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Abstract

Acoustic pulses transmitted across air bubbles in water are usually analyzed in
the ν frequency domain to determine attenuation and phase velocity for comparison
with effective models. In the present work, acoustic experiments performed beyond
the bubble resonance frequency highlight an attenuation approximated to a(ν/νp0)−y

with y > 0 and νp0 the wavelet source peak frequency, a significant shape variability
of the waveform with the propagation distance x <0.74 m, and a nearly constant
normalized amplitude spectrum. The amplitude spectrum can be characterized by
a fractional derivative order γx = κγx, with κγ a constant defined by a numerical
optimization method, and a time dilation factor δx . The phase spectrum is shifted by
πγx/2 and explains the experimental waveform changes. The phase velocity can be
approximated to ṽ0/(1− κγ ṽ0/4ν), where ṽ0 is similar to the sound speed in water.
It is also shown that the waveform shape, quantified by γx, is correlated to the
waveform amplitude. With the assumption ayx < 0.15, the range of applicability
may be extended to the ocean water column around gas seep sites with potential
interests in underwater communication.

1 Introduction

In underwater acoustics, a wave may be drastically affected by the presence of bubbles
which act as strong scatterers [1]. A single bubble is characterized by a low-frequency
resonance νr, typically 3 kHz for a 1 mm radius air bubble in water as firstly quantified
in the 1930s by Minnaert and intensively considered since then [2, 7]. For a bubble cloud,
the bubbly water is characterized by an effective complex wavenumber which real and
imaginary parts are related to the phase velocity v(ν) and attenuation coefficient α(ν),
respectively. Many physical phenomena and bubble properties can be considered when
modeling v and α, including multiple scattering and bubble-bubble interactions [4, 8, 15,
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25, 28], encapsulating shell and bubble shape [14, 18, 23, 24] and polydispersity [11].
Because of this complexity, various experimental works have been performed since many
years to measure v and α and compare the results with effective models in the frequency
domain [6, 13, 17, 26, 31].

Some publications illustrate the acoustic signals in the time domain [9, 10, 22, 27]. For
instance, Leroy, Strybulevych, and Page [22] show a 50 kHz acoustic pulse transmitted
through a bubbly gel composed of 0.15% volume fraction of 81 µm radius bubbles: the
shape of the transmitted signal is more complex than the pulse shape. A quantitative
relationship between this complexity and the dispersive character of the bubbly gel is not
obvious since the measurement had been performed near resonance where attenuation and
phase velocity change significantly with the frequency [12]. For a weak attenuation that
linearly increases with the frequency [16], waveform changes can be attributed to fractional
integration effects [19]. This may be not the case in the bubbly medium at frequencies
far beyond the bubble resonance frequency where the attenuation is weak but follows
a decreasing trend with the frequency. In the present work, a 310 kHz acoustic pulse
propagates in a bubbly water composed of roughly 0.2% volume fraction of 1.6 mm radius
air bubbles (νr '2 kHz): the study focuses on analytical descriptions of phenomenological
effects that affect the acoustic waveform.

The laboratory acoustic experiments are described in Section 2 to introduce qualitative
changes of the acoustic waveforms associated to a propagation distance x ≤740 mm inside
the bubbly water. In Section 3, the attenuation of the waveform amplitude as a function
of x is quantified in the time domain, and α and v are measured in the frequency domain
to be compared with effective models. Section 4 deals with analytical developments based
on Gaussian derivative properties of a model source wavelet: fractional derivation and
dilation parameters are introduced from an approximation of α at high frequencies and
used to approximate v accordingly to model the acoustic waveform across the dispersive
medium. The analysis is extended to the experimental waveforms where the correlation
between the shape and amplitude of the waveforms is highlighted in agreement with the
modeling. The range of applicability of the approach is quantified and discussed in Section 5
by considering different theoretical bubbly waters and propagation distances.

Conclusion and perspective for future studies are presented in Section 6, in particular
for acoustic characterization of gas seeps in the ocean water column.

