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CAN FEW LINES OF CODE CHANGE SOCIETY ?

Beyond fack-checking and moderation :
how recommender systems toxifies social networking sites

David Chavalarias™®?*, Paul Bouchaud®”* et Maziyar Panahi®

Abstract As the last few years have seen an increase in online hostility and
polarization both, we need to move beyond the fack-checking reflex or the
praise for better moderation on social networking sites (SNS) and investigate
their impact on social structures and social cohesion. In particular, the role
of recommender systems deployed at large scale by digital platforms such
as Facebook or Twitter has been overlooked. This paper draws on the lite-
rature on cognitive science, digital media, and opinion dynamics to propose
a faithful replica of the entanglement between recommender systems, opi-
nion dynamics and users’ cognitive biais on SNSs like Twitter that is calibra-
ted over a large scale longitudinal database of tweets from political activists.
This model makes it possible to compare the consequences of various recom-
mendation algorithms on the social fabric and to quantify their interaction
with some major cognitive bias. In particular, we demonstrate that the recom-
mender systems that seek to solely maximize users’ engagement necessarily
lead to an overexposure of users to negative content (up to 300% for some
of them), a phenomenon called algorithmic negativity bias, to a polarization
of the opinion landscape, and to a concentration of social power in the hands
of the most toxic users. The latter are more than twice as numerous in the
top 1% of the most influential users than in the overall population. Overall,
our findings highlight the urgency to identify harmful implementations of re-
commender systems to individuals and society in order better regulate their
deployment on systemic SNSs.

Significance statement January 6, 2021 was a shock to democracies.
Everything suggests that it was not a fad and social networks played their
role. However, to counter the relentless worldwide polarization of public opi-
nion, we need to go beyond “fack-checking” and the moderation of harmful
content. This paper studies the role of self-learning recommendation systems
on systemic platforms such as Facebook or Twitter and their interaction with
users’ cognitive bias. We show that their most likely current implementation
necessarily leads to harmful consequences for individuals and society. Unless
BigTech companies prove otherwise, this is not a user behavior problem but
a technology problem. This implies that systemic digital platforms currently
pose systemic risks to social cohesion. Keys to evidence-based regulation are
provided.
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1 Rationale

In January 2018, Facebook announced a change in its news feed, a recommender sys-
tems which is the main information source of its 2.2 billion users. The aim is to favor
content that generates the most engagement : shares, comments, likes, etc. Unfortuna-
tely for the public debate, research in psychology shows that this content is, on average,
the most negative, a phenomenon called negativity bias (Rozin & Royzman, 2001). The
effects of this change are not long in coming. According to leaked internal Facebook do-
cuments (Hagey & Horwitz, 2021; Zubrow, 2021), exchanges between users have since
then become more confrontational and misinformation more widespread. Meanwhile, the
political polarization of the users increased due to the platform (Allcott er al., 2020).
These changes were so radical and profound that both journalists and political parties
felt forced to “skew negative in their communications on Facebook, with the downstream
effect of leading them into more extreme policy positions”.

This increase in polarization and hostility in on-line discussions has been observed
on other platforms. On Twitter for example, where user’s home timeline is by default go-
verned by a recommender system since 2016, the proportion of negative tweets among
French political messages raised from 31% in 2012 to more than 50% in 2022 (Mestre,
2022). It has also been demonstrated (Vosoughi et al., 2018) that falsehood diffuses “si-
gnificantly farther, faster, deeper, and more broadly than the trut” on this platform while
having the strongest echo chamber effect (Gaumont et al., 2018), and consequently the
stronger polarization effect.

Can changing few lines of code of a global recommender system qualitatively change
human relationships and society as a whole ? To what extent social media recommender
systems are changing the structure of online public debates and social group formation
processes on a global scale ? These are fundamental questions for the sanity of our demo-
cracies at a time when polarization in on-line environments is known to spill-over off-line
(Doherty et al., 2016). Moreover, at a time where countries like the European Union start
to regulate the sector of digital services' a scientific answer to these questions is also
required to implement evidence-based policies.

Previous studies have explored the societal impact of on-line social networking sites
(SNSs) such as the impact of recommender systems on on-line social groups formation
(Ramaciotti Morales & Cointet, 2021; Santos et al., 2021), on-line social networks pola-
rization (Tokita ef al., 2021) or the impact of networks topologies on opinions dynamics
(Baumann et al., 2020). But the impact of recommender systems on the coupling between
opinion dynamics and social network formation is hardly addressed in literature.

This paper fills this gap and provides a methodological framework that takes into
account the entanglement between personalized recommender systems, human cognitive
bias, opinion dynamics and social networks evolution. It makes it possible to explore
the consequences of various design of recommender systems on the social fabric and to
quantify their interaction with some major cognitive bias.

