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Introduction

The literature on iterative regularisation methods for solving ill-posed linear inverse problems in finite/infinite-dimensional Hilbert or Banach settings is very vast, see, e.g., [START_REF] Engl | Regularization of Inverse Problems[END_REF][START_REF] Schuster | Regularization methods in Banach spaces[END_REF] for surveys. Given two normed vector spaces pX , } ¨}X q and pY, } ¨}Y q, we are interested in the inverse problem

find x P X s.t. Y Q y " Ax `η, (1) 
where A P LpX ; Yq is a bounded linear operator, and η P Y denotes the (additive) noise perturbation of magnitude }η} Y ď δ, δ ą 0, corrupting the measurements. Due to the ill-posedness, the standard strategy for solving [START_REF] Alparone | An adaptive l p -penalization method to enhance the spatial resolution of microwave radiometer measurements[END_REF] consists in computing x ‹ P argmin xPX Ψ pxq, where the functional Ψ : X Ñ R `Y t`8u quantifies the fidelity of a candidate reconstruction to the measurements, possibly combined with a penalty or regularisation term enforcing prior assumptions on the sought quantity x P X . A popular strategy for promoting implicit regularisation through algorithmic optimisation consists in designing iterative schemes solving instances of the minimisation problem argmin xPX }Ax ´y} Y or, more generally argmin xPX f pxq with f pxq " f pAx ´yq, (P)

where, for y P Y, the function f p¨q " f pA ¨´yq : X Ñ R ě0 measures the discrepancy between the model observation Ax and y. The iterative scheme has to be endowed with a robust criterion for its early stopping in order to avoid that the computed reconstruction overfits the noise [START_REF] Natterer | The mathematics of computerized tomography[END_REF]. In this context, the role of the parameter tuning the amount of regularisation is thus played by nothing but the number of performed iterations. One-step gradient descent algorithms, such as the (accelerated) Landweber or the Conjugate Gradient, represent the main class of optimisation methods for the resolution of (P), see e.g. [START_REF] Eicke | Iteration methods for convexly constrained ill-posed problems in hilbert space[END_REF][START_REF] Neubauer | Tikhonov-regularization of ill-posed linear operator equations on closed convex sets[END_REF][START_REF] Piana | Projected Landweber method and preconditioning[END_REF].

The most well-studied cases consider X and Y to be Hilbert spaces, e.g., X " Y " 2 pRq. In this setting, problem (P) takes the form argmin xP 2 pRq 1 2 }Ax ý} 2 2 pRq and can be solved by a standard Landweber iterative scheme

x k`1 " x k ´µk`1 A ˚pAx k ´yq, (2) 
for k ě 0, where µ k`1 ą 0 denotes the algorithmic step-sizes. However, many inverse problems require a more complex setting to retrieve solutions with specific features, such as sharp edges, piecewise constancy, sparsity patterns and/or to model non-standard (e.g., mixed) noise in the data. Either X or Y, or both, can thus be modelled as more general Banach spaces. Notable examples are standard Lebesgue spaces L p pΩq and, in discrete settings, sequence spaces p pRq with p P r1, `8sz t2u. While the solution space X affects the choice of the specific iterative scheme to be used, the measurement (or data) space Y is naturally connected to the norm appearing in (P). For example, for Hilbert X " 2 pRq and Banach Y " p pRq, an instance of (P) reads as

argmin xP 2 pRq 1 q }Ax ´y} q p , with q ą 1,
for which a gradient descent-type scheme can still be used in the form x k`1 "

x k ´A˚J q p pAx k ´yq, where J q p : p pRq Ñ p ˚pRq is the so-called q-duality map of p pRq, defined as J q p p¨q " B ´1 q } ¨}q p pRq ¯. When both X and Y are Banach spaces, a popular algorithm for solving

argmin xPX 1 q }Ax ´y} q Y , with q ą 1
is the dual Landweber method [START_REF] Schöpfer | Nonlinear iterative methods for linear ill-posed problems in Banach spaces[END_REF] x

k`1 " J p X ˚`J p X px k q ´µk`1 A ˚Jq Y pAx k ´yq ˘(3)
where J p X : X Ñ X ˚, is the p-duality map of X , J p X ˚: X ˚Ñ X is its inverse with p ˚denoting the conjugate exponent of p, i.e. 1{p`1{p ˚" 1. For other references of gradient-descent-type solvers in Banach settings, see, e.g. [START_REF] Jin | Nonstationary iterated Tikhonov regularization for ill-posed problems in Banach spaces[END_REF][START_REF] Schuster | Regularization methods in Banach spaces[END_REF][START_REF] Schöpfer | Nonlinear iterative methods for linear ill-posed problems in Banach spaces[END_REF].