2 Description of the acoustic experiments

Two series of experiments have been performed in an acoustic tank filled with 5 m3 of tap
water: one in pure water (non-dispersive homogeneous medium) and one in bubbly water
(dispersive biphasic medium).
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2.1 Acoustic waveforms measured in pure water

A piezo-electric transducer, with a central frequency of 500 kHz and an active face that
acts as a circular plane piston of radius R=1.5 cm, is used to emit an acoustic pulse
into the so-called reference pure water. A similar transducer is placed in front of the
emitter to record the transmitted acoustic signal. The waveform W0(t) recorded at the
distance x0=365 mm represents the reference signal in the following (Fig. 1a1). As a first
approximation, the waveform is a Gaussian derivative wavelet (see Eq. 7) composed of 5
extrema: it is symmetric relative to the main peak which defines the center of the waveform
and is arbitrary set to 1 (normalized amplitude at x0). The signal is a superposition of
plane waves with harmonic time dependence according to the Fourier transform, i.e.

Ŵ0(ν) =
1

2π

∫ ∞
−∞

W0(t)e
−i2πνtdt, (1)

which modulus is maximum at the peak frequency νp0 '310 kHz (Fig. 1a4). Note that
the measurements are performed in the far field condition x0 > R2/4λ, where λ is the
acoustic wavelength in water. The measurements are performed for successive positions x
of the receiver (Fig. 1a2). The position is defined from the time-of-flight of the transmitted
signal in water (sound speed v0=1473 m.s−1) and ranges between x0 and x0+840 mm. The
dataset consists in 221 acoustic waveforms Wx(t) acquired with a sampling rate of 10 MHz.
By both correcting the waveform amplitude from the spherical divergence of the acoustic
beam and time shifting the amplitude peak at t=0, the waveforms measured in pure water
are all similar to W0(t) (Figs. 1a2): in particular, the symmetry of the waveform and the
amplitude spectrum do not depend on the distance x as expected for a non dispersive
medium (Figs. 1a3 and 1a4).

2.2 Acoustic waveforms measured in bubbly water

The dataset of the second experiment has been acquired when air bubbles are being released
in the pure water to create a dispersive biphasic medium. Bubbles are released by the use
of an artificial generator composed of 8 parallel identical pierced tubes, 10 cm apart, filled
with air under a pressure of 1.4 bars (Fig. 2a). Each tube, 8 mm in diameter, has been
pierced of 26 holes, 2 cm apart, to create a bubble cloud in the water. The distance
between the acoustic emitter and the first tube is 100 mm, i.e. the recorded waveform
at the initial position x0 is B0(t) = W0(t) (Fig. 1b1). The trajectory of the bubbles
rising up to the surface is not straight and fluctuates in the vicinity of each tube: as
a first approximation, the instantaneous bubble distribution is homogeneous. Bubbles
are ellipsoidal (Fig. 2a), with half minor axes between 1 and 3 mm and an eccentricity
about 1.5 (Fig. 2b). Measurements are not accurate but not critical for the present study
and a bubble is approximated to a fluid sphere which radius is half the minor axis, in
average normal to the acoustic beam. A log-normal distribution highlights a median value
r0=1.6 mm and a polydispersity ε=20% (Fig. 2c). The gas volume fraction of the biphasic
medium is estimated from 4

3
πr30NbNt/V where Nb '11 is the number of bubbles in one

3



  

-1               1

Experiment in pure water Experiment in bubbly water

(a1)

(a2)

(a3)

(b1)

(b3)

84
0 

m
m

(b2)

74
0 

m
m

10
0 

m
m

Amplitude
(norm.)

(a4) (b4)

Figure 1: Experimental waveforms measured (left) in pure water and (right) in bubbly wa-
ter: (a1 and b1) reference source signals and (a2 and b2) transmitted waveforms measured
at 211 successive positions x. The waveforms are displayed with a normalized amplitude
and an arbitrary time reference. (a3 and b3) Last transmitted waveforms and (a4 and b4)
associated amplitude spectra normalized to the amplitude in pure water (solid curves).
Note that the normalized amplitude spectra measured in pure and bubbly waters are sim-
ilar (b4, dashed and dotted curves, respectively).4
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Figure 2: (a) Photographs of the 8 bubble clouds and few bubbles (inset picture). (b)
Major and minor axes of elliptical bubbles (circles). (c) Experimental and log-normal
(dashed curve) size distributions.

picture, Nt=8 is the number of tubes, and V '1.5 l is the volume associated to the picture
surface multiplied by the length 740 mm of bubbly water. As a rough estimate, the bubbly
liquid is characterized by 0.15% volume fraction of 1.6 mm radius air bubbles with a 20%
polydispersity in pure water where the sound speed is about 1473 m.s−1.