As a case study, we apply this framework to a Twitter-like social network model.
We build a state-of-the-art opinion dynamics model and perform an empirical calibration
and empirical validation of different components of this framework on a 500M political
tweets database, published between 2016 and 2022. Next, we illustrate the impact of
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recommender systems on society by comparing four differently designed recommender
systems based on behavioral, opinion, and network models calibrated on our Twitter data.
Perspectives are given to extend this approach to other types of social networks.

This case study highlights the role of human cognitive biases and of the characteristics
of new digital environments in the self-reinforcement processes that fragment opinion
spaces and distort to a large extent Internet users’ perception of reality.

In particular, we demonstrate that, as soon as users have a slight negativity bias, re-
commender systems that seek to solely maximize users’ engagement lead to an overexpo-
sure to negativity, a phenomenon called algorithmic negativity bias (Chavalarias, 2022)
and to a stronger ideological fragmentation of on-line landscapes compared to situations
where information circulates in a neutral way.

Framework Description

Let’s model the generic properties of online social networks in order to study the sty-
lized phenomena associated with some of their key features. The detailed characteristics
of SNSs varies from one platform to another but they all have some core features in com-
mon :

1. [Publication] At anytime ¢, a user 7 can publish a message m!,

2. [Networking] Each user j can subscribe to i’s information diffusion network N¢(¢)
(on some social networking sites subscriptions are open, on others they should be
agreed by 7).

3. [Information] Each user i can read the messages produced by the set N (¢) of ac-
counts they have subscribed to and eventually share them with their own subscribers
N(L).

Subscription networks between users of a social networking site can be represented
by an evolving directed network N'(t) = U {NZ(t) UNT ()} = {si;}; in which an edge
s;; exists when the user j has suscribed to i’s account (information flows from i to j). N/
is the backbone of information circulation on such platforms. Its evolution is generally
influenced by a social recommender system that suggests new “friends” to users.

The average number of subscriptions per user being quite high (e.g. > 300 on Face-
book, > 700 on Twitter), most social networking sites implement a content recommender
systems that helps any user ¢ to find the “most relevant” messages among those produced
by their social neighborhood ./\f[(t). On platforms such as Facebook, Twitter, YouTube,
LinkedIn, Instagram or TikTok, these content recommender systems take the form of a
personalized news feed JF; that aggregates “relevant” messages in a stack. They constitute
the main source of information for the users of these platforms (on Youtube the recom-
mender is responsible for 70% of watch time for exemple ?). Social recommendation and
content systems shape users’ opinions through the constraints they place on the global
flow of information as well as on the processes of social ties formation. Although most of
them are black boxes, we know that these recommender systems learn from the actions of
their users according to some very generic objective function.

This being said, in order to model the interaction between human cognition, recom-
mender systems, user’s opinions and social network evolution, we have to model three
things :

2. https ://www.cnet.com/tech/services-and-software/youtube-ces-2018-neal-mohan



— [Recommender system] The process of message sorting of news feed by the
content recommender system,

— [User’s attention, cognitive bias and opinion dynamics] The user’s motivations
to read and share a message, their potential cognitive bias, their opinion and its
evolution after exposure to a message,

— [Network evolution] The way users decide to subscribe and unsubscribe to other
accounts and the role of the social recommender system in this process.

We will include all these elements in a model in discrete time where each time step
will correspond to one day of interaction between users. Each of these elements is the
object of a research field in its own right, so that it is not a question here of proposing
advances on each of these dimensions. We will rather consider the state-of-the-art models
for each of them in order to calibrate them on empirical data and study their interactions.

The content recommender system

A content recommender systems has access to a set of users’ characteristics, as for
example the number of subscribers per user, the list of the accounts they have subscribed
to, the number of shares per message, etc., and a set of messages’ features, as for example
their number of shares or their sentiment, and produces at each time step ¢ and for each
user ¢ and ordered list of all messages produced by accounts from N (¢) to be displayed
for reading.

The Users

Users are described as entities with an internal state (their "opinion"), some interface
with their environments (e.g. read some messages) and a repertoire of actions on the
environment (publish a message, share a message, subscribe to a user’s account, etc.).
For simplicity, we assume that the opinion dynamics is solely driven by the interactions
among users. We will call this stylized representation of the users "agent".

Users’ opinions

We built on the literature of non Bayesian opinion dynamics modeling (see (Noorazar
et al., 2020) for a review) and assign to each agent i at ¢ an opinion of in a metric space
O, and an opinion update function y; : ©O? — O that defines its propensity to change its
opinion o; after reading a message that conveys opinion o; of agent j. O and p will be
estimated empirically.

