
HAL Id: hal-04031193
https://hal.science/hal-04031193v3

Submitted on 5 Dec 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Certified Logic-Based Explainable AI
Aurélie Hurault, Joao Marques-Silva

To cite this version:
Aurélie Hurault, Joao Marques-Silva. Certified Logic-Based Explainable AI. 17th International Con-
ference on Tests and Proofs (TAP 2023), Jul 2023, Leicester, United Kingdom. pp.51-67, �10.1007/978-
3-031-38828-6_4�. �hal-04031193v3�

https://hal.science/hal-04031193v3
https://hal.archives-ouvertes.fr

Certified Logic-Based Explainable AI –
The Case of Monotonic Classifiers

Aurélie Hurault1[0000−0002−3266−6080] and
Joao Marques-Silva2[0000−0002−6632−3086]

1 IRIT, Université de Toulouse, Toulouse, France aurelie.hurault@enseeiht.fr
2 IRIT, CNRS, Toulouse, France joao.marques-silva@irit.fr

Abstract. The continued advances in artificial intelligence (AI), includ-
ing those in machine learning (ML), raise concerns regarding their de-
ployment in high-risk and safety-critical domains. Motivated by these
concerns, there have been calls for the verification of systems of AI, in-
cluding their explanation. Nevertheless, tools for the verification of sys-
tems of AI are complex, and so error-prone. This paper describes one
initial effort towards the certification of logic-based explainability algo-
rithms, focusing on monotonic classifiers. Concretely, the paper starts by
using the proof assistant Coq to prove the correctness of recently pro-
posed algorithms for explaining monotonic classifiers. Then, the paper
proves that the algorithms devised for monotonic classifiers can be ap-
plied to the larger family of stable classifiers. Finally, confidence code,
extracted from the proofs of correctness, is used for computing expla-
nations that are guaranteed to be correct. The experimental results in-
cluded in the paper show the scalability of the proposed approach for
certifying explanations.

Keywords: Formal Explainability · Certification.

1 Introduction

The ongoing advances in Artificial Intelligence (AI), including in Machine Learn-
ing (ML), raise concerns about whether human decision makers can trust the
decisions made by systems of AI/ML, and even whether they are able to fathom
them. Aiming to address these concerns, the field of eXplainable AI (XAI) [7–9]
has witnessed massive interest [6]. Explainability has also been proposed as a
core component of efforts for the verification of ML models [25].

Unfortunately, most work on XAI offers no guarantees of rigor. Model-agnostic
XAI approaches [16, 23, 24] represent one such example. As a result of the lack
of guarantees of rigor, there is by now comprehensive evidence [10, 11, 14] that
confirms the lack of rigor of non-formal XAI approaches. These results are trou-
blesome, especially in application domains where rigor is paramount. To ad-
dress the limitations of non-formal XAI, there has been work on formal XAI
(FXAI) [17,19]. Formal explanations are logically defined and model-based, and
so guarantee the correctness of computed explanations, as long as (i) the rep-
resentation of the ML model is adequate; and (ii) the implemented algorithms

2 A. Hurault & J. Marques-Silva

are correct. Unfortunately, algorithms can exhibit bugs, as can their implemen-
tations. Hence, besides the need to explain and/or verify AI/ML models, and in
settings that are deemed of high-risk or that are safety-critical, the certification
of computed explanations is bound to become a required step.

This paper represents a first step in the direction of certifying the compu-
tation of explanations. Concretely, we use the Coq proof assistant to prove the
correctness of recently proposed explanation algorithms for monotonic classifiers.
The insights from the proof of correctness also serve to generalize the algorithms
proposed for monotonic classifiers to a more general class of stable classifiers.
Finally, the proofs of correctness are used to generate confidence code, which
can be used for computing explanations that are guaranteed to be correct.

The paper is organized as follows. Section 2 introduces the notation and
definitions used throughout the paper. Section 3 briefly overviews the compu-
tation of explanations in the case of monotonic classifiers [18]. Section 4 details
the approach for the proofs of correctness and demonstrates that the results
can be applied to a broader category of classifiers we named stable. Section 5
provides evidence to the scalability of certified explainers for stable classifiers.
Finally, Section 6 concludes the paper.

2 Preliminaries

We follow the notation and definitions used in earlier work [18].

