an advantage. For example, this reverse habituation could
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(a) Continuous stimulus with sensor memory and nodes weight
penalty mechanisms
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(b) Repeated stimulus (on 3t.u., off 1t.u.) with sensor memory and
nodes weight penalty mechanisms
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(d) Repeated stimulus (on 1t.u., off 3t.u.) with sensor memory and
nodes weight penalty mechanisms
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Figure 14. Sensor memory and nodes weight penalty mechanisms. For each subplot, from top to bottom: the trajectory of the
learning and control agents, the stimulus and agent’s sensor values, the normalized motor value and velocity command µ, the
agent sensor memory δ and the surprises, the nodes weights and the nodes ξN . In every case, combined mechanisms lead to
stronger habituation effect that any one of the single mechanism, and previous reverse habituation (of fig. 8) is no longer
present.

become a kind of habituation when stimuli goes from “on”
to “off”.

In the nodes penalty models, the motor component of the
agent sensorimotor state has a very strong influence on the
amplitude of the habituation effect, while it has absolutely
none for the sensor memory model. It is not obvious for us if
in biology habituation learning only rely on the sensory input
or if it also depends on what the organism is doing. We are
considering the possibility to only use the sensor components
in the nodes penalty computation in future works.

Lastly, as said in the end of section 5.2, the sensor memory
model can only adjust the speed of habituation and the speed
of spontaneous recovery together, with a unique parameter,
whereas the nodes penalty models can do so separately,
through two parameters.

6.1.2 Nodes energy vs nodes weight There are also
notable differences between the two nodes penalty models.

With the current parameters, energy loss is more progressive
than weight loss, but nevertheless, the loss of influence of
energy nodes is more important than the loss of influence
of weight-penalized nodes. As explained below, it is mainly
due to the distance at which a node can have an influence
(a distance which is reduced when the weight is decreased),
because the distance at which a node can be penalized by a
surprising event is its influence distance.

The main difference is that in the model impacting nodes
weight, a lower weight means a lower ω (see equation (6)).
One of the consequences is that a decrease in ω leads to a
decrease of the impact of the surprise at a given distance
(see eqs. (20) and (21)). Therefore, the lower the node
weight, the harder it is to inhibit it further, since to do so
the agent sensorimotor position xSM needs to be closer and
closer to the node’s position Np. In the model impacting
the node energy, since the energy mechanism is completely
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Figure 15. a) Zoom of fig. 13c, b) zoom of fig. 7c as
reference, illustrating the chain of events between sensor
memory δ, habituated sensor value and amplitude of
surprise. On a), surprise is stronger at the onset of the
stimulus and lower at the offset of the stimulus because of
the accumulated sensor memory δ.

independent from the area of influence of the nodes, there
is no such phenomenon: the consumption ce and the agent
sensorimotor position xSM being equal otherwise, a node
N will undergo the same energy penalty whether N is
weakened or not. In addition to that, for a given surprise,
the penalty will still be significant even at a greater distance
in the model impacting energy than in the one impacting the
weights, even at initialization (see for example first penalties
in the fifth plot from the top in figs. 7a and 8a).

Another significant difference is that the model impacting
nodes energy decreases the node influence whereas the
model impacting nodes weight decreases the node influence
range. With decreasing energy, the node command weakens,
but the border between nodes influences remains nearly on
the mediator between the two nodes (see figs. 16a and 16b).
With decreasing weight, the node command stays the same,
but the border between nodes influences shifts in favor of the
strongest node (see figs. 16c and 16d).

The inner dynamics of the core variables of the nodes
penalty models are different. Energy decrease is more
progressive than weight decrease.

Despite the two “internal” differences mentioned above,
there is no observable difference at the behavioral level
in our experiments. However, it might be that in different
experimental settings (with more nodes and a more
complex sensorimotor dynamics), they would indeed cause
observable effects.
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Figure 16. Impact of nodes penalty models on
sensorimotor space dynamics, by either changing the N1

node energy Ne (a,b) or the N1 node weight Nw (c,d). The
influence of N1 decreases with both Ne and Nw.

6.2 Other characteristics of habituation
In this section, we discuss briefly about the characteristics of
habituation our models are not addressing explicitly and that
were not tested experimentally.

6.2.1 Potentiation By definition of potentiation, repeated
blocks of habituation training and spontaneous recovery lead
to progressively deeper (the effects of habituation are more
pronounced) and more rapid habituation (Rankin et al. 2009).