A non-standard Banach framework for solving linear inverse problems is the one of variable exponent Lebesgue spaces L pp¨q pΩq and ppnq pRq [START_REF] Diening | Lebesgue and Sobolev Spaces with Variable Exponents[END_REF]. These Banach spaces are defined in terms of a Lebesgue measurable function pp¨q : Ω Ñ r1, `8s, or a real sequence pp n q n , respectively, that assigns coordinate-wise exponents to all points in the domain. Variable exponent Lebesgue spaces have proven useful in the design of adaptive regularisation, suited to model heterogeneous data and complex noise settings. Iterative regularisation procedures in this setting have been recently studied [START_REF] Bonino | Dual descent regularization algorithms in variable exponent Lebesgue spaces for imaging[END_REF] and also extended to composite optimisation problems involving non-smooth penalty terms [START_REF] Lazzaretti | Modular-proximal gradient algorithms in variable exponent Lebesgue spaces[END_REF].

While benefiting from several convergence properties, the use of such (deterministic) iterative algorithms may be prohibitively expensive in large-size applications as they require the use of all data at each iteration. In this work, we follow the strategy performed by the seminal work of Robbins and Monro [START_REF] Robbins | A Stochastic Approximation Method[END_REF] and adapt a stochastic gradient descent (SGD) strategy to the non-standard setting of variable exponent Lebesgue space, in order to reduce the per-iteration complexity costs. Roughly speaking, this is done by defining a suitable decomposition of the original problem and implementing an iterative scheme where only a batch of data, typically one, is used to compute the current update. Note that the use of SGD schemes has recently attracted the attention of the mathematical imaging community [START_REF] Jin | Stochastic mirror descent method for linear illposed problems in Banach spaces[END_REF][START_REF] Kereta | On the convergence of stochastic gradient descent for linear inverse problems in Banach spaces[END_REF] due to its applicability in large-scale applications such as medical imaging [START_REF] Herman | Algebraic reconstruction techniques can be made computationally efficient (positron emission tomography application)[END_REF][START_REF] Needell | Randomized block Kaczmarz method with projection for solving least squares[END_REF][START_REF] Twyman | An investigation of stochastic variance reduction algorithms for relative difference penalized 3D PET image reconstruction[END_REF]. However, its extension to variable exponent Lebesgue setting is not trivial due to some structural difficulties (e.g., non-separability of the norm), making the adaptation a challenging task.

Contribution. We consider an SGD-based iterative regularisation strategy for solving linear inverse problems in the non-standard Banach setting of variable exponent Lebesgue space ppnq pRq. To overcome the non-separability of the norm in such space, we consider updates defined in terms of a separable function, the modular function. Numerical investigation of the methodology on CT image reconstruction are reported to show the advantages of considering such nonstandard Banach setting in comparison to standard Hilbert scenarios. Comparisons between the modular-based deterministic and stochastic algorithms confirm improvements of the latter w.r.t. CPU times.

Optimisation in Banach spaces

In this section we revise the main definitions and tools useful for solving a general instance of (P) in the general context of Banach spaces X and Y. For a real Banach space pX , } ¨}X q, we denote by pX ˚, } ¨}X ˚q its dual space and, for any x P X and x ˚P X ˚, by xx ˚, xy " x ˚pxq P R its duality pairing.

The following definition is crucial for the development of algorithms solving (P) in Banach spaces. We recall that in Hilbert settings H -H ˚holds by the Riesz representation theorem, withdenoting an isometric isomorphism.

Hence, for x P H, the element ∇f pxq P H ˚can be implicitly identified with a unique element in H itself, up to the canonical isometric isomorphism, so that the design of gradient-type schemes is significantly simplified, as in [START_REF] Bonino | Dual descent regularization algorithms in variable exponent Lebesgue spaces for imaging[END_REF]. Since the same identification does not hold, in general, for a Banach space X , we recall the notion of duality maps, which properly associate an element of X with an element (or a subset) of X ˚ [START_REF] Cioranescu | Geometry of Banach spaces, duality mappings and nonlinear problems[END_REF].

