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2 Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warszawa, Poland

(Dated: March 15, 2023)

Broadband temporal modes of pulsed optical fields have been recently recognized as very promising
for photonic quantum information processing and time-frequency metrology. Exploiting their full
potential demands efficient and flexible tools for their manipulation. Among the tools demonstrated
surprisingly the most basic, a single-mode temporal filter, is missing. In this work, we propose an
experimentally feasible approach to realize a genuine single-mode temporal filter that is based on
the concept of temporal cavity, a device with temporal mode-dependent resonances in the basis of
frequency comb modes. This functionality is achieved as temporal-domain analogy of spatial-mode
cleaner cavities. This device will enable robust temporal mode filtering and detection, opening new
prospects in time-frequency metrology and multidimensional quantum information processing.

Temporal modes (TMs) of optical ultra-short pulses
provide a reliable and flexible encoding for photonic non-
classical states [1]. Their noiseless manipulation plays an
important role in the processing of quantum information
and in communication networks [2–5], it is therefore im-
portant to have schemes for sorting and distributing them
within a network. This would enable the implementation
of protocols for multipartite entanglement sharing, quan-
tum teleportation, quantum key distribution [1, 2, 6], as
well as for the synthesis of multimode entangled states
such as cluster states [7–9], a fundamental resource for
the implementation of a computation model based on
projective measurements [10].

Mode-selective techniques have been developed in the
last few years such as, for example, the quantum pulse
gate (QPG) [11–14]. Whereas these devices have the ca-
pability of sorting the modal content of the input while
preserving its quantum properties [15], they rely on the
use of a reference pump signal in the desired TM and an
engineered phase-matching that inherently modify both
the central wavelength and the selected TM mode and
that may not be availbale for arbitrary carrier frequen-
cies. On the other side, it is not known whether the
complex approach of multi-stage arbitrary modulations
of spectral and temporal phases [16, 17] could provide
genuine filtering capability. To date, an approach to im-
plement a genuine filter, which would sort TMs while
maintaining their carrier frequency as well as their orig-
inal shape (in time or frequency domain), has not been
shown.

In this work, we propose the “temporal cavity” as a
device that is able to perform genuine TM filtering. We
concieved this scheme by using the principles of space-
time duality [18], i.e. the formal analogy between the
spatial and temporal degrees of freedom of propagating
optical beams. One of the most fascinating results yield
by this analogy is the time lens, a device that mimics,
in the time domain, the effect of thin lenses on spatial
images. Time lenses have been implemented with deter-
ministic linear electro-optical phase modulation [5, 19–
22] or non-linear optical processes [23–28] and have been

adopted for manipulation of pulses in discrete [21, 29–33]
or in continuous [34–38] variables.

A temporal cavity is obtained by using the time-
frequency analog of a spatial-mode cleaning cavity, a cav-
ity whose eigenvectors are Hermite-Gaussian transverse
modes, with mode-dependent reflection and transmission
coefficients [39]. This effect is due to a mode-dependent
spatial Gouy phase accumulated in a round trip. Spatial-
mode cleaners have been employed for reducing the noise
induced by the fluctuations of the laser beam profile in
gravitational interferometers [40], for synthesizing spatial
multimode quantum beams [41, 42] and, more recently,
they have been proposed as a spatial-mode sorters [43],
which may enable super-resolved imaging [44].

We show that temporal cavities possess resonances
generated by the combination of a cavity build-up ef-
fect and the temporal Gouy phase shift [19] and that are
distinct with respect to the family of Hermite-Gaussian
TMs (HGTM). Fundamentally different from other TM
sorting approaches, temporal cavities not only behave as
genuine filters but are also device-independent, in the
sense that their operation is based only on the principles
of temporal imaging and it does not depend of whether
they are implemented by nonlinear processes or electro-
optic phase modulators [45].

Temporal cavity. When a paraxial monochromatic
beam impinges on a spatial-mode cleaner that is tuned
on a particular transverse mode, its modal content at
resonance with the cavity is transferred, while the not
resonant modal content is reflected. A typical design for
a spatial-mode cleaner cavity consists of two flat par-
tially reflecting mirrors (the input and output couplers)
and one spherical perfectly reflecting mirror arranged in
triangular geometry as in Fig. 1(a).