Classification problems. A classification problem is defined on a set of fea-
tures F = {1, . . . , N} and a set of classes K = {c1, c2, . . . , cM}. Each feature
i ∈ F takes values from a domain Di. Domains are ordinal and bounded, and
each domain can be defined on boolean, integer or real values. If xi ∈ Di, then
λ(i) and µ(i) denote respectively the smallest and largest values that xi can take,
i.e. λ(i) ≤ xi ≤ µ(i). Feature space is defined by F = D1×D2× . . .×DN . The no-
tation x = (x1, . . . , xN) denotes an arbitrary point in feature space, where each
xi is a variable taking values from Di. Moreover, the notation v = (v1, . . . , vN)
represents a specific point in feature space, where each vi is a constant represent-
ing one concrete value from Di. An instance denotes a pair (v, c), where v ∈ F
and c ∈ K. An ML classifierM is characterized by a non-constant classification
function κ that maps feature space F into the set of classes K, i.e. κ : F → K.
Since we assume that κ is non-constant, then the ML classifier M is declared
nontrivial, i.e. ∃a,b ∈ F, κ(a) ̸= κ(b).

Monotonic classifiers. Given two points in feature space a and b, a ≤ b if
ai ≤ bi, for all i ∈ {1, . . . , N}. A set of classes K = {c1, . . . , cM} is ordered
if it respects a total order ≼, with c1 ≼ c2 ≼ . . . ≼ cM . An ML classifier
M is fully monotonic if the associated classification function is monotonic, i.e.
a ≤ b ⇒ κ(a) ≼ κ(b)3. Throughout the paper, when referring to a monotonic
3 The paper adopts the classification of monotonic classifiers proposed in earlier

work [5].

Certified Explanations for Monotonic Classifiers 3

classifier, this signifies a fully monotonic classifier. In addition, the interaction
with a classifier is restricted to computing the value of κ(v), for some point
v ∈ F, i.e. the classifier will be viewed as a black-box.

As a monotonic classifier, we used a heart failure prediction in the section
5, which depends on age and certain medical measures such as diabetes and
platelet count. It is natural to expect the classifier to exhibit monotonicity, i.e.,
as age or diabetes levels increase, the risk of heart failure should also increase.

Stable classifiers. An ML classifier is stable if the associated classification
function respects ∀a,b, c ∈ F,a ≤ b ≤ c ∧ κ(a) = κ(c)⇒ κ(a) = κ(b) = κ(c).
As for monotonic classifiers, an order relation is needed on each domain Di.
However, classes do not need to be ordered. All monotonic classifiers are stable.
Not all stable classifiers are monotonic.

Intuitively, a stable classifier can be thought of as relaxing the requirement
of monotonicity by not imposing a specific order on the classes. In other words,
if two points in the feature space receive the same prediction from the classifier,
then all points between them should also receive the same prediction.

Logic-based explainability. We now define formal explanations. For brevity,
we only provide a brief introduction to logic-based explainability.

Prime implicant (PI) explanations [26] denote a minimal set of literals (relat-
ing a feature value xi and a constant vi from its domain Di) that are sufficient
for the prediction. 4. Formally, given v = (v1, . . . , vN) ∈ F with κ(v) = c, an
AXp is any minimal subset X ⊆ F such that,

∀(x ∈ F).
[∧

i∈X
(xi = vi)

]
→(κ(x) = c) (1)

We associate a predicate WAXp with (1), such that any set X ⊆ F for which
WAXp(X) holds is referred to as a weak AXp. Thus, every AXp is a weak AXp
that is also subset-minimal. AXp’s can be viewed as answering a ’Why?’ question,
i.e. why is some prediction made given some point in feature space. A different
view of explanations is a contrastive explanation [21], which answers a ’Why
Not?’ question, i.e. which features can be changed to change the prediction.
A formal definition of contrastive explanation is proposed in recent work [12].
Given v = (v1, . . . , vN) ∈ F with κ(v) = c, a CXp is any minimal subset Y ⊆ F
such that,

∃(x ∈ F).
∧

j∈F\Y
(xj = vj) ∧ (κ(x) ̸= c) (2)

Moreover, we associate a predicate WCXp with (2), such that any set Y ⊆ F
for which WCXp(Y) holds is referred to as a weak CXp. Thus, every CXp is
a weak CXp that is also subset-minimal. Building on the results of R. Reiter
in model-based diagnosis [22], [12] proves a minimal hitting set (MHS) duality

4 PI-explanations can be formulated as a problem of logic-based abduction, and so
are also referred to as abductive explanations (AXp) [13]. More recently, AXp’s
have been studied from a knowledge compilation perspective [1].

4 A. Hurault & J. Marques-Silva

relation between AXp’s and CXp’s, i.e. AXp’s are MHSes of CXp’s and vice-
versa. Furthermore, it can be shown that both predicates WAXp and WCXp are
monotone. An important consequence of this observation is that one can then
use efficient oracle-based algorithms for finding AXp’s and/or CXp’s [20]. Thus,
as long as one can devise logic encodings for an ML classifier (and this is possible
for most ML classifiers), then (1) and (2), and access to a suitable reasoner, offer
a solution for computing one AXp/CXp.

