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Abstract

Language Virtual Machines (VM) need to be extremely efficient and hence use com-
plex engines such as a JIT compiler to speed up the usual bytecode interpretation loop.
Their usage of low-level and security-critical tasks make them targets of choice. Enforcing
low-cost fine-grained memory isolation has been an important research focus as a coun-
termeasure to the most advanced JIT attacks. Memory isolation splits the components
of an application with controlled communication and verified access to other resources.
We present how custom instructions linked to hardware-enforced domain-checking could
protect JIT code and data. We present incremental solutions and their corresponding
custom instructions. The generated machine code and extended RISC-V Rocket come at
a low-cost both in performance and intrusiveness.

1 Introduction

Language Virtual Machines (VMs) are runtime engines that hold (at least) an interpreter, a
garbage collector and a just-in-time compiler. Those engines leverage the portability of appli-
cations and define high-level management tools to handle source languages. A source language
is usually compiled in an intermediate representation (namely bytecodes) that is then inter-
preted. Optimizing bytecode interpretation is possible through just-in-time (JIT) compilation,
recompiling frequently used bytecodes blocks as optimized machine code at runtime. Memory
management is also handled by VMs as they provide a garbage collector to allocate and reclaim
memory. Those three components are presented on Figure 1. VMs need to manage memory as
well as produce and/or execute machine code and come as targets of choice for attackers.

Figure 1: VM components overview.
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The scope of attacks against VMs expands above traditional control-flow hijacking attacks as
VMs have to handle more untrusted inputs and perform additional security-critical tasks. VM
components perform low-level tasks such as attributing and collecting memory or generating
optimized machine code and executing it. The JIT compiler in particular has access to writable
and/or executable memory and could present a massive security vulnerability [1–3].

Defenses have progressively refined the isolation of VM components. The ones that have
been presented as the most resilient with a lesser overhead involve hardware-enforced solu-
tions. Implementation of hardware- and software-based solutions are quantified in terms of
performance, area and amount of code needed to instrument the engine.

In the scope of embedded systems, both functionality and security need to be tailored to
the needs and usage of the system. The implementation of dedicated solutions comes as a
choice of using co-processing units or even extending the Instruction Set Architecture (ISA).
RISC-V ISA modularity allows development of security measures at a lower cost [4]: it proposes
duplicated memory access instructions and an additional component on top of RISC-V Physical
Memory Protection (PMP). PMP defines memory regions and their bounded permissions that
will later be checked directly by this hardware module when accessed. An additional Domain
Memory Protection (DMP) refines PMP with domains and handles duplicated memory access
instructions each bound to a given domain.
This paper links security instructions on RISC-V from the JIT compiler generated code to the
processor. It presents:

� An application of the security extension RIMI to a RISC-V softcore processor.

� A study of the impact of the added instructions on performance and intrusiveness of the
processor.

2 Attacks and Defenses around VMs

2.1 Attacks

2.1.1 Code injection

The first JIT-specific attack [1] was discovered as a code-injection attack. JIT spraying attacks
include large constants that hide instructions when shifted by one or more bytes. Using a XOR
chain with several of these constants would put them all in memory that is executable. A latter
disruption of the control flow would trigger the embedded instructions.

2.1.2 Code reuse

JIT code is also vulnerable to code-reuse attacks that traverse and dynamically disassemble
code pages to generate a Return Oriented Programming (ROP) chain at runtime. The attacker
identifies gadgets, units of machine code that hold a particular function ending with a ret

instruction. Linking the gadgets together through a ROP chain allows the attacker to run
arbitrary code. This type of attack is particularly suited against JIT compilers as, if the JIT
compilation trigger is known, arbitrary gadgets can be put in machine code memory. This
process has been automated [2, 3], weaponizing the usage of the JIT compiler.

2.1.3 Data-only

Finally, data-only attacks are forcing the JIT compiler to generate malicious code by corrupting
the JIT intermediate representation [5] or bytecodes [6], bypassing protections over JIT code
and forcing the JIT compiler in generating the payload.
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2.2 Defenses

Defenses in response to code injection (Section 2.1.1) add obfuscation and stricter permissions
to the JIT code that were then bypassed by code reuse and data only attacks(Section 2.1.2 and
2.1.3). Solutions to Section 2.1.2 propose control-flow integrity [7] that comes at a consider-
able overhead cost. Authors of defenses against Section 2.1.3 both suggest a hardware-based
isolation strategy that adds reasonable overhead. JITGuard [5] consists of an isolation of the
compilation and execution processes of JIT code set up through hardware-based trusted ex-
ecution environments (namely Intel SGX). NoJITsu [6] locks each critical object in the VM
with keys and restricted permissions. Hardware-enforced memory isolation stands out in both
cases as the solution that provides the less performance overhead and a way to refine isolation
if needed in the future.