Definition 1. Let X be a Banach space and p ą 1. The duality map J p X with gauge function t Þ Ñ t p´1 is the operator J p X : X Ñ 2 X ˚such that, for all x P X ,

J p X pxq " x ˚P X ˚: x ˚, x " }x} X }x ˚}X ˚, }x ˚}X ˚" }x} p´1 X ( .
Under suitable smoothness assumptions on X [21], J p X pxq is single valued at all x P X . For instance, for X " p pRq, with p ą 1, all duality maps are singlevalued. The following Theorem (see [START_REF] Cioranescu | Geometry of Banach spaces, duality mappings and nonlinear problems[END_REF]) provides an operative definition and a more intuitive interpretation of the duality maps.

Theorem 1 (Asplund's Theorem). The duality map J p X is the subdifferential of the convex functional h

: x Þ Ñ 1 p }x} p X , that is, J p X p¨q " Bp 1 p } ¨}p X q.
The following result is needed for the invertibility of the duality map. Proposition 1. [START_REF] Schuster | Regularization methods in Banach spaces[END_REF] Under suitable smoothness and convexity conditions on X and for p ą 1, for all x P X and all x ˚P X ˚, there holds

J p X ˚pJ p X pxqq " x , J p X pJ p X ˚px ˚qq " x ˚.
We notice that, if the gradient term A ˚Jq Y pAx k ´yq vanishes in iteration (3), then x k`1 " J p X ˚pJ p X px k qq " x k by Proposition 1. For any p, r ą 1 and for any x, h P p pRq, the explicit formula for J r p is

xJ r p pxq, hy " }x} r´p p ÿ nPN signpx n q|x n | p´1 h n . (4) 
Moreover, since p p pRqq ˚p ˚pRq, then the inverse of the r-duality map J r p is nothing but pJ r p q ´1 " J r p p q ˚" J r ˚ p ˚. Hence, the explicit analytical expression of its inverse pJ r p q ´1 " J r ˚ p ˚is also known [START_REF] Cioranescu | Geometry of Banach spaces, duality mappings and nonlinear problems[END_REF].

Variable exponent Lebesgue spaces ppnq pRq

In the following, we will introduce the main concepts and definitions on the variable exponent Lebesgue spaces in the discrete setting of ppnq pRq. For surveys, we refer the reader to [START_REF] Cruz-Uribe | Variable Lebesgue spaces[END_REF][START_REF] Diening | Lebesgue and Sobolev Spaces with Variable Exponents[END_REF]. We define a family P of variable exponents as

P :" " pp n q nPN Ă R : 1 ă p ´:" inf nPN p n ď p `:" sup nPN p n ă `8* .
Definition 2. For pp n q nPN P P and any real sequence x " px n q nPN , ρ ppnq pxq :"

ÿ nPN |x n | pn and ρppnq pxq :" ÿ nPN 1 p n |x n | pn (5) 
are called modular functions associated with the exponent map pp n q nPN . Definition 3. The Banach space ppnq pRq is the set of real sequences x " px n q nPN such that ρ ppnq `x λ ˘ă 1 for some λ ą 0. For any x " px n q nPN P ppnq pRq, the (Luxemburg) norm on ppnq pRq is defined as

}x} ppn q :" inf ! λ ą 0 : ρ ppnq ´x λ ¯ď 1 ) . (6) 
We now report a result from [START_REF] Bonino | Dual descent regularization algorithms in variable exponent Lebesgue spaces for imaging[END_REF] where a characterisation of the duality map J r ppn q is given, in relation with (4).

Theorem 2. Given pp n q nPN P P, then for each x " px n q nPN P ppnq pRq and for any r ą 1, the duality map J r ppnq pxq : ppnq pRq Ñ p ppnq q ˚pRq is the linear operator defined, for all h " ph n q nPN P ppnq pRq by: xJ r ppnq pxq, hy "

1 ř nPN pn|xn| pn }x} pn ppn q ÿ nPN p n signpx n q|x n | pn´1 }x} pn´r ppnq h n . (7) 
By ( 6), we note that } ¨} ppn q is not separable as its computation requires the solution of a minimisation problem involving all elements x n and p n at the same time. As a consequence, the expression [START_REF] Engl | Regularization of Inverse Problems[END_REF] is not suited to be used in a computational optimisation framework. The following result from [START_REF] Lazzaretti | Modular-proximal gradient algorithms in variable exponent Lebesgue spaces[END_REF] provides more flexible expressions associated to the modular functions (5).