We use the space-time duality [18] in order to trans-
late the triangular cavity to the time domain. Accord-
ingly, the dispersive propagation of a short pulse in
the quasi-monochromatic approximation is the dual, in
time domain, of the diffractive evolution of a paraxial
monochromatic beam. As a consequence, the free space
propagation in Fig. 1 must be replaced by the propaga-
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FIG. 1. (a) Spatial mode-cleaner with spherical mirror, (b)
spatial mode-cleaner with a thin lens replacing the spherical
mirror.

FIG. 2. Schematic of a temporal cavity with two inputs Êin1

and Êin2 and two outputs Êr and Êt. The two couplers are
characterized by real reflection and transmission coefficients
r1, r2 and t1, t2. A third coupler with reflection coefficient ρ is
considered in order to model possible sources of losses during
a round-trip. The two dispersive elements (two gratings in
the picture) with equivalent GDD D1 and D2. A time lens of
focal GDD Df is inserted between the two dispersive elements.
Note that, contrary to the spatial cavity, the manipulations
are done only on the optical pulses. The spatial mode of the
beam remains the same through propagation in the temporal
cavity.

tion of a pulse in a dispersive medium. In the quasi-
monochromatic approximation, any pulse can be conve-
niently decomposed on the basis of HGTM. Indeed their
evolution and manipulation are described by the tempo-
ral complex pulse parameter q, encoding the chirp and
the pulse duration, and the temporal ABCD matrix for-
malism [19, 45]. See also Appendix A for more details.

The flat mirrors do not have any special role apart
from deflecting the trajectory of the optical beam without
changing its shape. These elements are kept in the time
domain framework with no need for translation. On the
contrary, the spherical mirror plays a major role in the
emergence of mode-selective resonances. Despite “time
reflection” being a possible phenomenon [46], at the best
of our knowledge there is no practical way of implement-
ing a spherical mirror in the time domain. This issue
can be resolved by observing that its ABCD matrix is
formally similar to that of a thin lens whose dual, in
time domain, is a time lens which, instead, can be eas-
ily implemented in experiments [5, 45, 47]. The alter-
native scheme for a spatial-mode cleaner involves, thus,

three flat mirrors (two partially reflecting, one perfectly
reflecting) and one thin lens as represented in fig. 1(b).
The temporal cavity is obtained as the equivalent of this
alternative scheme and it is drawn in fig. 2. The beam
splitters, with real reflection and transmission coefficients
r1, t1 and r2, t2, implement the input and output cou-
plers. The perfectly reflecting flat mirrors deflect the
trajectory in order to create a loop. The dispersive el-
ements are characterized by a total Group Delay Dis-
persion (GDD) D1 and D2, respectively. Notice that,
in principle, a scheme with only one dispersive element
is also possible, but for generality we consider two ele-
ments. The time lens is placed between the dispersive
elements and it is characterized by a focal-GDD of Df .
The physical process used for its implementation is not
important as far as it does not change the carrier fre-
quency of the pulse. Therefore, for this application, the
best choice would be electro-optic modulators [5, 19–22]
or processes such as cross-phase modulation [48, 49]. The
translation to the time domain is, finally, completed by
considering the input beam. For mode-cleaners, this is
a paraxial monochromatic beam while its dual, in time
domain, is a quasi-monochromatic pulse. However, in or-
der to get the typical build-up effect of resonant cavities,
it is necessary that at the input coupler, the k-th pulse
after one round-trip interferes with a new pulse, say the
(k+1)-th, entering the cavity. As a consequence a tempo-
ral cavity can be realized only when impinged by a train
of pulses such that their repetition period T matches the
round-trip time of the loop (or it is a sub-multiple of it):

T =
Lloop

c
, (1)

where Lloop = d0 + d1 + d2 is the cavity optical length,
d0 is the distance (in empty space) between the input
and output couplers and di (for i = 1, 2) are the optical
lengths of the two dispersive media.