2.3 Threat Model

The goal of the adversary is to gain the ability to execute arbitrary code in the VM process.
This attack becomes even more concrete as JavaScript or Java VMs are heavily deployed with
lots of vulnerabilities [8]. The attacker can use the VM to perform arbitrary (sand-boxed)
computations at runtime. The VM enforces a strong W⊕X policy where memory pages cannot
be writable and executable at the same time. This policy disables code-injection attacks. Some
part of the VM or the surrounding application contains a memory-corruption bug that enables
an adversary to access any part of the program address space. This assumption is considered
reliable because most core VM components are written in C or C++ and are not memory-secure.

3 RISC-V Memory Isolation

3.1 ISA Presentation

RISC-V is a modular, extensible and open-source Instruction Set Architecture (ISA) that is
gaining increasing attention from both academia and industry. Its modularity comes from the
extensions it defines, each over the base RV32I (Integer) instruction set. The most common
ones are required to run a fully-featured operating system, they consist of RV64IMAFDC. They
represent the 64-bits instructions (RV64I, a superset of RV32I), multiplications and divisions
(M), atomic instructions (A), compressed instructions (C) the equivalent of Thumb-2 in ARM,
floating-point operations (F) and double-precision operations (D). Writing an application sup-
ported by a specific set of extensions will make it available for broader sets as well. Overall,
more than 15 extensions are available, either in a frozen complete state, in the process of being
ratified or open to proposals (such as the J extension for dynamically translated languages).
The standard defines opcode space for custom instructions that extend the base set and reserves
hints (base instruction with specific arguments) for custom use. As multiple softcore RISC-V
processors are available open-source (Rocket, BOOM, CV32E40P, etc.), they can be extended
with custom instructions.

3.2 RISC-V

Its privileged specification [9] presents the PMP mechanism which describes the interface for
a standard RISC-V memory protection unit. PMP defines a finite number of memory regions
(namely 16), through dedicated control and status registers (CSRs) which can be configured to
enforce access permissions. Every region can be set as Readable, Writable and/or eXecutable.
If a violation of the permission is raised during decoding, the CPU triggers an exception.
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3.3 Memory Isolation

Several memory protection and isolation solutions on RISC-V are direct alternatives of princi-
ples from other architectures. For example, Keystone [10] is a Trusted Execution Environment
(TEE) for RISC-V, Donky [11] and SealPK [12] are implementations of Memory Protection
Keys (MPK). Co-processing units add other guarantees such as filtering with FlexFilt [13],
monitoring with PHMon [14] or built-in control-flow integrity modules like FIXER [15]. Other
methods modify the processor directly by adding instructions in the decoder or using hints.
RIMI [4] duplicates memory access instructions and defines domains from which these instruc-
tions can be used specifically. Bratter [16] defines a control-flow integrity mechanism purely
based on the hints available and a CSR. Stolz et al. [17] add instructions to hash and verify
the integrity of basic blocks as well as encode and decode code and data pointers.

3.4 Discussion and Position

The mentioned solutions all use custom instructions. Usually, the intrusiveness of the solution
is measured along with the overhead in performance, assessing the impact on usual applications.
However, comparisons between solutions are rare as the domain and application are crucial to
the requirements and acceptability of a solution. The main differences rely on four criteria: the
type of the solution, whether it is a co-processor or an extension of the main core; the backward-
compatibility of the solution; the intrusiveness of the solution and its scalability. Since the JIT
compiler regenerates machine code at runtime, we can take advantage of this to generate custom
instructions with the higher-level knowledge it has at compilation time. We can take advantage
of RIMI instruction isolation by adding few modifications to the JIT compiler and protect its
data accesses.