Proposition 2. The functions ρ ppnq and ρppnq in [START_REF] Diening | Lebesgue and Sobolev Spaces with Variable Exponents[END_REF] are Gateaux differentiable at any x " px n q nPN P ppnq pRq. For h " ph n q nPN P ppnq pRq their derivatives read xJρ ppn q pxq, hy " ÿ nPN pn signpxnq|xn| pn´1 hn, xJρ ppn q pxq, hy " ÿ nPN signpxnq|xn| pn´1 hn. [START_REF] Guan | The Generalized Forward-Backward Splitting Method for the Minimization of the Sum of Two Functions in Banach Spaces[END_REF] Notice that, although J ρ ppn q and J ρppnq are formally not duality maps, we adopt the same notation for the sake of consistency with Asplund Theorem 1.

Modular-based gradient descent in ppnq pRq

Given pp n q nPN , pq n q nPN P P, we now discuss how to implement a deterministic gradient-descent (GD) type algorithm for solving an instance of (P) with X " ppnq pRq and Y " pqnq pRq. Recalling (3), GD iterations in this setting require knowing the duality map J r ppn q and its inverse. However, as shown in [5, Corollary 3.2.14], such an inverse does not directly relate to the point-wise conjugate exponents of pp n q nPN as the isomorphism between p ppnq q ˚pRq and pp n q pRq -differing from the standard p constant case-is not isometric. As discussed Algorithm 1: Modular-based Gradient Descent in ppnq pRq Parameters: tµ k u k s.t. 0 ă μ ď µ k ď pcp1´δq K with 0 ă δ ă 1, for all k ě 0. Initialisation: x 0 P ppnq pRq. repeat

x k`1 " |Jρ ppn q px k q ´µk ∇f px k q| 1 pn ´1 sign pJρ ppn q px k q ´µk ∇f px k qq [START_REF] Herman | Algebraic reconstruction techniques can be made computationally efficient (positron emission tomography application)[END_REF] until convergence in [START_REF] Bonino | Dual descent regularization algorithms in variable exponent Lebesgue spaces for imaging[END_REF], the approximation `Jr ppn q ˘´1 " J r p ppn q q ˚« J r ˚ pp n q can be used as an inexact (but explicit) formula for computing the duality map of p ppnq q ˚pRq. Under this assumption, the dual Landweber method can thus be used to solve the minimisation problem argmin xP ppn q pRq 1 q }Ax ´y} q pqnq , q ą 1. Note, however, that the computation of the duality map J p ppn q requires the computation of }x} ppn q which, as previously discussed, makes the iterative scheme rather inefficient in terms of computational time. We thus follow [START_REF] Lazzaretti | Modular-proximal gradient algorithms in variable exponent Lebesgue spaces[END_REF] and define in Algorithm 1 a more efficient modular-based gradient descent iteration for the resolution of (P) in the general setting of variable exponent Lebesgue spaces. The following set of assumptions needs to hold:

A.1 ∇f : ppnq pRq Ñ p ppnq q ˚pRq is pp ´1q´Hölder-continuous with exponent 1 ă p ď 2 and constant K ą 0. A.2 There exists c ą 0 such that, for all u, v P ppnq pRq , xJρ ppnq puq´Jρ ppn q pvq, u´vy ě c max ! }u ´v} p ppn q , }Jρ ppn q puq ´Jρ ppnq pvq} p p ppn q q ˚) .

The latter bound was previously used in [START_REF] Guan | The Generalized Forward-Backward Splitting Method for the Minimization of the Sum of Two Functions in Banach Spaces[END_REF][START_REF] Lazzaretti | Modular-proximal gradient algorithms in variable exponent Lebesgue spaces[END_REF]. It is a compatibility condition between the ambient space ppnq pRq and the Hölder smoothness properties of the residual function to minimise to achieve algorithmic convergence.

The minimisation of the specific function f of (P) is achieved solving at each iteration (9) the following minimisation problem:

x k`1 " argmin uP ppn q pRq ρppnq puq ´xJ ρppnq px k q, uy `µk x∇f px k q, uy.