A second condition necessary for assuring an
interference-based cavity build-up effect is that the dura-
tion and chirp of the circulating pulse at loop k matches
that of the (k + 1)-th incoming pulse at the input cou-
pler. This is formally expressed by requiring that the
q-parameter remains unchanged after each round trip
qk+1 = qk (say q). By using the temporal ABCD for-
malism, this condition leads to the eigenvalue condition

q =
Aloopq +Bloop

Cloopq +Dloop
(2)

where Aloop = 1 − D2/Df , Bloop = Dtot − D1D2/Df ,
Cloop = −1/Df and Dloop = 1−D1/Df are the elements
of the ABCD matrix of the pulse propagation after one
round-trip and Dtot = D1 + D2 is the total GDD. The
solution of (2)

q =
D2 −D1

2
± i

√
Dtot

(
Df −

Dtot

4

)
(3)
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FIG. 3. Scheme of the resonances (9) of a temporal cavity.
The integers p and m can be interpreted as the longitudinal
and transverse orders of the resonance.

defines the temporal q-parameter that a train of pulses
must have in order to be a cavity eigenvector or, con-
versely, it defines the parameters that the temporal cavity
needs to have in order to sustain the train of pulses with
a given q-parameter. In particular the stability of the
resonator is obtained for |Dtot| ≤ 4|Df |. From eq. (3), it
is clear that with two dispersion elements it is possible to
arrange the setup so that Re[q] = 0 when D1 = D2. This
allows considering the simpler situation of not chirped
input pulses for practical purposes.

Equations (1) and (3) represent the two fundamental
equations for the temporal cavity. When they are both
satisfied, the input and output fields can thus be written
as

Ê(+)(t, z) = E0ei(k0z−ω0t)Âf(t, z), (4)

Âf(t, z) =

+∞∑
k=−∞

∑
m∈N

â
(k)
f,mum(t− kT, z), (5)

where the indexes f = {in1, r, in2, t} identify, respectively,
the input and the reflected beams at the first coupler, the
input and the transmitted beams at the second coupler
(see fig.2). The modal functions um(t − kT, z) form a
complete orthonormal set of HGTM that are non-zero
in the interval (k − 1)T < t ≤ kT . In the steady state
regime, the mode-dependent input-output relation reads(

â
(k)
t,m

â
(k)
r,m

)
= M

(
â
(k)
in1,m

â
(k)
in2,m

)
, (6)

where

M =

(
Tm −eiδmR∗m
Rm eiδmT ∗m

)
, (7)

with Tm = t1t2e
iα

1−r1r2eiδm and Rm = r1−r2eiδm
1−r1r2eiδm . In these

expressions δm = k0Lloop − ψm is the phase accumu-
lated during one loop and it is the sum of two terms: the
first is the phase of free space evolution along the full
length of the loop Lloop and ψm = (1 + m)ψGouy is the
mode-dependent temporal Gouy phase, with ψGouy =
arctan(Dtot/σ

2
0), accumulated during the propagation

through the two dispersive media of total GDD Dtot =
D1 +D2. Finally α is the phase accumulated by diffrac-
tive propagation from the input coupler to the output

coupler. Since ti and ri are chosen real and t2i + r2i = 1
(for i = 1, 2), one can easily prove that M is a unitary
matrix, so that the boson commutation relations for the
output field operators are respected.

The temporal cavity effect becomes evident by consid-
ering the transmittance coefficient

|Tm|2 =
Tmax

1 +
(
2F
π

)2
sin2

(
ω0

2νFSR
− ψm

2

) , (8)

where Tmax = t21t
2
2/(1 − r1r2)2, F = π

√
r1r2/(1 − r1r2)

and νFSR = c/Lloop are the maximal transmittance, the
finesse and the free spectral range (FSR) of the tempo-
ral cavity, respectively. Mode-dependent resonances are
found at

ω(p,m) = (2πp+ ψm)νFSR, (9)

with p ∈ Z. In close analogy with the spatial case, these
resonances are characterized by the two integers p and m
that can be interpreted as the temporal equivalent of the
longitudinal and transverse order of a resonance.

As an example, let us consider an input multimode
frequency comb described by expressions (A1) and (5)
with carrier ω0, repetition rate T , and a given tempo-
ral q-parameter. Injecting these values in eqs. (1), (3)
and (9) produces three constraints on the cavity param-
eters Lloop, Df and Dtot. As a result, for a given input,
there is no free parameter for the cavity. Since Lloop

and the cavity free spectral range νFSR are blocked, via
eq. (1), by the train repetition rate, the remaining param-
eters can be controlled in order to induce the resonance
condition for the m-th TM and at the same time to match
the input q-parameter. This is an important difference
with respect to the spatial-mode cleaner where there is
one free parameter, for example, the cavity length, that
can be used to tune the cavity on a particular resonance.
This circumstance does not prevent the selection of spe-
cific TMs by tuning the temporal cavity to a particu-
lar resonance, but it certainly makes the operation more
challenging. We finally point out that it is possible to
free one additional parameter by allowing to control the
carrier frequency ω0, the period T , or the temporal q-
parameter of the input.