4 Design of the solution

4.1 RISC-V Modifications

Taking advantage of RISC-V ISA extensibility and PMP feature, Kim et al. present a mech-
anism, called RIMI, to enforce memory isolation at instruction level [4]. It adds a Domain
Memory Protection (DMP) mechanism that comes on top of the existing PMP. Similarly to
PMP, control and status registers are used to define memory regions called domains that consist
of a code and a data region. Memory access and control transfer instructions are duplicated for
each domain. For example, the lw instruction (load word) is duplicated as the original lw and
another lw1. At decode stage, and without overriding the inner PMP, the processor checks if
the domain is allowed to execute this instruction. Instructions are then processed identically
to their original counterpart after the decode phase and do not interfere with internal states
of the RISC-V core. The switch between domains is operated through two new instructions:
jalx to jump to a new domain and jalrx to return from a domain. This mechanism allows a
low-area implementation of in-process isolation.

4.2 Processor Modifications

An RV64GC ISA is needed to run a VM: this work focuses on the 64-bit Rocket [18] and uses
a memory protection scheme similar to [4] where an RV32 ISA has been used, in simulation.
There are three main modifications to perform:
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4.2.1 Decoder logic

10 instructions are needed: load/stores (for various data widths) and inter-domain jumps
(branches are not taken into account). Furthermore, the decoded instruction is exported to the
domain checking logic in order to verify the domain property of the code currently executed.
As a consequence, only the CPU instruction decoder needs to be modified: 2 jumps and 8
load/stores instructions are added with fixed opcodes.

4.2.2 Register file

4 CSRs must be added in order to manage memory isolation thanks to a domain separation.
Each register, known as domaincfg, allows a developer to configure code sections in one of the
two domains (the lowest two bits known as dmpcfg field). As explained earlier, the domain
setting is a complementary security mechanism to the existing PMP proposed in RISC-V spec-
ifications. A bit-masking operation helps to have both protections working together (see Figure
2).

Figure 2: Domain checking verification.

3 inputs are needed:

� Domain ID given by the decoder. It is obtained through instruction bit masking.

� pmpcfg is a byte of a pmpcfgN CSR (see Section 3.7 of [9], volume 2). It contains
read/write/execute rights for a given address space.

� dmpcfg represents the lowest two bits of a byte in the domaincfgN CSR, 1 bit per domain.

4.2.3 Other logic

Some logic is mandatory for bit-masking both PMP and DMP features needed for memory
isolation. Furthermore, when an instruction is decoded, it is also exported to the domain
checking logic. In case a domain verification fails, an interrupt is raised. Regarding the threat
model, it is assumed that CSRs required for memory isolation are accessible only in machine
mode.

5 Use case study

The main goal of an isolation defense around a VM is to protect JIT code and data memory
regions. The usual runtime behavior of a VM consists of calls between the interpretation loop
and JIT code. The main use cases of RIMI on this type of execution scenario are the following:

1. A shadow stack only used by the JIT code that is hidden in a domain only accessible
through duplicated instructions.
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2. Isolating the JIT region in a domain, making the JIT data only accessible through JIT
code using the dedicated memory access instructions.

3. Both solutions combined to hold both a shadow stack in its own domain and a memory
region only accessible by JIT code.

5.1 Scenario 1

An addition of two instructions is required, namely sws and lws that respectively store and load
the return address in the shadow stack and increment or decrement the value in the register hold-
ing the shadow stack pointer. This register is either an existing one in the RISC-V architecture
that has to be cleared out from its other usages (i.e. compiled with the -ffixed-<register>

from GCC) or a custom register created for this usage. In the example, we use a shadow
stack pointer register called str. The shadow stack is stored in a dedicated RIMI domain only
accessible through the sws and lws instructions.

Listing 1: Scenario 1 code

jit_method:

# Prologue # Shadow stack load

addi sp, sp, -16 lws ra, 0 (str)

sw s0, 0 (sp) addi str, str, 4

# Shadow stack save # Epilogue

addi str, str, -4 lw s0, 0 (sp)

sws ra, 0 (str) addi sp, sp, 16

... ret

5.2 Scenario 2

Making the JIT data only accessible through the JIT code implies that all memory accesses
are performed from the JIT code using the duplicated memory accesses, namely sw1 and lw1

and their varying widths alternatives (i.e. -b, -h, -w and -d). The execution or not of those
instructions depends on the current domain, either the base domain or the JIT memory region
domain. The change is explicit in the VM code when the interpreter triggers a call to an
already JITted method. The instruction jalx is used to change domain and jalrx to return
from JIT code to the interpreter. This solution adds ten and thirteen (adding lwu, ld and sd)
instructions for 32 and 64-bits architectures respectively.