The following proof shows that the functional J ρppnq defined by ( 8) is invertible and gives a point-wise characterisation of its inverse. Proposition 3. The functional J ρppnq in (8) is invertible. For all v P p ppnq q ˚pRq, pJ ρppnq q ´1pvq " ´|v n | 1 pn ´1 signpv n q ¯nPN P ppnq pRq.

Proof. By straightforward componentwise computation, we have

|J ρppnq pv n q| 1 pn ´1 signpJ ρppnq pv n qq " |J ρppnq pv n q| 1 pn ´1 ´1J ρppnq pv n q " |J ρppnq pv n q| 2´pn pn´1 J ρppnq pv n q " | |v n | pn´1 signpv n q| 2´pn pn ´1 |v n | pn´1 signpv n q " v n .
By the Proposition above, the update rule (9) of Algorithm 1, can be rewritten as

x k`1 " pJ ρppnq q ´1´J ρppnq px k q ´µk ∇f px k q ¯.
As a consequence, whenever ∇f px k q " 0 at some k ě 0, a stationary point

x k`1 " pJ ρppnq q ´1´J ρppnq px k q ¯" x k is found, as expected. The following convergence result is a special case of [START_REF] Lazzaretti | Modular-proximal gradient algorithms in variable exponent Lebesgue spaces[END_REF]Proposition 3.4] providing an explicit convergence rate for the iterates of Algorithm 1. Proposition 4. Let x ˚P ppnq pRq be a minimiser of f and let px k q k be the sequence generated by Algorithm 1. If px k q is bounded, then:

f px k q ´f px ˚q ď η k p´1 ,
where p ą 1 is defined in assumption A.1 and η " ηpμ, δ, p ´, x 0 , x ˚q.

Note that when the measurement space Y is a variable exponent Lebesgue space pqnq pRq, a more effective and consistent choice for the objective function is the modular of the discrepancy between the model observation and the data, i.e. f pxq " ρpqnq pAx ´yq. In this way, the heavy computations of the } ¨} pqn q norm and of its gradient are not required, making the iteration scheme faster.

Stochastic modular-based gradient-descent in ppnq pRq

The key challenge for the viability of many deterministic iterative methods for real-world image reconstruction problems is their scalability to data-size. For example, the highest per-iteration cost in emission tomography lies in the application of the entire forward operator at each iteration, whereas each image domain datum in computed tomography often requires several gigabytes of storage space. The same could thus be a bottleneck in the application of Algorithm 1. The stochastic gradient descent (SGD) paradigm addresses this issue [START_REF] Robbins | A Stochastic Approximation Method[END_REF].

We partition the forward operator A, and the forward model into a finite number of block-type operators A 1 , . . . , A Ns , where N s P N is the number of subsets of data. The same partition is applied to the observations. Classical examples of this methodology include Kaczmarz methods in CT [START_REF] Herman | Algebraic reconstruction techniques can be made computationally efficient (positron emission tomography application)[END_REF][START_REF] Needell | Randomized block Kaczmarz method with projection for solving least squares[END_REF]. The SGD version of the iteration (3) in Banach spaces takes the form

x k`1 " J p X ˚`J p X px k q ´µk`1 A ik J q Y pA i k x k ´yq ˘, (10) 
where the indices i k P t1, . . . , N s u are sampled uniformly at random. Sampling reduces the per-iteration computational cost in Y by a factor of N s . In [START_REF] Kereta | On the convergence of stochastic gradient descent for linear inverse problems in Banach spaces[END_REF] convergence of the iterates to a minimum norm solution is shown. 

Compute

x k`1 " |Jρ ppn q px k q ´µk ∇fi k px k q| 1 pn´1 sign pJρ ppn q px k q ´µk ∇fi k px k qq until convergence Let J p X px 0 q P rangepA ˚q and let

µ p ˚´1 k ď C L p max
for all k ě 0 and some constant C ą 0, where L max " max i }A i }. Then lim kÑ8 Er}x k`1 ´x: } X s " 0 lim kÑ8 Er}J p X px k`1 q ´Jp X px : q} p ˚s " 0. For noisy measurements, the regularising property of SGD should be established by defining suitable stopping criteria. However, robust stopping strategies are hard to use in practice and having methods that are less sensitive to data overfit is crucial for their practical use. Note that [START_REF] Jin | Stochastic mirror descent method for linear illposed problems in Banach spaces[END_REF] is the standard form of SGD for separable objectives. Namely, for f pxq " }Ax ´y} q q , we can choose f i px; A, yq " }A i x ´yi } q q , so that f pxq " ř Ns i"1 f i pxq. By Theorem 1, this decomposition shows that each step of [START_REF] Jin | Stochastic mirror descent method for linear illposed problems in Banach spaces[END_REF] can thus be computed by simply taking a sub-differential of a single sum-function f i .