The mean acoustic field is measured by averaging 200 signals that propagate through
different realizations of the dynamic bubbly water. The dataset of the second experiment
consists in 221 average acoustic waveforms Bx(t) measured for different propagation dis-
tances x and both corrected in amplitude from the spherical spreading and time-shifted to
align the amplitude peak at t=0 (Fig. 1b2). As a key observation, the waveform Bx(t) is
not constant with x: in particular, the symmetry is progressively lost when the propagation
distance inside the bubbly water increases from 0 to 740 mm (Figs. 1b2 and 1b3) but the
normalized amplitude spectrum is not modified (Fig. 1b4).

This highlights qualitative results on the continuous modification of the average acoustic
waveform when the acoustic wave propagates inside the bubbly water. To better under-
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stand the interaction between the acoustic wave and the bubbles, a quantitative analysis
is described in the following, based on effective medium models to characterize the bubbly
water in terms of attenuation and phase velocity.

3 Experimental attenuation and phase velocity

3.1 Analysis in the time domain

In pure water, the maximum amplitude MW (x) of the waveform Wx(t) decreases as the
spherical spreading 1/x (Fig. 3a, diamonds and solid curve, respectively): intrinsic atten-
uation of the acoustic wave propagating in the water can be neglected. In bubbly water,
the decrease of the maximum amplitude MB(x) of the waveforms Bx(t) (Fig. 3a, circles)
is stronger than the spherical spreading when x > 0 which corresponds to the location of
the first bubble cloud.

The attenuation of the acoustic wave can be quantified in dB according to−20 log10 (MB(x)/MW (x))
(Fig. 3b, circles). Despite the average measurements performed on many realizations of
bubble clouds, the results are scattered: as a first approximation, the attenuation linearly
increases with x (Fig. 3b, solid line), about 5.2 dB.m−1 for νp0=310 kHz. Better estimates
of the bubbly water properties, i.e. both attenuation coefficient and phase velocity as
functions of the acoustic frequency, are assessed in the frequency domain.

3.2 Analysis in the frequency domain

In pure water, an acoustic wave of angular frequency ω = 2πν propagates at a constant
speed v0 with a real wavenumber k0 = ω/v0. In the Fourier domain, the acoustic plane-wave
measured at x is given by:

Ŵx(ν) = Ŵ0(ν)ei(2πνt−k0x) = Ŵ0(ν)e
i2πν

(
t− x

v0

)
. (2)

In bubbly water, the acoustic wave propagates with a frequency dependent complex wavenum-
ber k(ν) which real and imagery parts are defined by an attenuation coefficient α(ν) and
a phase velocity v(ν), respectively, according to:

k(ν) =
2πν

v(ν)
− iα(ν) (3)

and the acoustic plane-wave measured after a propagation distance x inside the bubbly
water is thus given by:

B̂x(ν) = B̂0(ν)ei(2πνt−kx) (4a)

= B̂0(ν)e−αxei2πν(t−
x
v ) (4b)

= Ŵx(ν)e−αxe
i2πν

(
x
v0
−x
v

)
. (4c)
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Figure 3: (a) Decreasing trend of the waveform amplitude in pure water (diamonds), in
accordance with the spherical spreading of the acoustic wave (solid curve), and in bubbly
water (circles) as a function of the distance x. (b) Difference in attenuation between the
bubbly and pure waters, i.e. excess attenuation in dB induced by the bubbles as a function
of x (circles), and linear fit (solid line).
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The attenuation coefficient is related to the ratio of the moduli |B̂x(ν)| and |Ŵx(ν)| and
the phase velocity to the phase shift ∆Φ = arg(B̂x(ν))− arg(Ŵx(ν)) which gives:

α(ν) = −1

x
ln
|B̂x(ν)|
|Ŵx(ν)|

(5a)

v(ν) =
xv02πν

x2πν − v0∆Φ
. (5b)

For frequencies close to νp0 � νr, the experiments highlight very weak dependencies of
both α and v with ν (Fig. 4, circles).

3.3 Effective medium modeling of the bubbly water

The bubbly water is a biphasic system composed of air bubbles in a fluid matrix and is
characterized by a theoretical effective complex wavenumber k(ν) related to the physical
properties of the medium by the use of an effective medium modeling.