Temporal cavity as genuine TM mode filter.
The mode-dependent resonances of a temporal cavity can
be employed for filtering multimode frequency combs.
Let us consider a configuration where a multimode input
frequency comb, as in (5), is sent through the first cou-
pler (port “in1”) while keeping the second input (port
“in2”) in vacuum state. If the cavity is not suitably
tuned, the m-th order Hermite-Gauss frequency comb is
partially transmitted with coefficient Tm and partially re-
flected with coefficient Rm. As a result, the correspond-
ing quantum state is mixed with the vacuum entering
through “in2”. Since M is unitary and |Tm|2+|Rm|2 = 1,
tuning the cavity on the suitable resonance (p,m) al-
lows for complete transmission of the mode in the out-
put Êt, because |Tm|2 = 1 and |Rm|2 = 0. As far as
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FIG. 4. (Top) diagram of the relation Eq. (2). (Bottom)
number of modes fitting one cavity FSR. Full squares and
circles correspond to (i) Tmax = 0.77, F = 26, P = 3% and
(ii) Tmax = 0.11, F = 8.7, P = 40%, respectively. At these
points, the distance between neighbour resonances is about
1.5 times their line-width. On the left of these points (dotted
line for case (i) and dashed line for case (ii)), the distance is
smaller and the two resonances are not resolved.

the other resonances do not overlap with the one corre-
sponding to (p,m), the modes m′ 6= m are reflected, at

the first coupler, in the mode Êr, i.e. |Tm′ |2 = 0 and
|Rm′ |2 = 1. Therefore, this configuration allows to filter,
or de-multiplex, the mode m from the others without in-
volving any change of the carrier nor of the modal shape
of the TM.

On the other hand, a different configuration can be
used to multiplex frequency combs corresponding to dif-
ferent orders. For the sake of simplicity let us consider
only two modes and suppose that the mode m is sent
through the port “in1”, while the mode m′ 6= m enters
the cavity through the port “in2”. When the cavity is
tuned on the m-th resonance, as in the previous config-
uration, the mode m, which is completely transmitted,
and the mode m′, which is reflected at the second cou-
pler, are now joined in the output mode Êt. This scheme
allows therefore to synthesize multimode states with tai-
lored quantum correlations.

Experimental feasibility. The shortest focal lengths
experimentally available to date for efficient electro-optic
time lenses are about 10 ps2 [5, 45]. fig. 4-top depicts the
relation Eq. (2) constraining the values of Df and Dtot

for a given input train of pulses of duration σ0. Be-
cause of the “V” shape of these curves, it would always
be possible to find a suitable Dtot for the experimentally
available Df . We note that these values of dispersion are
easily achievable [5, 45]. However, three factors limit the
choice on this parameter: the number N = 2π/ψGouy of
resonances that fit in one cavity FSR, the cavity finesse
F and the round-trip losses P. Indeed, two different

modes 0 ≤ m ≤ N and m′ > N cannot be discriminated
when a resonance of order (p′,m′) overlaps with the reso-
nance (p,m) (see fig. 3). Therefore N is a figure of merit
of a temporal cavity that accounts for the number of
modes that can be discriminated. In principle, as fig. 4-
bottom shows, N rapidly increases when Dtot decreases.
In this case, the separation ψGouy = arctan(Dtot/σ