To define a suitable SGD in variable exponent Lebesgue spaces, we take as objective function f pxq " ρpqnq pAx ´yq and split it into N s ě 1 sub-objectives f i pxq :" ρpq i n q pA i x ´yi q, so that ∇f i pxq " A i J ρpq i n q pA i x ´yi q. Exponents pq i n q n are obtained through the same partition of the exponents pq n q n as the one used to split up the data. Then, at iteration k and a randomly sampled index 1 ď i k ď N s , the corresponding stochastic iterates are given by x k`1 " argmin uP ppnq pRq ρppnq puq ´xJ ρppnq px k q, uy `µk x∇f i k px k q, uy.

The pseudocode of the resulting stochastic modular-based gradient descent in

ppnq pRq is reported in Algorithm 2. We expect that through minimal modifications an analogous convegence result as Theorem 3 can be proved in this setting too. A detailed convergence proof, however, is left for future research.

Numerical results

We now present experimental results of the proposed Algorithm 2 on two exemplar problems in computed tomography (CT). The first set of experiments consider a simulated setting for quantitatively comparing the performance of Algorithm 2 with the corresponding Hilbert and Banach space versions [START_REF] Jin | Stochastic mirror descent method for linear illposed problems in Banach spaces[END_REF]. In the second set of experiments we consider the dataset of real-world CT scans of a walnut taken from doi:10.5281/zenodo.4279549, with a fan beam geometry. For these data, we utilise the insights from the first set of experiments and apply Algorithm 2 in a setting with different noise modalities across the sinogram space.

The experiments were conducted in python, using the open source package [START_REF] Jørgensen | Core Imaging Library -Part I: a versatile Python framework for tomographic imaging[END_REF] for the tomographic backend.

Hyper-parameter selection. In the following experiments, we employ a decaying stepsize regime such that it satisfies the conditions of Theorem 3 for the convergence of Banach space SGD, cf. [START_REF] Kereta | On the convergence of stochastic gradient descent for linear inverse problems in Banach spaces[END_REF]. A need for a decaying stepsize regime is common for stochastic gradient descent to mitigate the effects of inter-iterate variance. Specifically, we use µ k " µ0 1`cpk{Nsq γ , where µ 0 ą 0 is the initial stepsize, and γ ą 0 and c ą 0 control the decay speed. For the Hilbert space setting, SGD 2 , initial stepsize µ 0 is given by the Lipschitz constant of the gradient of the objective function, namely µ 0 " 0.95{ max i }A i } 2 . For SGD p and SGD pn,qn the estimation of the respective Hölder continuity constant is more delicate and µ 0 has to be tuned to guarantee convergence. However, its tuning is rather easy and the employ of a decaying strategy makes the choice of µ 0 less critical.

As far as variable exponents are concerned, it is difficult (and somehow undesirable) to have a unified configuration as their selection is strictly problemrelated. Parameters pq n q n are related to the regularity of the measured sinograms as well as the different noise distributions considered. For instance, when impulsive noise is considered, values of q ´and q `closer to 1 are preferred while and for Gaussian noise values closer to 2 are more effective. Solution space parameters p ´and p `relate to the regularity of the solution to retrieve. As a consequence, their choice is intrinsically harder. We refer the reader to [START_REF] Bonino | Dual descent regularization algorithms in variable exponent Lebesgue spaces for imaging[END_REF], where a comparison between different choices for p ´and p `and different interpolation strategies is carried out for image deblurring with gradient descent (3) in ppnq . Simulated data. We considered (1) with A given by the discrete Radon transform. For its definition we use a 2D parallel beam geometry, with 180 projection angles on a 1 angle separation, 256 detector elements, and pixel size of 0.1. The synthetic phantom was provided by the CIL library, see Figure 1(b). After applying the forward operator, a high level (15%) of salt-and-pepper noise is applied to the sinogram. The noisy sinogram is shown in Figure 1(a).