With the models proposed in this paper, potentiation can
be observed only when recovery is not complete. If recovery
is complete, for example with a long quiet phase, there
will be no potentiation with the proposed models because
all the core components are back to their initial values.
If, however, recovery is not complete, for example with a
short quiet phase, we will observe a decreased response
on a following stimulation phase, more pronounced than in
previous stimulation phases. This is explained by the fact the
core components are not back to their initial values and still
induce some habituation.

It is unclear to us if this corresponds to potentiation
as described by biologists. With the proposed models, the
“speed” of habituation is constant but starts with an already
habituated response when the recovery period is short.
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The proposed models cannot account for potentiation as
habituation on a “faster” pace.

6.2.2 Intensity of stimulus effect Another property of
habituation observed by biologists is about the effect of
stimulus intensity where a weaker stimulus leads to a faster
or stronger response decrement.

It is unclear to which extent our models could account for
that observation. In fact, we would need to dig into more
details about the setups used by the biologists to exhibit and
quantify that observation.

6.2.3 Below-zero habituation Below-zero habituation is
defined as that even after the response has decremented to
no response or to asymptotic level, the effects of stimulation
may continue to accumulate.

All the models can account for that observation. By
definition (see eq. (2)), the velocity commandµ can continue
to accumulate after the response is completely inhibited. It
can accumulate beyond the boundaries of the sensorimotor
space SM , and if we did not reset the agent between phases
(or clamp it to these boundaries), it will take more and more
time for the behavior to recover.

6.2.4 Stimulus specificity In our setup, the agent only has
one sensor. We think of it as a stimulus specific sensor,
able to perceive a given stimulus of varying intensity. Thus
in order to evaluate the stimulus specificity of habituation,
we would need to instantiate the agent with several sensors.
With the sensor memory model, if the agent has a memory
for each of its sensors, then the habituation would show
stimulus specificity. For the nodes penalty models, it would
depend on the position of the nodes in the sensorimotor
space, and the minimum distance between a node and the
agent sensorimotor state for the penalty to significantly affect
the node component.

6.2.5 Dishabituation Dishabituation appears as an
increase of the habituated response when a novel/noxious
stimulus is inserted into a series of habituation stimuli. For
this to happen, in contrast to the stimulus specificity, we
need some dependency or interaction between stimuli. This
is not implemented in the proposed models.

6.2.6 Habituation of dishabituation Since there is no
dishabituation mechanism currently in our models, there
is no habituation of dishabituation. Nonetheless, if this
characteristic relies on inhibition of the perception of the
stimulus responsible of dishabituation, the repetition of said
stimulus should indeed triggers habituation of dishabituation
in the sensor memory model.

6.2.7 Long-term habituation Long term habituation
which stands for response decrement lasting hours, days or
weeks can be accounted by tuning the parameters of the
proposed models resulting in habituation being slower to
take place and slower to recover. If there is an asymmetry
in the time to habituate with respect to the time to recover,
for the penalty models, habituation and recovery can be
independently tuned and for the sensor memory model, both
habituation and recovery takes place on the same time scale.
We could also combine multiple models.
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Figure 17. Sensor memory mechanism with the original
IDSM. From top to bottom: the trajectory of the learning
and control agents, the stimulus and agent’s sensor
values, the normalized motor value and velocity command
µ, the agent sensor memory δ. Habituation is still
observed even if new nodes are created and their weights
continuously adapted.

6.3 Impact on full “deformable” IDSM
In our models, we make the strong hypothesis that the weight
of nodes are kept constant and that no new nodes are created,
hence our work can be rather considered as being based on a
simplified variant of IDSM called “node based sensorimotor
map” (NB-SMM) Woolford and Egbert (2020). These two
mechanisms have been dropped in our study to simplify the
analysis of our models.

However, these two mechanisms are critical for the
deformable part of the IDSM which allow for the encoding
and maintenance of habits. And it is thus important to discuss
in more details the compatibility of our models with the full
IDSM. In very preliminary works with the sensor memory
and node energy mechanisms with both the creation of nodes
and the modification of the weights as in the original IDSM,
we still observe habituation.

Figure 17 illustrates the application of the sensory memory
model to a full IDSM, starting with 2 nodes as in fig. 4
and we still observe habituation. A more in depth analysis
is required but our hypothesis of why it works is the
following. In addition to the first two nodes, new nodes
are created as the sensorimotor state of the agent moves in
the sensorimotor space. Even if new nodes are created, the
sensory memory progressively “flattens” the sensorimotor
trajectory to lie in a region close to the node N2 responsible
for the default upward motion. At that point, no new nodes
are created, nodes pushing the agent up are reinforced
and other, older, nodes are weakened, thus reinforcing the
habituation effect. In the recovery phase, old nodes still
exists and are reactivated, leading to the previous downward
response behavior.