Agents’ Rule 1 (Opinions’ update) : after sharing agent j’s message at time t, agent i’s
opinion is updated according to o'*" < y;(of, 0}).

Users’ online activity

At each time step t, each agent i publishes n? (¢) new messages, assumed to perfectly
reflect they view, and shares n(t) read messages authored by other agents. n’(¢) and
ng(t) will be estimated empirically.



Agents’ Rule 2 (reading a message) : at each time step, agent i will “scroll” in their
feed and randomly stop to read carefully some messages.

Once read, the user may engage with the message :

Agents’ Rule 3 (engagement with a message) : the probability that an agent i shares
a message from an agent j (i.e. republish the message identically at the next time step)
depends on the difference of opinion |0] — of|.

In the literature, different functional forms for the probability of engagement have
been proposed such that the exact from should be estimated empirically according to the
kind of opinion space that is modeled.

Users’ cognitive bias

Many cognitive bias are worth to be studied in the perspective of the analysis of re-
commender systems’ impacts. As an illustration, we will focus on two famous bias in
psychology : the previously mentioned confirmation bias and the negativity bias (Epstein,
2018; Knobloch-Westerwick et al., 2017; Rozin & Royzman, 2001) —the propensity to
give more importance to negative piece of information. Our goal in this example is to eva-
luate the strength of the algorithmic negativity bias (Chavalarias, 2022) : the large scale
over-exposition to negative contents due to the algorithmic machinery.

To quantify the algorithmic negativity bias effect, we attribute a valence to messages
published by the agents, that can be either “negative” or “positive/neutral”. We thus assign
to each agent i a proportion v/} of negative messages published at ¢ and a propensity Bn; to
interact in a privileged way with negative messages (negativity bias). v} and Bn; will be
estimated empirically. The negativity bias of our agents is then implemented as a variation
of rule 2 :

Agents’ Rule 4 (reading a message with valence) : at each time step, agent i will “scroll”
in their feed and randomly stop to read carefully some messages. The probability of stop-
ping and read a negative message is Bn; times higher than for a non-negative message.

The above defined set of rules allows us to study the feedback loops between the
aforementioned cognitive biases and a learning recommender. On the one hand the re-
commender seeks to maximize the user engagement, on the other hand, the user is more
likely to engage with content aligned with their existing belief and/or of negative nature.
As a consequence, we can expect the recommender to be more and more biased as it
learns users’ bias over time.

Network evolution

Opinions co-evolve with interaction networks in a feedback loop. The homophilic
nature of human interactions indicates that users tend to interact and form relationships
with people who are similar to them (McPherson et al., 2001), and cut social ties with
people who happen to share content that is not aligned with their views. Besides this,
SNSs usually suggest new connexions to users via social recommender systems that are
most of the time based on structural similarities (e.g. mutual friends) (Tokita et al., 2021).



We will take into account these factors in a parsimonious yet realistic model of link
formation and pruning. The network specifications at initialization of our simulations
(connectivity, types of agents, etc.) will be determined empirically.

Links suppression (Rewiring rule 1)

Agents score their subscriptions to monitor the interest they have in maintaining them.
For every subscription s;; of i to j, the disagreement 0,;(¢) > 0 of ¢ with the content
received through s; is initialized at 0 and updated at each time step according to ¢;;(¢ +
1) = v x (0;5(t) + ni;lof — of[), with v < 1 being a daily discount factor and n; the
number of messages read by ¢ during time step ¢ that have been authored or relayed by j.
If 5;;(t) = 1 and the disagreement 6;;(¢) > 7, ¢ will unsubscribe from j, i.e. s;;(t+1) = 0.

1/~ is a characteristic time of agents’ evolution that is difficult to estimate empirically.
It will be set arbitrary to a reasonable value. So will be the 7 which determination would
depend on the knowledge of . We have verified that our results do not depend on the
precise knowledge of these two parameters.

Links formation (Rewiring rule 2)

To maintain the connectivity measured empirically, we assume that when an agent
breaks an edge with an unaligned user, it starts following a randomly chosen second
neighbors (a rewiring mechanism often observed in SNSs (Tokita ef al., 2021)).

Instantiation of a recommender systems : the example
of Twitter

In order to understand the complex relation between the specific choice of a recom-
mender systems and its systemic effects on opinion dynamics and social networks evo-
lution, we apply thereafter the above described framework to the modeling of political
opinion dynamics on Twitter. Passing, we find realistic parameter values that could be
used to model the impact of other SNSs recommender systems.

At the time of the study, Twitter’s data availability, its widespread use —more than
300 millions of monthly active users worldwide— and its predominant role in political
communication justify our choice to use it as our experimental field for testing the propo-
sed framework. Moreover, as measured empirically, Twitter is also a digital media where
negative contents are more viral than others (see Fig. S18) and where the users themselves
are biased towards the production of negative contents (see see Fig. S11) This raises the
important question, both for public debate and for the well-being of users, of the extent to
which this overflow of negativity is due to Twitter’s algorithmic architecture.