To compute subset data A i and y i , the forward operator and the sinogram are pre-binned according to equally spaced views (w.r.t. the number of subsets) of the scanner geometry. Subsequent subset data are offset from one another by the subset index i. We consider N s " 30 batches. We compare results obtained by solving (P) by: SGD 2 : X " Y " 2 pRq, Y " 2 pRq, f pxq " 1 2 }Ax ´y} 2 2 by SGD; SGD p : X " Y " p pRq, p " 1.1, f pxq " 1 p }Ax ´y} p p by Banach SGD [START_REF] Jin | Stochastic mirror descent method for linear illposed problems in Banach spaces[END_REF]; SGD pn,qn : X " ppnq pRq, Y " pqnq pRq for appropriately chosen exponent maps, f pxq " ρpqnq pAx ´yq with modular-based SGD Algorithm 2. We considered step-sizes µ k " µ0 1`0.1pk{Nsq γ , with µ 0 and γ which depend on the algorithm. 4 Spaces ppnq pRq allow for variable exponent maps sensitive to local assumptions on both the solution and the measured data. A possible strategy for informed pixel-wise variable exponents consists in basing them on observed data (for pq n q) and an approximation of the reconstruction (for pp n q), as done in [START_REF] Alparone | An adaptive l p -penalization method to enhance the spatial resolution of microwave radiometer measurements[END_REF][START_REF] Bonino | Dual descent regularization algorithms in variable exponent Lebesgue spaces for imaging[END_REF][START_REF] Lazzaretti | Modular-proximal gradient algorithms in variable exponent Lebesgue spaces[END_REF]. To this end, we first compute an approximate reconstruction x P ppnq pRq by running SGD p in 1.1 pRq for 5 epochs with a constant stepsize regime. The map pp n q is then computed via a linear interpolation of x between p ´" 1.05 and p `" 1.25. The map pq n q is chosen as the linear interpolation between q ´" 1.05 and q `" 1.25 of App n q. The bounds p ´, p `and q ´, q `are chosen by prior assumptions on y (sparse phantom) and on the noise observed (impulsive). We also tested an adaptive strategy by updating pp n q based on the current solution estimate once every β updates epochs to adapt the exponents along the iterations.

In Figure 2, we report the mean absolute error (MAE), peak signal to noise ratio (PSNR) and structural similarity index (SSIM) of the iterates x k w.r. known ground-truth phantom along the first 100 epochs. Since PSNR favours smoothness, it is thus beneficial for SGD 2 , whereas MAE promotes sparsity hence is beneficial for both SGD p and SGD pn,qn . Figure 2b shows that Banach space algorithms provide better performance than SGD 2 in all three quality metrics. Note that all the results show the well-known semi-convergence behaviour with respect to the metrics considered. To avoid such behaviour an explicit regulariser or a sound early stopping criterion would be beneficial for reconstruction performance. We observe that the use variable exponents does not only improve all quality metrics, but also makes the algorithm more stable: the quality of the reconstructed solutions is significantly less sensitive to the number of epochs, making possible early stopping strategies more robust.

In Table 1, the CPU times for deterministic (GD 2 , GD p and GD pn,qn ) approaches and stochastic ones (SGD 2 , SGD p and SGD pn,qn ) are compared.

Real CT datasets: walnut. We consider a cone beam CT dataset of a walnut [START_REF] Meaney | X-ray dataset of walnut[END_REF], from which we take a 2D fan beam sinograms from the centre plane of the cone. The cone beam data uses 0.5 angle separation over the range r0, 360s. The used sinogram is obtained by pre-binning the raw data by a factor of 8, resulting in 280 effective detector pixels. The measurements have been post-processed for dark current and flat-field compensation. As stepsize we used µ k " µ0 1`0.001pk{Nsq γ , with N s " 10 subsets, and suitable µ 0 and γ. 5 Initial images are computed by 5 epochs of SGD 1.4 with a constant stepsize.