2)
between consecutive resonances of the same longitudi-
nal order p might become smaller than their line-width
νFSR/F . Therefore one should seek high values of fi-
nesse. On the other side, competing behavior appears
when the unavoidable round-trip losses are kept into ac-
count. These can be modeled as a non-zero reflectance
P of an additional beam splitter, as depicted in Fig. (2).
The finesse and the maximal transmittance are now F =
π
√
ρ r1r2/(1 − ρ r1r2) and Tmax = (t1t2)2/(1 − ρ r1r2)2

respectively, with ρ2 = 1 − P. The higher the F , the
higher the photon lifetime in the cavity and the sensitiv-
ity of Tmax to losses (see Appendix B for further details).
This can rapidly become much smaller than 1 with P in-
creasing. Therefore a compromise should be sought be-
tween N and F for a given value of losses. In figs. 4, we
marked with full squares those points where resonances
are resolved with a relative distance of 1.5 times their
line-width for F = 26 and P = 3%. The corresponding
transmittance Tmax = 0.77 is high enough to guarantee a
good efficiency in sorting multimode quantum frequency
combs. On the left of these squares, the dotted parts rep-
resent the regions where resonances are not sufficiently
resolved. On the contrary, resonances are well separated
on the right side (dashed and solid line regions). Here,
however, we notice that the value of N decreases and
approaches the limit value of 4 (see fig. 4-bottom).

In the specific case of an electro-optic time lens, an
additional consideration about the time aperture needs
to be included: the duration of the pulse at the time
lens needs to be shorter than the span of the parabolic
phase modulation. Assuming the standard cosinusoidal
electro-optic time lens, where Df = 4π2δf2RF (δ – mod-
ulation amplitude, f2RF – modulation frequency) with an
experimentally realistic value of δ = 11 rad, and the tem-
poral aperture of 0.4/fRF [5, 45, 50], we verified that this
condition is satisfied for the maximum pulse durations al-
lowed by eq. 3. We considered the condition as met when
double FWHM of the pulse was smaller than the aper-
ture. We further note that 40% loss is feasible to realize
given the losses in the state of the art of electro-optic and
dispersive elements. For this level of losses, the param-
eters region for which resonances are resolved is on the
right side of the full circles in figs. 4. For these points
resonances are separated about 1.5 times their line-width
and the corresponding transmittance Tmax = 0.11 is high
enough to be detected in an experimental test. The de-
velopment of integrated thin-film lithium niobate devices
[51] is expected to further increase the experimental ro-
bustness of the scheme.

Conclusions We propose a method to realize a gen-
uine temporal mode filter for frequency combs, which
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transmits a single temporal mode while blocking the
other temporal modes. The filter operation is based on
the temporal mode dependence of the temporal Gouy
phase combined with a cavity build-up effect. We
show that the implementation of the filter is experimen-
tally feasible using currently available electro-optic time
lenses. The filter operation does not rely on complex
nonlinear interactions or phase matching, is frequency
independent and does not change the temporal mode. It
will facilitate new applications in multidimensional quan-
tum information processing and time-frequency metrol-
ogy by enabling multiplexing and demultiplexing of tem-
poral modes, including temporal mode-dependent detec-
tion. In particular it will enable the synthesis of multi-
mode quantum frequency combs as resources for quan-
tum networks [9] as well as for quantum metrology [52].
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APPENDICES

Appendix A: Gaussian temporal imaging

In a quantum description of ultra-fast optical pulses,
the positive-frequency part of the electric field operator
can be written as [53]

Ê(+)(t, z) = E0ei(k0z−ω0t)Â(t, z), (A1)

Â(t, z) =
∑
m∈N

âmum(t, z), (A2)

where ω0 is the carrier, k0 = k(ω0), E0 is the single
photon amplitude of the mode m and âm are annihi-
lation operators satisfying boson commutation relations
[âm, â

†
n] = δm,n. Here we assume a pulse propagating

along the z and having a trivial profile in the transverse
plane (x, y), i.e. a plane wave. The slowly-varying en-

velope operator Â(t, z) is decomposed over a generic or-
thonormal basis of modal functions {um(t, z)}m∈N. It
is convenient working in the travelling-wave frame of
reference (τ, z) that is propagating with the wave at
pulse group velocity where the delayed time τ , defined as

τ = t−β1z, with β1 = (dk/dω)ω0
the inverse of group ve-

locity. In the quasi-monochromatic approximation, their
propagation through a dispersive medium is described by
the equation

∂

∂z
um(τ, z) = − i

2
β2

∂2

∂τ2
um(τ, z) (A3)

where β2 = (d2k/dω2)ω0
is the Group Velocity Dis-

persion (GVD). Since eq. (A3) is the analogous of the
paraxial Helmholtz equation for diffracting beams, the
orthonormal basis of temporal Hermite-Gauss (HG) func-
tions is a possible solution. Up to a normalization factor,
these solutions read, for m ∈ N, as

um(τ, z) ∝ σ0
σ(z)