Briefly, Twitter is an online social network launched in 2006 allowing its users to ex-
change publicly 280 characters-long messages that are broadcasted to theirs “followers”,
users who subscribed the author’s account. Content is displayed to the users on a feed cal-
led Home timeline according to personalized recommendations. The messages are ranked
by a machine learning algorithm predicting the likelihood the user will engage with the
tweet. In the following, we will focus on the two main forms of engagement on Twitter
(Twitter, 2020) : (1) the careful read of a tweet —which often requires a click to expand



the content— (2) the retweet, i.e. the fact of republishing the message identically with the
mention of its author, without any comment nor modification.

Despite that social influence extents well beyond retweet, empirical studies observed
that retweets are more relevant to characterize people’s opinion and monitor its evolution,
at least in a political context, than, for example, Twitter mentions (Conover et al., 2011;
Garimella et al., 2018). It is indeed possible to predict with high accuracy the political
orientations of political activists from their retweet data only (Gaumont et al., 2018). In
what follows, the empirical applications of our framework will focus on retweets net-
works.

1.1 Choice of a recommender system

Several leaks as well as official announcements suggest that many social networking
sites use the users’ engagement maximization as the objective function for their recom-
mender systems. We will thereafter analyze the consequences of such objective functions
on the social fabric.

Recommender’s Rule 1 : at each time step, the recommender will rank and display for
each agent i a subset of messages from N (t — 1) according to their probability of being
shared, as predicted by the recommender.

Due its flexibility and efficiency, we implemented this optimization through XGBoost
algorithm (Chen & Guestrin, 2016).

Recommender systems fulfill their objectives by relying on certain inputs. Modeling
such algorithm should thus define some type of data it has access to. The variety of input
data used by commercial recommender systems is part of the domain of business secrecy
such that little is known about which input data are really used. We will here select two
broad categories of data that are likely used by commercial recommenders (cf. (Xu &
Yang, 2012), (Huszér et al., 2022)) :

— Sentiment analysis : the negative or neutral nature of a tweets, as well as the pro-

portion of negative content retweeted by the user in the past.

— Popularity assessment : the popularity of the tweet’s author i.e. average number of
retweets to its messages, the number of time the message has been retweeted and
the frequency at which the user retweets the author.

In order to investigate the consequences of the different input features, we will com-

pare three different implementations of the recommender :

— Neg : use only input data from sentiment analysis,

— Pop : use only input data from popularity scores,

— PopNeg : use the combined features of the Neg and Pop algorithms.

To assess the effect of these three implementations of recommender systems on the
social fabric, we will compare them to a neutral recommender systems, the reverse-
chronological presentation of content, thereafter call Chrono. Chrono is often referred
as non-algorithmic recommendation due to its simplicity. It was briefly implemented by
Twitter until the takeover by Elon Musk, from which it is no longer possible to disable
the recommendation algorithm.



Empirical Calibration

In this section, we fully calibrate our model using empirical data regarding French po-
litics, collected on Twitter in autumn 2021 within the Politoscope project (Gaumont et al.,
2018), a social macroscope for collective dynamics on Twitter. The Politoscope conti-
nuously collects since 2016 political tweets about French politics and makes it possible
to select subsets of the most active users over any given period.

Network of users’ interactions

While accessing Twitter’s graph of followees-followers is possible through Twitter
API, such a graph would be misleading if used in our model. Indeed, the content recom-
mender effectively used on Twitter is already well trained, content from someone followed
may never be shown to the user, distorting our simulation. To circumvent this limitation,
we instead consider the empirical network N of retweets and quotes combined. Such a
network seems indeed to be a reasonable proxy to what is actually shown to the user by
the platform. Considering quotes, and not only retweets, allows to include ideologically
unaligned content as discussed below. Each of our simulations was initialized over the
empirical network A of interactions over the selected period.

Calibration of opinion space

We will henceforth understand the term “opinion” as an ideological positioning within
the political arena, excluding de-facto political agnostics. Not all candidates having the
same digital communication strategy, we will include in what follows only leaders having
a significant presence on Twitter during the considered period.

The reconstruction of opinion spaces from SNSs data has been a very active field of
research these last several years, with reconstructions in one (Barberd, 2015; Briatte &
Gallic, 2015), two dimensional spaces (Chomel et al., 2022; Gaumont et al., 2018) or
even in spaces with variable dimensions (Reyero e al., 2021). As for retweet networks,
retweeting someone on a recurring basis has been demonstrated to be an indicator to
some ideological alignment (Conover et al., 2011; Garimella et al., 2018; Gaumont et al.,
2018).