The model developed by Foldy [12] is widely used in the ’Independent Scattering Ap-
proximation’ for dilute systems characterized by both a mean distance d between the
bubbles much larger than the acoustic wavelength λ and isotropic scatterers with a radius
r < λ. In this case, the polydisperse bubbly water is modeled by the effective complex
wavenumber k2F = k20 + 4π

∫
N(r)H(r)dr. The term N(r) is the log-normal distribution

of the bubble size and H(r) the far-field isotropic scattering amplitude of a single bub-
ble [5, 32] characterized by the so-called Minnaert frequency νr. Note that for the radius
r0=1.6 mm, a single bubble resonates at νr '2 kHz, which is much lower than the peak
frequency νp0=310 kHz of the reference source signal B0(t).

In the model developed by Lax [20], the isotropic scattering amplitude H is replaced by
the forward scattering amplitude H0 of a fluid sphere in order to take anisotropic scatterers
into account when λ < r. The wavenumber is given by

k2L = k20 + 4π

∫
N(r)H0(r)dr (6)

where H0(r) is a complex function that depends on the Legendre polynomials and the
Neumann and Bessel functions [3].

The complex wavenumbers are computed by considering the physical parameters of the
experiment, including the median bubble radius r0=1.6 mm and the polydispersity ε=20%:
only the volume fraction initially estimated about 0.15% has been increased to φ=0.2%
to better fit the model and experimental results. The modeled wavenumber based on kF
predicts an attenuation that strongly depends on the frequency and underestimates the
measurements (Fig. 4a, dashed curve): for frequencies as high as νp0=310 kHz, air bubbles
with r0=1.6 mm can not be approximated to isotropic scatterers and the Foldy’s model
is not adapted for the present case study. The modeled attenuation α and phase velocity
v based on kL are both in good agreement with the data (Figs. 4a and b, solid curves).
In particular, the model correctly predicts the weak decrease of the attenuation coefficient
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Figure 4: (a) Experimental attenuation coefficient and (b) phase velocity measured with a
high frequency (peak frequency ν0=310 kHz) acoustic pulse propagation across 740 mm of
bubbly water (circles), and predicted by effective models by Foldy (dashed curve) and Lax
(thin curve). The attenuation follows a power law of frequency well above resonance with
an approximation determined in the dominant frequency range of the Gaussian derivative
source wavelet (dashed line).
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with the frequency. This means that bubbles act as anisotropic scatterers in the biphasic
medium where multiple scattering can be neglected.

4 Modeling based on a Gaussian derivative source

wavelet

4.1 Fractional derivation and dilation factors based on α(ν)

The reference source signal B0(t) is similar to a Gaussian derivative wavelet with a deriva-
tive order β0=4 [21]:

B0(t) ∼ S0(t) ≡
dβ0

dtβ0
e−π

2ν20 (t−τ0)2 (7)

characterized by 5 extrema and symmetric relative to the maximum peak located at time
τ0, and a natural frequency

ν0 = νp0
√

2/β0 (8)

where νp0=310 kHz is the peak frequency. In the frequency domain, the wavelet can be
expressed by

Ŝ0(ν) =

(
ν2

ν2p0
e
1− ν2

ν2p0

)β0
2

ei(−2πντ0+π
β0
2 ) (9)

and includes the normalization factor of the Gaussian derivative function [30], i.e. |Ŝ0(νp0)|=1.
Inside the bubbly water, the amplitude spectrum of the Fourier transform of the waveform
Bx(t)

|B̂x(ν)| = e−α(ν)x
(
ν2

ν2p0
e
1− ν2

ν2p0

)β0
2

(10)

directly leads to α(νp0) = − ln |B̂x(νp0)|/x, and the phase spectrum

arg
(
B̂x(ν)

)
= −2πν

(
τ0 +

x

v(ν)

)
+
π

2
β0 (11)

is characterized by a constant phase shift π
2
β0.