Figure 18 depicts preliminary work on using the energy
model to a full IDSM, starting again with 2 nodes as
in fig. 4. In the first subplot (a) the energy mechanisms
work as expected on the energy levels of nodes N1 and
N2, but the resulting behavior is very close to the control
behavior, thus not exhibiting an habituation behavior. The
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main reason is that the motor command µ builds such inertia
for going up that habituation is not even needed for the
upward motion to be expressed. In the second plot (b),
when we clamp µ, the energy levels allow the expression
of an habituation effect. It seems that the energy mechanism
is compatible with the full IDSM but we must not forget
that, in our experiments with the energy model alone, the
sensor component is either 0 or 1, with no intermediary
values. Still, another preliminary experiment where we mix
sensory memory and energy model, the full IDSM has to deal
with sensorimotor trajectories where the sensor component
varies continuously in [0, 1]. As shown on fig. 19, our
combined model seem to exhibit habituation. But, again,
more experiments and in depth analysis should be conducted
to assess the compatibility of sensory memory and energy
mechanisms with IDSM, compatibility which must not be
taken as a given.

The case of the weight penalty mechanism is harder to mix
with a full IDSM model as weight decay and weight penalties
should be very carefully parameterized for deformant habit
formation and habituation to appear. None of our preliminary
experiments were conclusive.

7 Conclusion

In this paper, we proposed several extensions of the IDSM to
account for some of the multiple facets of habituation. These
models focused on the two main properties of habituation:
inhibition of the response and spontaneous recovery. They
exhibit different characteristics and combining them provide
better models. The proposed models could be considered as
a basis, which could be refined, combined or extended for
accounting for all the properties of habituation as defined by
the biologists.

Having an operational model of habituation, a
fundamental and widespread mechanism, also allows to
question in a practical way how habituation contributes to the
adaptation of an organism to its environment. That question
is not only interesting from a biological perspectives but
also for artificial agents. How can habituation help artificial
agents acquire new skills?
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Figure 18. Node Energy mechanism with the original IDSM. From top to bottom: the trajectory of the learning and control
agents, the stimulus and agent’s sensor values, the normalized motor value and velocity command µ, the surprises, the nodes
energy and the nodes ξN . Nodes energy level behave “as expected”, but the habituation behavior cannot express when µ is
not clamped (plot (a)), but is apparent when µ is clamped (plot (b)).
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Figure 19. Sensor memory mechanism and nodes energy penalty mechanism with the original IDSM. From top to bottom: the
trajectory of the learning and control agents, the stimulus and agent’s sensor values, the normalized motor value and velocity
command µ, the agent sensor memory δ and the surprises, the nodes energy and the nodes ξN . Habituation is still observed
with new nodes are created, weights continuously adapted and combination of two models.
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Appendix

Symbol Short description
xSM Current SM state of the agent
xE Current state of the agent in the environment
SE Current state of the environment
xc Last position reached by the control agent in the absence of stimulation
x?c Highest last position reached by the control agent in the absence of stimulation
Np SM-position associated with node N
Nv SM-velocity indicated by node N
Nw Scalar, weight of Node N
φN (xSM ) Density of Nodes at current agent SM-position
ω(Nw) Function describing how the weight of a node scales its influence
d(xSM ,ySM ) Distance between two SM-positions
V (xSM ) Velocity factor (i.e. how nodes impact the current SM-velocity change)
A(xSM ) Attraction factor (i.e. the attraction factor of influent nodes on the current SM-

position)
µ Motor command of the agent, influenced by V (xSM ) and A(xSM )
ξ Handful notation for the product ω(Nw)d(xSM ,ySM )
nhs Non habituated sensor value
hs Habituated sensor value
δ Sensor memory
sur Surprise
ce, cw, γw, βw, βe, γe Parameters of the energy and node weight penalty mechanisms
zS Score for the stimulation phase, measures the efficiency of habituation and

spontaneous recovery
zQ Score for the quiet phase, it measures the lasting effect of reverse habituation
dt Euler integration step (usually 0.01 time unit)
kω Weight parameter (by default 0.025)
kd Distance parameter (by default 30)
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