With a clustering analysis of political retweet graphs, Gaumont et al. (Gaumont et al.,
2018) achieved 95% accuracy over opinion’s classification, validating the use of the ret-
weet graph for such a study *. The spatialization of the Politoscope retweet graph of au-
tumn 2021 depicts a multi-polar circular political arena (cf. Fig. 1) where the relative po-
sitions of the political leaders are in adequacy with the publicly depicted political scene.
As discussed in SI, we used this spatialization to model the opinion space O as a circu-
lar one dimensional metric space with o; €] — 1, +1], making it possible to initialize the
opinion of our agents in N with their empirical estimation, compute the impact of the re-
commender’s suggestion on user’s opinion, and determine the global impact of different
recommender systems on the distribution of the users’ opinions in O.

3. We made the same verification on our own dataset and found similar performances.
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FIGURE 1 — Multi-polar graph of the French pre-electoral political Twittersphere calcu-
lated during September 2021. Each node corresponds to a user, colored according to the
opinion assigned by the described method. Political leaders are highlighted, in particular
the candidates for the 2022 French presidential election.

Calibration of agents’ opinion update

Having a metric space for the opinion space, we can build on the sizable literature on
opinion dynamics (Deffuant ef al., 2000; Jager & Amblard, 2005; Noorazar et al., 2020).
Thanks to the full history of user’s interaction from our Twitter dataset, and assuming
for the sake of simplicity that the functional form of p, the opinion update function, is
the same for all agents, we determined the most likely ;. using symbolic regression. The
regression was performed using genetic algorithms (Fortin ef al., 2012) over the set of
arithmic and trigonometric functions as well as an implemention of the difference in the
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periodical opinion space.

This empirical calibration allowed us to identify a linear function of opinion updating
oi*! += ol 4+ Xi(0f — of) with \; € R. Note that this function was already a widely used
in the opinion dynamics literature (Deffuant er al., 2000; Jager & Amblard, 2005).

Because of our lack of information on tweets’ impression and given our opinion at-
tribution method, we have decided to simplify the model by assuming that agents change
their their opinion, i.e. ideological positioning, only when they retweet a message.

Then, we fitted for each agent the opinion update parameter \;, which the absolute
value reflects the influenceability of the agent, i.e. to what extent will they change opinion
when retweeting someone else, using the list of daily messages effectively retweeted by
the user (see SI ??).

Such a fitting leads to a relatively high accuracy, with more than 75% of our final fit-
ted opinions off by less than 0.05 after 30 iterations (corresponding to end of October, cf.
Fig. ??). This is less than intra-communities opinion diversity. We should emphasize that
the goal of the present work is not to accurately predict the opinion of online social me-
dia users, but only to provide a faithful simulation of online users’ behavior to study the
consequences of algorithmic recommendation. In particular, users’ opinion are used wi-
thin the simulation to determine the probability of retweeting a content, thus being off by
0.05 in opinion does not alter the behavior of the simulation. The only significant changes
of opinion are the larger ones (A,, > 0.05), for which the fitted updates rules leads to a
relative error less than 25% for more than 60% of the prediction, and even more accurate
for particularly large displacements A,, € [0.5, 1] (cf. Fig. ??). To confirm the sanity of
the used method, we considered other time periods, other graph spatialization settings and
forecast the opinions one month (November) after the fitting, obtaining similar accuracy,
as discussed in supplementary text.

Calibration of agents’ activities

In absence of information specifying which messages are displayed on users’ screens,
we hypothesize that users read messages until they reach their daily number of retweets
or when they read all the messages from N/ (¢t — 1). We identified the 110k most active
users over the period of autumn 2021, get their political tweets and estimated their pu-

blication behaviors. The number of daily posted tweets (n?(t), original publications) and

retweets (n(¢), shared publications) were exponentially distributed at the individual le-
vel (as already observed in (Baumann er al., 2020; Perra et al., 2012)). At the population
level, the empirical exponential scales 67 and 8} for the different users were distributed
according the distribution displayed on Fig. S1. We build on these empirical observations
to set the number of tweets and retweets of agent i in N as independently drawn from two

exponential distributions of empirically determined rates 6 and 0;‘” respectively.

Latitude of acceptance

Once the opinions assigned, we determined the distribution of difference of opinion
A,y between a user and the authors of retweeted messages. In order to cancel the bias
in the representation made by the platform (Huszar et al., 2022), as well as taking into



account the different sizes and positions of the communities, we had to renormalize the
distribution of difference of opinion as observed from the retweets with the patterns of
publication on quoted tweets (cf. S1.4).
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FIGURE 2 — Estimated probability for a user, in the ideological neighborhood of Emma-
nuel Macron or Marine Le Pen, to retweet a read message according to the different of
opinion with its author, A, = 0ycader — Osender, coOnsidering periodic boundary conditions.
We renormalize such that a perfectly aligned message is retweeted with certainty.