A common assumption for dispersive media is an attenuation that depends on the power
of frequency, where the power value is not necessarily an integer [16]. For the bubbly water,
the attenuation decreases with the frequency well above resonance (Fig. 4a, dashed bold
curve) and can be approximated by a power law

α(ν) ∼ α̃(ν) = a

(
ν

νp0

)−y
(12)

with a=0.46 m−1 and y=0.17 based on the modeling result in the dominant frequency
range of the Gaussian derivative source wavelet. This quantifies a weak decreasing trend
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of the attenuation with the frequency. But considering a power law for α in the amplitude
spectrum (eq. 10) is not an easy task to go further into the analytical developments and
an approximation of the form α(ν) ∼ α̃(ν) = a − b ln ν

νp0
would be better suited to that

aim. The equivalence between the frequency decreasing trends of the two approximations
leads to

b ' ay (13)

in the close vicinity of νp0 , which gives b '0.077 m−1. In this case, the amplitude spectrum
can be approximated to

|B̂x(ν)| ∼ | ˆ̃Bx(ν)| = e−axνbx
(
ν2

ν2p0
e
1− ν2

ν2p0

)β0
2

(14)

suggesting that the dispersive medium may act as a derivative filter which should also
impact the phase velocity, as discussed in the next section. In the close vicinity of νp0 , it
can be shown analytically that

| ˆ̃Bx(ν)| = Ax

(
ν2

ν2px
e
1− ν2

ν2px

)β0+bx
2

(15)

with

Ax = e−x(a+
b
2
)νbxp0

(
β0 + bx

β0

)β0+bx
2

. (16)

The amplitude spectrum of Bx(t) is thus similar to the amplitude spectrum of a new Gaus-
sian derivative function characterized by a derivative order β0 + bx and a peak frequency

νpx = νp0

√
β0 + bx

β0
= ν0

√
β0 + bx

2
. (17)

In one hand, the dispersion of the acoustic wave linearly increases the peak frequency
from νp0=310 kHz when x=0 to 312.5 kHz when x=740 mm, a very weak frequency shift
(lower than 0.1 %) in agreement with the experimental observations. In the other hand, the
derivative order increases from β0=4 when x=0 to 4.07 when x=740 mm, not in agreement
with the lost of symmetry of the reference signal observed in the experiments (see Fig. 1).
This means that the bubbly water can not be approximated to a simple derivative filter.

Actually, the natural frequency of the new Gaussian derivative wavelet appears to
depend on x via

νpx = ν0x

√
βx
2

(18)

associated to the derivative order

βx =
ν20
ν20x

(β0 + bx) =
β0 + bx

δ2x
(19)
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where δx is a time-dilation factor. As a result, the peak frequency

νpx = νp0δx

√
βx
β0

(20)

and the amplitude spectrum

| ˆ̃Bx(ν)| = Ax

[(
ν2

ν2px
e
1− ν2

ν2px

)βx
2

]δ2x
(21)

depend on δx and βx instead of the parameter b (eq. 19). Interestingly, by introducing here
the derivative order

γx = βx − β0, (22)

this can be generalized to

| ˆ̃Bx(ν)| = A′x

[∣∣∣∣Ŝ0

(
ν

δx

)∣∣∣∣ ( ν

δx

)γx]δ2x
(23)

with

A′x = e−ax−
β0
2 (δ2x−1)ν

β0(δ2x−1)
p0 δ(β0+γx)δ

2
x

x . (24)

This puts in evidence that the dispersive medium induces both time derivation and dilation
effects which compensate in the amplitude spectrum of the transmitted signal Bx(t).

If bx � β0, a condition satisfied in the present case study where α̃(ν) is nearly a
constant in the dominant frequency range of the source wavelet, the analytical approach
gives

δ2x (β0 + γx) ' β0 (25)

and νpx ' νp0 in agreement with the experiments. The trivial solution γx = 0 and δx = 1
is observed in the experiments only at x=0: to quantify δx and γx associated to waveform
changes inside the dispersive medium, an analytical approximation of the phase velocity is
required.

4.2 Corresponding analytical approximation of v(ν)

The amplitude spectrum of the signal Bx(t) measured inside the bubbly water is similar to

| ˆ̃Bx(ν)| characterized by both the fractional derivative order γx and the dilation factor δx
applied to the Gaussian derivative source wavelet S0(t). As a first approach, the associated
phase spectrum is written as

arg
(

ˆ̃Bx(ν)
)

= arg

(
Ŝ0

(
ν

δx

))
+
π

2
γx − 2πνT ′x (26)
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where the travel time T ′x = x
v0

+ τ ′x corresponds to the sum of the travel time in pure water

and a supplementary time shift τ ′x to align the maximum amplitudes of B̃x(t) and Bx(t).