Listing 2: Scenario 2 code

jit_method:

interpreter_loop: # Loading JIT data

... lw1 t0, 24(s0)

sw t0, 0(sp) # Storing JIT data

jalx jit_method sw1 t0, 24(s0)

lw t0, 0(sp) ...

... jalrx ra, 0(ra)
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6 Evaluation of the proposed solution

6.1 Hardware implementation

In order to evaluate the hardware impact of this work, synthesis were done on Xilinx Vivado
2018.2 targeting an Artix-7 xc7a100t device. Area results are presented in Table 1. For each
metric, left value is a bare Rocket CPU core: no modification, synthesized from the v1.5 release
with small core settings while right value is a Rocket core modified to be compatible with the
approach presented in Section 4. BPU is a Breakpoint Unit, div is the multiplication/division
unit, ibuf is a set of several buffers and CSRs is a submodule describing all the control/status
registers as well as implementing the decoding logic. For div and ibuf, it is assumed that
optimizations were made by both Scala-to-Verilog transformation and synthesis tool.

Table 1: Implementation results on a xc7a100t FPGA device. For each column, left are results
for a bare Rocket core and right for a modified Rocket core.

LUTs Registers DSPs

CPU

ALU 627 | 627 0 | 0 0 | 0
BPU 67 | 67 0 | 0 0 | 0
CSRs 1066 | 1045 741 | 741 0 | 0
div 761 | 765 214 | 214 4 | 4
ibuf 187 | 187 53 | 53 0 | 0
Other 1318 | 1358 609 | 609 0 | 0

Total 4,026 | 4,049 (+0.57%) 1,617 | 1,617 (+0.00%) 4 | 4 (+0.00%)

Modifications for the modified core produces a small area overhead (around 1% in terms of
LUTs). As this work is based on custom instructions and additional CSRs, the main overhead
can be seen in the CSRs submodule. Then, a power analysis is presented in Table 2.

Table 2: Global power of Rocket sub-modules (in W).

Bare Rocket Modified Rocket

ALU 3.584 3.543 (- 1.14%)
BPU 0.177 0.176 (- 0.56%)
CSRs 2.087 2.315 (+ 10.92%)
div 10.235 10.507 (+ 2.66%)
ibuf 4.327 4.674 (+ 8.02%)
Overall power 30.919 32.285 (+ 4.42%)

Regarding the overall power consumption of the modified core, similar assessments can be
made: when the modified Rocket power consumption is lower, it is assumed to be due to prior
optimizations by the synthesis. However, by looking at the overall power of the core, its power
consumption is less than 3% higher than a bare softcore which is an acceptable overhead.

6.2 Discussion

On the hardware side, modifications needed in the processor both come out as cheap (less
than 10%, even in the worst case). Furthermore, the memory-protected CPU is still able to
decode existing instructions: standard applications are not affected by domain security settings.
However, the generated secure code using duplicated instructions is not backward-compatible.
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On the software side, the instrumentation cost is low as it only requires to generate duplicated
memory access instructions in the machine code that may differ for 1 bit only. The domain
change instructions should be used through trampolines that connect the interpreter with the
jitted machine code. The shadow stack used by the JIT code comes as additional instructions
instrumenting calls and returns.
Only a quarter of the domaincfg register is used and as an extension, it is assumed that it
can be used to extend the memory isolation feature with up to 8 domains as long as dedicated
instructions are implemented in the decode stage of the CPU. In our case, 15 instructions
were added, 11 for memory access, 2 for domain changes and an additional 2 to handle the
shadow stack. They should be generated by the JIT compiler and decoded then executed on the
processor. Simpler domains (needing less specific instructions) could be added to the existing
pipeline at a lower cost.

7 Conclusion and perspectives

Language virtual machines compile and manipulate native machine code through their JIT
compiler. As attackers have presented various JIT attacks, the most advanced defenses comes
as strict memory isolation. While this solution protects the system and runtime application
efficiently, they come as a cost, whether in performance overhead, intrusiveness of the instru-
mentation or scalability. We looked at the impact of an instruction-level memory isolation
(RIMI) on the Rocket RISC-V softcore. We presented the impact of the presence of two do-
mains on the underlying hardware architecture. Simple additions to the main decode logic and
PMP implementation allow the implementation of two scenarios of isolation. The goal is to
clearly separate JIT code and other critical components in separate domains with their own
dedicated instructions. We plan on conducting further investigation on the impact of such
measures in context and compare different RISC-V instruction-based isolation solutions in the
context of JIT compilation.
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