One notices on Fig. 2, that the probability of retweeting a message decays roughly
exponentially as the difference of opinion increases, with some refinement revealing po-
litical strategies. The asymmetry of the distributions illustrates how Emmanuel Macron
community (center) tends to retweet content even further right than further left, while the
opposite effect is noticed for left-wing leader Jean-Luc Melenchon community (cf. SI S3)
After having determined such distributions for the whole range of opinions, we assigned
to our simulated agent the distributions associated to their initial opinions.

Negativity

To calibrate negativity-related properties of our model, we performed a sentiment ana-
lysis on 190k French political tweets exchanged by 500 unique users during October 2021.
This analysis has been performed using the French version of the Bi-directional Encoders
for Transformers, CamemBERT (Martin et al., 2020), fine-tuned on French Tweets. We
then assigned to our agents an intrinsic negativity v;, the proportion of negative content
published, drawn from the empirical distribution in function of their initial opinion, as
well as a negativity bias, as discussed in supplementary materials.

Evaluation of recommenders’ effects

In order to characterize the behavior of our agent-based model we hereby introduced
metrics of particular interest :



Algorithmic negativity bias [' : this is the negativity over-exposure generated by the re-
commender system defined as the ratio between the negativity in the perceived en-
vironment —the content of the timeline— and the negativity in the “real environ-
ment” i.e. in one’s in-neighborhood N

To further explore the model, we perform a community detection on the resulting ret-
weets graph using Leiden algorithm (Traag er al., 2019), an improvement guaranteeing
connected communities over the usual Louvain method. Once performed we examine :

Newman’s modularity O (Leicht & Newman, 2008) : assessing the density of connec-
tions within a community.

Diversity within a community o7/ ; the standard deviation of an observable, such as

the opinion, the intrinsic or perceived negativity, within a given cluster, normalized
by the standard deviation of the observable within the overall population, averaged
over the clusters.

Diversity between communities : 097" : the standard deviation of clusters’ observable
—such as average opinion, intrinsic or perceived negativity— normalized by the di-
versity among the whole population, assessing the diversity of the different com-
munities with respect to the overall population.

Results

Assessing the impact of recommenders on negativity and opinion
polarization with empirical networks

The model was initialized on real data with all parameters but two, which we know
have no impact on the results, being empirically calibrated. We have simulated one month
of interactions to estimate the activity and opinion evolution of each account in the real
dataset, and analyzed the aforepresented metrics. As for the account’s activity prediction,
our framework being stochastic, none of the four recommender systems where able to
predict low intensity interactions < 10 retweets/month), overestimating small weights
with respect to the real distribution (see Fig. S1).Nevertheless, for larger weights (> 10
retweets/month), PopNeg faithfully matches the empirical distribution, while Pop overes-
timates large weights, as one may expect, and Chrono underestimates them.

As displayed on figure 3, the overexposure to negativity I' is non-existent in chro-
nological mode, as expected, while the three algorithmic recommenders lead users to be
overexposed to negative content. The Neg recommender, solely based on negativity, leads
to the highest overexposure, users are shown on average 26% more negative content that
what they would have in the neutral Chrono mode.

Within the population, the overexposure to negativity is extremely diverse, as depicted
in Fig. 4, with some users experiencing an algorithmic negativity bias corresponding to an
overexposure of more than 300%. This happens even to users with a large neighborhood
and to users without any negative bias. For user with a small number of friends (less than
10), we notice a small (r = 0.02) but significant (p < 10~7) correlation between the
number of in-neighbors and the negativity overexposure. Indeed, as the number of friends
increases, so does the size of the pool of message from which the recommender is picking
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FIGURE 3 — Metrics comparison between the four recommenders and the empirically
observed data. Simulation initialized on real graph (white area) and on synthetic graph
(grey area), the error bars in the latter case correspond to the standard deviations over 10
repetitions, starting from the same synthetic inputs

from, allowing it to select the most engaging messages (that are most of the time the most
negatives ones), leading to a higher negativity overexposure. Such results are a direct
consequence of the feedback loop between human negativity bias and the engagement
maximization goal hard-coded within the recommender.

The large variations in the level of negativity overexposure at the individual level
are important to note since from an individual perspective, it can plunge users into toxic
environments, disconnected from reality, which can potentially have detrimental conse-
quences on their mental health and social relationships, as documented, for example, du-
ring the COVID-19 pandemic (Levinsson et al., 2021).