The approximation arg
(
B̂x(ν)

)
∼ arg

(
ˆ̃Bx(ν)

)
leads to the phase velocity approximation

v(ν) ∼ ṽ(ν) = v0

[
1 +

v0
x

(
τ0

1− δx
δx

+ τ ′x −
γx
4ν

)]−1
. (27)

Actually, τ ′x depends on δx and γx and can be replaced by an equivalent time shift τx to
write the phase spectrum as

arg
(

ˆ̃Bx(ν)
)

= arg
(
Ŝ0 (ν)

)
+
π

2
γx − 2πν

(
x

v0
+ τx

)
(28)

and the phase velocity becomes

ṽ(ν) = v0

[
1 +

v0
x

(
τx −

γx
4ν

)]−1
. (29)

It is of first importance to highlight here that waveform changes measured inside the dis-
persive medium are related to the derivative order γx applied to the phase spectrum of the
source signal. In these analytical approximations, the equivalent medium is characterized
by an effective velocity defined by

ṽ0 = lim
ν→+∞

ṽ(ν) (30)

and a phase velocity ṽ(ν) that should not depend on the propagation distance x, i.e. it is
expected that γx = κγx and τx = κτx where the coefficients κγ and κτ are unknown.

Analytical developments to express γx and τx with respect to x are not straightfor-
ward. Instead, an optimization approach has been developed, based on a simulated an-
nealing method to optimize the normalized correlation coefficient between Bx(t) and B̃x(t)
when the source signal is the theoretical wavelet S0(t) (peak frequency νp0=310 kHz and
derivative order β0=4). The attenuation coefficient is approximated to α̃(ν) and the phase
velocity v(ν) is defined by the complex effective wavenumber kL(ν). The numerical opti-
mization, performed for propagation distances between 0 and 740 mm (x ≤0 stands for
propagation in water) highlights that κγ=0.94 m−1 and κτ=0.33 µs.m−1 (Figs.5a and b,
respectively).

As a result, the effective and phase velocities actually do not depend on x and can be
expressed as

ṽ0 =
v0

1 + v0κτ
(31)

which is about ṽ0 '1472.3 m.s−1 close to the sound speed in water, and

ṽ(ν) = ṽ0

[
1− ṽ0κγ

4ν

]−1
(32)

which is the analytical approximation of the phase velocity when the attenuation coefficient
depends on ν−y with 1 > y > 0.
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Figure 5: (a) Derivative order and (b) time shift of the optimized waveform B̃x(t) that best
fits the acoustic waveform Bx(t) measured at different distances inside the bubbly water
(circles), and linear fits (solid lines).
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4.3 Acoustic waveform modeling

The attenuation coefficient ᾱ(ν) (Fig. 6a1) and phase velocity v̄(ν) (Fig. 6a2) that charac-
terize the bubbly water effective properties are used to model the propagation of an acoustic
source signal. The source signal is the theoretical wavelet S0(t) (Fig. 6b1). Changes of the
waveforms with the propagation distance x (Fig. 6b2) are modeled by a simple phase shift
πγx/2 that linearly increases with x with the factor κγ.

The waveform at x=740 mm illustrates the very good agreement with the waveform
based on the complex wavenumber of the Lax’s effective model (Fig. 6b3). Note that in
this theoretical approach, the attenuation coefficient can be assessed by performing series
of optimization procedures at x=740 mm (large distance to improve the result accuracy)
without the limitation bx � β0 and averaging the results based on eq. 19 to determine b:
the parameter a can be assessed from the amplitude spectrum at the peak frequency.

4.4 Application to experimental signals measured across a bub-
bly water

The source signal is the experimental signal B0(t) (see Figs. 1b1 and 1b4). According to the
previous theoretical developments, the amplitude spectrum of the transmitted signal Bx(t)
is similar to the one of the source signal as observed from the experimental measurements,
and the phase spectrum is the one of the source signal plus a phase shift πγx/2. The aim
is characterizing the experimental waveform changes across the bubbly water by the use
of γx defined from an optimization procedure.

As a first approximation, the result of the optimization is a linear increasing trend of
the derivative order with x (Fig. 7a, circles): γx=1.1x in agreement with the theoretical
developments based on a Gaussian derivative source wavelet (Fig. 7a, solid and dashed
lines, respectively). This derivative order is applied to the signal B0(t) as a phase shift π

2
γx

to model the waveforms across the bubbly water (Figs. 7b2), with a very good agreement
with the measurements (see Fig. 1b2 and the particular case at x=740 mm displayed in
Fig. 7b3).