We consider a more delicate noise setting that requires exponential maps which vary in the acquisition domain. Here, we assume that noise has a different effect on the background (zero entries) and the foreground (non-zero entries) of the clean sinogram. Namely, we apply 10% salt and pepper noise to the background, and speckle noise with mean 0 and variance 0.01 to the foreground, cf. Fig. 3(a) for the resulting noisy sinogram. Notably, since this noise model has a non-uniform effect across the measurement data, Banach space methods favouring the adjustment of the Lebesgue exponents are expected to perform better than those making use of a constant value. Taking as a reference the result ob- tained by SGD 2 (Fig. 3(b)), we compare here the effect of allowing variable exponents in the solution space only with the effect of allowing both maps pp n q and pq n q to be chosen. By choosing pp n q based on the initial image and interpolating it between p ´" 1.2 and p `" 1.3 we then compare SGD pn,1.1 (i.e., fixed exponent q " 1.1 in the measurement space), cf. Fig. 3(c), with SGD pn,qn where pp n q is as before while pq n q is chosen from the sinogram by interpolating between q ´" 1.1 and q `" 1.9, cf. Fig. 3(d). The results show that a flexible framework where both maps pp n q and pq n q adapt to local contents are more suited for dealing with this challenging scenario.

Conclusions

We proposed a stochastic gradient descent algorithm for solving linear inverse problems in ppnq pRq. After recalling its deterministic counterpart and the difficulties encountered due to the non-separability of the underlying norm, a modular-based stochastic algorithm enjoying fast scalability properties is proposed. Numerical results show improved performance in comparison to standard 2 pRq and p pRq-based algorithms and significant computational gains. Future work should adapt the convergence result (Theorem 2) to this setting and consider proximal extensions for incorporating non-smooth regularisation terms.

1 1 . 2 :K, 0 ă δ ă 1 ,

 1121 ´r x} X " 0 ¯" Algorithm Stochastic Modular-based Gradient Descent in ppnq pRq Parameters: µ0 s.t. 0 ă μ ď µ0 ď pcp1´δq Ns ě 1, γ ą 0, η ą 0. Initialisation: x 0 P ppnq pRq. repeat Select uniformly at random i k P t1, ¨¨¨, Nsu. Set µ k " µ 0 1`ηpk{Nsq γ

Fig. 1 :

 1 Fig. 1: In (c) reconstruction of noisy sinogram (a) by SGDp n,qn , where 1.05 " p´ď ppnq ď p`" 1.25 is shown in (d) and 1.05 " q´ď pqnq ď q`" 1.25 is based on the model observation corresponding to ppnq.

Fig. 2 :

 2 Fig. 2: Quality metrics along the first 100 epochs of SGD2; SGD1.1; SGDp n ,qn with and without adapting the exponent maps ppnq. SGD2 is omitted from MAE and SSIM to improve the readability of the plots, due to its poor performance.

Fig. 3 :

 3 Fig. 3: (a) Noisy sinogram with 10% salt & pepper (background) and speckle noise with 0 mean and variance 0.01 (foreground). (b) SGD2 result. (c) SGDp n ,1.1 result (d) SGDp n,qn result. p´" 1.2, p`" 1.3, q´" 1.1 and q`" 1.9.

Table 1 :

 1 t. the Comparison of per iteration cost and total CPU times after 3000 iterations for determistic algorithms and after 100 epochs for stochastic algorithm with Ns " 30. MAE, PSNR and SSIM values for stochastic algorithms are computed after 40 epochs (before noise overfitting).

		Deterministic	Stochastic (¨" S)	
	Algorithm	It.	Tot.	It. Epoch Tot. MAE PSNR SSIM
	¨GD2	0.44s 1324s	0.02s 0.74s 74.4 s 2.582e-1 57.89 0.0304
	¨GD1.1	0.43s 1297s	0.03s 0.81s 81.3s 3.671e-3 82.64 0.9897
	¨GDp n ,qn	0.47s 1403s	0.03s 0.96s 96.5s 2.887e-3 84.05 0.9927
	¨GDp n ,qn adapt.	0.44s 1317s	0.03s 0.91s 91.2s 1.777e-3 88.10 0.9965
	Compute ppnq, pqnq	0.45s 16s	0.03s 0.8s 4.0s	-	-	-

For SGD2 µ0 is set as 0.95{ maxi }Ai} 2 and γ " 0.51. For SGDp and SGDp n ,qn , we use µ0 " 0.015 with γ " pp ´1q{p `0.01 and γ " pp´´1q{p´`0.01 respectively.

For SGD2 , µ0 " 0.95{ maxi }Ai} 2 , γ " 0.51. For SGDp n ,qn we µ0 " 0.001, γ " 0.58.
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