The diversity of opinion depends of the recommender system, pointing to another
harmful consequences for online sanity. Indeed, while Chrono and Neg lead to the same

gimter/infra he two social modes, namely Pop & PopNeg, result into a higher fragmenta-

tion of the social fabric. The average diversity of opinion within clusters, aj;;;tm, is poorer
—but not as poor as empirically observed—, and the different clusters are centered around
different opinions —higher af];t”, close to the empirically observed one.

In contrast, the modularity Qrr of the retweet graph revealed to be independent

of the recommender, as well as the diversity of negativity within and between clusters
ginter/intra the graph structure being strongly constrained from the initialization

By looking at recommender features importance, we notice that the frequency of past
interactions between the user and the author, is by far the most informative feature, another

illustration of human confirmation bias, reinforced by the recommender. Similarly, the dif-
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FIGURE 4 — Distribution of the overexposure to negativity within the population for the
four recommenders. For clarity, the distribution is truncated at a overexposure of 3.5,
the truncated tails represents 3.1%, 2.6%, 2.6% and 3.6% of the total distribution, for
Chrono,Neg, Pop, PopNeg respectively

ferent clusters are, in these social modes, less diverse in perceived negativity o727, . The
unequal perceived negativity, may partially justify the difference of acceptance latitude for
the different opinion, but further experiment considering impressions information would

be needed to assess the relation between perceived negativity and confirmation bias.

Assessing the impact of recommenders on the formation of social
groups with synthetic networks

The previously considered empirical data are the product of years of evolution, shaped
by the platform’s recommenders. Thus by initializing the network of interactions with a
real network, we miss most of the impact of the different recommender systems’ on social
networks formation. In order to further investigate the consequences of the recommender
on the social fabric, we hereby consider randomly initialized networks and analyze their
evolution *. We drawn for 25k agents the properties from the empirical distributions and
considered an initial network of follow generated through the Barabdsi Albert model.
Such networks do not aim to realistically mimics all real social networks features but
only to provide a zero-th order starting point to illustrate the different consequences of
the recommender.

The probability of retweeting a read message is set to decays exponentially with the
difference of opinion with a mean of 0.2, to roughly match the empirical one, without
specifying it too strongly to French political strategies. The empirical determination of 7
being impossible, without having access to what messages is shown to the users on a long
time period, we arbitrarily fixed it 0.5 with a time discount factor of 0.9, corresponding
to a time-scale of 10 days — by considering alternatives values, the qualitative results
discussed below remains.

4. Source code available on (Bouchaud et al., 2023)



A sensitivity analysis of the agents’ negativity bias in synthetic networks also de-
monstrates that the algorithmic negativity bias phenomena (I' > 1) appears as soon as
agents have some negativity bias; and its intensity is almost independent of the strength
of agents’ own negativity biases (see Fig. S16). As long as the users favor negative content
over neutral ones, recommender systems based on engagement will lead with certainty to
an overexposure to negativity.
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FIGURE 5 — Over-representation of negative agent among the 1% most popular agents
compared to the overall population. Analysis performed after two months of simulation,
the error bars correspond to the standard deviations over 10 repetitions, starting from the
same synthetic inputs.

Starting with an unconstrained random network A allows the full expression of re-
commender actions and makes it possible to check that the proposed model for network
evolution is compatible with what is observed empirically (see Fig. S12 for an example).
As depicted on Fig. 3, after two months of simulated evolution, the modularity of the
retweet and follow networks significantly increases with algorithmic recommendation in
respect with a neutral presentation of content, in Chrono, as well as the ideological frag-
mentation or the overexposure to negativity.

The algorithmic negativity bias does not only impacts the information environment of
the agents toward more toxic environements, is also impacts the structure of social power
in the population, defined as the capacity of an agent to influence the public debate (Jia
et al.,2015). Fig. S13 displays the intrinsic negativity unbalance between the overall po-
pulation and the top 1% agents receiving the most retweet by tweet while Fig. S14 shows
the proportion of negative agents in function of the most popular quantile for Neg algo-
rithm. This analysis clearly demonstrates that the amplification of individual negativity
bias by engagement-optimizing recommendation algorithms leads to a concentration of
online social power in the hands of the most negative users.



For example, while agents publishing negative content half of the time are faithfully
represented among the most popular, the users publishing no negative content are absent
from the most popular ones for the three algorithmic recommenders. Frighteningly, agents
publishing systematically negative content are more than twice as numerous among the
most popular than in the overall population ; the two recommenders considering the nega-
tivity of the message, namely Neg and PopNeg, leading to the highest over-representation.

It is also noteworthy that despite being neutral in its selection, Chrono nevertheless
leads to a significant unfair representation as a consequence of individual negativity bias.
Even in a neutral mode, the users will more likely read negative content and hence retweet
it, increasing its author popularity.