Fluctuations of the experimental γx are related to the dynamic of the bubbly water
that can also be observed from the waveform amplitude analyzed in the time domain
(Section III.A, Fig. 3b, circles). Interestingly, both this attenuation and γx highlight a
peak and a drop located at about x=10 mm and 550 mm, respectively: this suggests a
correlation between these two attributes, with a nearly constant ratio about 0.2 (Fig. 8,
circles). From the theoretical developments, the amplitude is quantified by the factor Ax
and gives the linear fitted attenuation −20 log10Ax=4x: the ratio between the derivative
order γx and this attenuation is a constant about 0.23, in agreement with the experimental
results (Fig. 8, dashed line).
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Figure 6: (a1-a2) Attenuation coefficient α̃(ν) and phase velocity ṽ(ν) (solid curves) used
to approximate the effective model (dashed curves) based on Gaussian derivative function
properties. (b1) Theoretical source wavelet S0(t) defined as a Gaussian derivative func-
tion with β0=4. (b2) Modeling of the waveforms across the dispersive medium based on
the derivative order γx (see Fig. 5a) applied to the phase of S0(t). (b3) Last waveform
associated to γx '0.7 (solid curve) and waveform associated to the effective wavenumber
(dashed curve).
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Figure 7: (a) Experimental derivative order γx across the bubbly water (circles): linear
fits for the dynamic and theoretical static dispersive media (solid and dashed lines, respec-
tively). (b1) Experimental source signal B0(t). (b2) Modeling of the waveforms across the
dispersive medium based on the derivative order γx (a) applied to the phase of B0(t). (b3)
Last waveform associated to γx '0.7 (solid curve) and waveform associated to the effective
wavenumber (dashed curve).
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Figure 8: Experimental ratio (circles) between the derivative order γx and the attenuation
of the waveform amplitude (Fig. 3b) as a function of the propagation distance inside the
bubbly water, and theoretical ratio (dashed line) based on a Gaussian derivative source
wavelet.

5 Insights into the range of applicability of the frac-

tional derivative approximation

According to the analytical developments presented in the previous section, the effect of the
attenuation coefficient on the normalized amplitude spectrum can be neglected if bx << 1
and the phase spectrum simply shifted by πγx/2. The approximation is in agreement with
the experimental results for distances x in the range 0-0.74 m and for a volume fraction
φ=0.2 % of r0=1.6 mm radius bubbles. In order to discuss the range of applicability of
the approach, some insights can be provided based on a theoretical extension of these ex-
perimental parameters.
The first consideration deals with the attenuation parameter b that depends on r0 and
φ. The range of applicability of the approximation can be estimated for a large range of
bubbly waters from the normalized correlation coefficient between the theoretical acous-
tic waveform (signal Bx) based on the complex effective wavenumber and the optimized
derivative wavelet (signal B̃x). Note that increasing the bubble radius is similar, as a first
approximation, to a relative decrease of the acoustic frequency band. A numerical analysis
has been performed for x=1 m on 100 different bubbly waters with r0 in the range 0.4-
4 mm and φ in the range 0.05-0.5 % (Fig. 9a1). As a first approach, correlation coefficients
better than 0.99 are considered as good derivative wavelet approximations. This is illus-
trated by the theoretical and approximated waveforms (Fig. 9a2, solid and dashed curves,
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respectively) associated to r0=1.2 mm and φ=0.25 % (Fig. 9a1, star): the correlation is
0.992 for an attenuation coefficient approximated by a frequency power law with y=0.17
and a=0.81 m−1, which corresponds to b ' ay=0.14 m−1 (Fig. 9a3), and a phase velocity
(Fig. 9a4) approximated by eq. 29 with the derivative parameter κγ = 1.97 and effective
velocity ṽ0 =1472.61 m.s−1. As a result, the range of applicability of the approximation
corresponds to 0.25r0 − 0.1 > φ where the condition on the attenuation is quantified by
b <0.15 m−1.