Hm (τ/σ(z)) e−iτ
2/(2q(z))e−i(1+m)ψ(z)

(A4)

with Hm(τ/σ(z)) the Hermite functions, 1/q(z) = C(z)−
i/σ2(z) the inverse of the temporal complex beam pa-
rameter q, σ(z) = σ0(1 + (β2z/σ

2
0)2)1/2 the pulse dura-

tion at the propagation distance z, C(z)−1 = β2z(1 +
(σ2

0/(β2z)
2))1/2 the inverse of the chirp acquired by the

pulse at z because of dispersion, ψ(z) = arctan(β2z/σ
2
0)

the temporal Gouy phase shift, and σ0 the minimal pulse
duration reached when its chirp is null. The q parame-
ter, as is the case for its spatial analogue, contains all the
information about the Hermite-Gaussian pulse.

Because of the space-time duality, the evolution of
Hemite-Gauss temporal modes (HGTMs) can be solved
by using the temporal version of the ABCD formal-
ism [19]. Therefore, for z2 > z1 the q-parameter is given
by

q(z2) =
Aq(z1) +B

Cq(z1) +D
, (A5)

where the coefficients A, B, C and D are the matrix el-
ements of the equivalent ray transfer matrix of all the
optical elements through which the pulse has travelled
from z1 to z2 and they satisfy the relation AD−BC = 1.
In this formalism, the ABCD matrix Mdisp for a disper-
sive propagation through a medium of length d and GVD
β2 is given by

Mdisp =

(
1 D
0 1

)
, (A6)

where D = β2d is the group delay dispersion (GDD). In a
similar way, by invoking the space-time duality, we obtain
the ABCD matrix MTL of a time lens of focal-GDD Df

MTL =

(
1 0

−1/Df 1

)
. (A7)

Equipped with these few elements we develop the theory
of a temporal cavity in the main text.
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FIG. 5. (Left) Evolution of the maximal transmittance Tmax

(eq. B1) and (right) the finesse F (eq. B2) for different values
of the reflectance of the beamsplitters R.

Appendix B: Sensitivity of the maximal
transmittance to finesse.

When the unavoidable intracavity losses (say P) are
kept into account, the finesse F and the maximal trans-
mittance Tmax of the temporal cavity can be quantified
as follows:

Tmax =
(1−R)2

(1−R
√

1− P)2
, (B1)

F =
π
√
R
√

1− P
1−R

√
1− P . (B2)

Here R = r21 = r22 denotes the reflectivity of the input
and output couplers, which can be adjusted to achieve

the desired level of finesse and maximal transmittance.
As noted in the main text, a higher value of the finesse
is desirable for achieving a better separation between
the mode-dependent resonances. However, a high finesse
leads to a longer photon lifetime in the cavity that in-
duces an increased sensitivity of the maximal transmit-
tance to the cavity losses. This trade-off is illustrated in
fig. 5. In the left panel, for a given value of losses P, the
finesse can be increased (reduced) by increasing (reduc-
ing) the reflectivity R of the input-output couplers. On
the contrary, on the right, an increase of the reflectivity
R leads to a decrease of Tmax.

As losses increase, the value of Tmax decreases accord-
ingly, and this effect is more pronounced for higher values
of R, as seen from the steeper drop in Tmax observed at
these reflectivities.

As a result, the choice of reflectivity for the beamsplit-
ters must balance out the desire for a high finesse and
therefore longer photon lifetime with the need for a high
maximal transmittance and therefore greater efficiency.
This results in a trade-off between the two metrics that
must be carefully considered when designing temporal
mode filters.

For classical applications, where pulse amplification is
possible, the value of Tmax is generally not critical. In
such cases, the choice of R should prioritize a high degree
of finesse, as it corresponds to better separation between
cavity modes. However, in quantum applications, the
sensitivity of Tmax to losses becomes a much more im-
portant consideration, since it determines the efficiency
of the filtered mode. Thus, the choice of R for such ap-
plications need to ensure maximizing the efficiency of the
cavity while maintaining a sufficient level of finesse. That
will depend on the overall losses in the cavity.
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