Discussion

On January 6, 2021, a crowd convinced that the election was stolen stormed the Ca-
pitol in Washington, D.C. Whatever the extent to which this event can be attributed to
misinformation about the electoral process, it is clear that it was not a fad : one year after
Jan. 6 “52% of Trump voters, as well as 41% of Joe Biden voters, somewhat agree or
strongly agree that it is time to cut the country in half” (Politics, 2021) while a late 2020
survey concluded that “Americans have rarely been as polarized as they are today” (Di-
mock & Wike, 2020). In order to remedy this situation of extreme polarization of public
opinion, which tends to be reproduced in other countries such as Brazil, the United King-
dom or Italy, we must go beyond the reflex of “fack-checking” and the praise of better
moderation of harmful content in online social networks.

As pointed out by other studies using complementary approaches to ours (Ceylan
et al., 2023; Tornberg, 2022), we must acknowledge the impact of SNSs on social struc-
tures and in particular in the amplification of polarization and hostility among groups. It
is not only a phenomenon that affects the general public, the entire information ecosys-
tem is at risk. After Facebook changed its algorithm in 2018 to favor “meaningful social
interactions”, “company researchers discovered that publishers and political parties were
reorienting their posts toward outrage and sensationalism” and internal memo mention-
ned that “misinformation, toxicity, and violent content are inordinately prevalent among
reshares” (Hagey & Horwitz, 2021).

At a time when states are thinking about regulating large social networking sites
(SNSs), it is more necessary than ever to have models to quantify their effects on so-
ciety. In this article, thanks to the modeling of social networks as complex systems and
the calibration of the models using big data, we could give hints about what is really going
on under the hood.

Using a large scale longitudinal database of tweets from political activists (Gaumont
et al.,2018), we have built and calibrated an agent-based model able to simulate the beha-
vior of users on Twitter, some of their cognitive biases and the evolution of their political
opinion under the influence of recommender systems. Among other things, we have em-
pirically estimated parameters common to many models of opinion dynamics that were
previously arbitrarily defined —like the widespreadly used opinion update rule Agents
Rule 1. We also went beyond commonly adopted assumptions, such as a fixed threshold
of ideological disagreement for engaging in an interaction, by considering interaction
propabilities and estimating their law.

Thanks to this calibrated model, we could compare the consequences of various re-
commendation algorithms on the social fabric and to quantify their interaction with some



major cognitive bias. In particular, we demonstrated that the recommender systems that
seek to solely maximize users’ engagement necessarily lead to an overexposure of users
to negative content, a phenomenon called algorithmic negativity bias (Chavalarias, 2022)
and to an ideological fragmentation and polarization of the online opinion landscape.

The important point is that these consequences of the way recommender systems are
currently implemented, which are harmful to individuals and society, are not necessarily
intentional, they only results from the positive feedback between human flawed cognition
and SNSs’ economic goals. As most of these platforms have become systemic due to their
size, their unregulated pursuit of profitability poses systemic societal risks both to their
users and to the sanity of our democracies.

Policy makers are increasingly aware of the threats posed to our democracies by the
current implementation of SNSs but lack the keys to regulate this sector. Modeling SNSs
and their effect on individuals an social groups with an interdisciplinary approach can
give some of those keys.

For example, we have shown that when a self-learning algorithm is used to recom-
mend content, feeding it with measures of user or content popularity leads to an increase
in the overall toxicity of the platform for individuals and the collectives they form. It also
lead to a concentration of the social power in the hand of the most toxic accounts. This
means that regulators should focus on the types of data that feed into recommender sys-
tems and potentially outlaw some. These kind of findings could help to identify when
and where business secrecy, which is so often brandished when platforms are asked to
cooperate with public bodies, must be relaxed in the context of their regulation.

On the other hand, platforms can take steps to mitigate negativity bias at the user level
and prevent it from becoming algorithmic negativity bias and spreading to the collective
level.

Studies of the effect of recommender algorithms are an emerging field in academia
that should be supported by the relevant authorities in order to identify, in all indepen-
dence, the right regulatory levers and implement an evidence-based policy. Needless to
say, this will require greater openness of SNSs data towards academia . Some of the em-
pirical calibration made on Twitter in this study, like the opinion update rule or the reshare
behavior, could be usedful to model other platforms like Facebook, but nothing compares
to an empirical calibration on the native data of a platform

In conclusion, it is not enough to point to malicious users who produce toxic content
and call for better moderation. We need to further study the effects, at the individual and
collective levels, of large-scale deployment of recommender systems by major technology
companies and assess their potential harm. Science shall contribute to evidence-based
policymaking by modeling the impact of these platforms on the social fabric. Democracy
is at stake.
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