The second consideration deals with the effect of the propagation distance x. For
x=10 m, the map of correlation coefficients better than 0.99 is limited to low volume
fractions of large bubbles (Fig. 9b1). In this case, the theoretical and approximated wave-
forms (Fig. 9b2, solid and dashed curves, respectively) for r0=3.6 mm and φ=0.10 %
(Fig. 9b1, star) are associated to a correlation of 0.998, y=0.11 and a=0.09 m−1, which
corresponds to b=0.01 m−1 (Fig. 9b3), and a phase velocity (Fig. 9b4) with κγ = 0.1 and
ṽ0 =1471.46 m.s−1. The condition of applicability of the results at large distances is in
agreement with the previous consideration and it is important to note the dependency of
the pulse shape with bx (Figs. 9a2 and b2 for bx=0.15 and 0.1, respectively).
As described above, the waveform of the signal changes from a symmetrical (source wavelet
with β0=4) to an asymmetrical shape when x increases. Interestingly, distances defined
by πγx = πκgx = 4πn, where n is an integer, may correspond to symmetrical waveforms
similar to the source wavelet shape, every 40 meters for r0=3.6 mm and φ=0.10 %. But
this case corresponds to bx >0.4 and is out of the applicability range of the approxima-
tion: in particular, the best fit between the waveforms would give δx=0 in disagreement
with κγx=4. Instead, the theoretical shape of the signal can be modeled at the particular
position x=40 m: its frequency content has changed across the bubbly water and its shape
is characterized by an additional negative peak of weak amplitude but even so, it is sim-
ilar, as a first approximation, to the shape of the source wavelet (inset of Fig. 9b2, solid
and dotted curves, respectively), in agreement with the prediction based on the analytical
developments.

6 Conclusion

The present work describes both acoustic experiments and analytical developments to
quantify waveform changes of a pulse (peak frequency νp0=310 kHz) that propagates (dis-
tance x ≤740 mm) inside a bubbly water composed of air bubbles (radius 1.6 mm, gas
volume fraction 20%). This corresponds to high frequency acoustic experiments in a single
scattering dispersive medium. In the time domain, the decrease of the waveform amplitude
with x is quantified by attenuation properties and qualitatively associated to changes of
the waveform shape. In the frequency domain, the amplitude spectrum is nearly constant
and does not depend on x. Effective medium theories are used to define the attenuation
coefficient α(ν) and phase velocity α(ν) in agreement with the experimental results. In the
high frequency range defined by the acoustic pulse, α(ν) is nearly constant. In the frame-
work of Gaussian derivative functions with a source wavelet characterized by a derivative
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Figure 9: (a1 and a2) Maps of normalized correlation coefficients for x=1 and 10 m,
respectively (best correlation in black). (a2 and b2) Waveforms of the acoustic signals
modeled with the Lax’s model (solid curves) for a volume fraction φ of r0 radius bubbles,
identified on the maps by the stars, and approximations (dashed curves). Attenuation (a3
and b3) and phase velocity (a4 and b4) associated to the Lax’s model (solid line) and
approximations (dashed curves). The approximations are defined in the limited frequency
range of the Gaussian derivative source wavelet. (b2, inset) Shape similarity between the
source wavelet (dotted curve) and modeling at x=40 m (solid curve).
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order β0=4, it is demonstrated that α̃(ν) acts as a fractional derivative order 0 ≤ γx ≤ 0.8
and a dilation factor δx '

√
β0/ (β0 + γx). A numerical optimization method highlights

that γx = κγx, with κγ=0.94 m−1. The approximation of the associated phase velocity can
be written as ṽ(ν) = ṽ0/(1− ṽ0κγ/4ν) where ṽ0 is close to the sound speed in water. Based
on the experimental measurements, it is also shown that the waveform shape quantified
by the derivative order γx is proportional to the waveform amplitude which decreases with
the propagation distance x across the dispersive medium.

The applicability of the approach to other bubbly waters has been estimated for different
propagation distances and bubbly waters in large ranges of radius (0.4-4 mm) and volume
fractions (0.05-0.5 %). The range of applicability is defined by bx ' ayx < 0.15 for
an attenuation coefficient of the bubbly water approximated by α̃(ν) = a(ν/νp0)

−y, with
0.2 > y > 0, and associated to the phase velocity ṽ(ν) approximated by a πδx/2 phase shift.
The approach predicts a signal waveform which shape changes with x and may recover the
symmetry of the source wavelet every 4/κγ meters, as a first approximation, i.e. about
40 m for low volume fraction of large bubbles.
Similar circumstances of bubbly waters may exist in the close vicinity of active gas seeps
for instance, where bubbles can occur at volumetric void fractions as low as 0.01 % with
diameters up to 4 mm and sounded by the use of a very high frequency echosounder [29].
In such natural environments, the present work may motivate future works on underwater
communication by contributing to acoustic quantification of gas bubbles in the ocean water
column.
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