Recent years witnessed a rapid development of logic-based explainability,
with practically efficient solutions devised for a growing number of ML models.
Overviews of these results are available [17,19].

3 Explanations for Monotonic Classifiers

In [18], the authors proposed algorithms for computing explanations of a black-
box monotonic classifier. Algorithms 1 and 2 compute the abductive and con-
trastive explanations of the prediction of a feature v, for a classifier κ with a set
of features F. For all features i ∈ F, vi must be bounded between λ(i) and µ(i).

Algorithm 1 findAXp F v

1 vl ← (v1, ...,vN)
2 vu ← (v1, ...,vN)
3 (C,D, P)← (F, ∅, ∅)
4 for all i ∈ F do
5 (vl,vu, C,D)← FreeAttr(i,v,vl,vu, C,D)
6 if κ(vl) ̸= κ(vu) then
7 (vl,vu, D, P)← FixAttr(i,v,vl,vu, C, P)
8 endif
9 endfor

10 return P

Algorithm 3 FreeAttr i v vl vu A B

1 vl ← (vl1, ...λ(i), ...,vlN)
2 vu ← (vu1, ...µ(i), ...,vuN)
3 (A,B)← (A \ {i}, B ∪ {i})
4 return (vl, vu, A,B)

Algorithm 4 FixAttr i v vl vu A B

1 vl ← (vl1, ...vi, ...,vlN)
2 vu ← (vu1, ...vi, ...,vuN)
3 (A,B)← (A \ {i}, B ∪ {i})
4 return (vl,vu, A,B)

The idea behind the algorithms is to analyze the features one by one and
determine whether they have an impact on the decision. In abductive explana-
tions, two points in the feature space are tested with the minimum and maximum

Certified Explanations for Monotonic Classifiers 5

Algorithm 2 findCXp F v

1 vl ← (λ(1), ..., λ(N))
2 vu ← (µ(1), ..., µ(N))
3 (C,D, P)← (F, ∅, ∅)
4 for all i ∈ F do
5 (vl,vu, C,D)← FixAttr(i, v,vl,vu, C,D)
6 if κ(vl) = k(vu) then
7 (vl,vu, D, P)← FreeAttr(i,v,vl,vu, C, P)
8 endif
9 endfor

10 return P

values for the feature being tested. If the classifications are different, then that
feature has an impact on the answer and is included in the explanation to an-
swer the question "Why?". In contrastive explanations, two points in the feature
space are tested with the minimum and maximum values for all features except
the one being tested. If the classification is the same, and since the classifier is
not trivial, the feature must be changed to alter the classification value, answer-
ing the question "Why not?" and is included in the explanation. For pedagogical
reasons, this explanation is simplified: in the algorithm, the features are tested
while considering the responses obtained for the features previously tested.

4 Proofs

The aim of this work is threefold: to prove the correctness of the algorithms,
to extract the confidence code from the proof of correctness, and to investigate
whether the monotonicity constraint of the classifiers can be relaxed.

To achieve these objectives, we used a proof assistant that allows code ex-
traction: Coq5.

The Coq proof, the Python codes used to generate and check the models,
and the OCaml code used to run the experiments (section 5) are available at
this link: https://github.com/hurault/tap23.

4.1 Coq

Coq is a proof assistant that is built on a programming language called Gallina,
which allows expressing mathematical theorems and software specifications. This
language combines higher-order logic and functional programming. Coq provides
a command language for defining functions and predicates, stating theorems and
specifications, and developing formal proofs interactively. The proofs can then be
checked by a small certification "kernel". Additionally, Coq allows the extraction
of certified programs into languages such as OCaml, Haskell, or Scheme.
5 https://coq.inria.fr

https://github.com/hurault/tap23
https://coq.inria.fr

6 A. Hurault & J. Marques-Silva

4.2 The Coq formalization

To ensure compatibility with Coq, it was necessary to modify the method used
to encode the original algorithms (1, 2, 3, and 4), while ensuring that the changes
facilitated the proof of termination and correctness, as well as code generation.

In Coq, the data structures are homogeneous, so all features should have the
same type T . That is, for all i in F, Di = T . This type T requires a total order
relation. This may seem restrictive, but all digital types, for example, meet these
constraints. A point in feature space is represented by a list of elements of type
T . The output of the classifier has type Tk. The only requirement on Tk is the
existence of a decidable equality (Tk_eq_dec). C and D are not used and are
dropped, while P is coded by a list of naturals (indexes of the features).

The original iterative way of coding the algorithms has been replaced by a
recursive version that is more in line with the Coq environment. For the ab-
ductive (resp. contrastive) explanation, two auxiliary functions are required:
findAXp_aux which adds parameters that correspond to the variables of the
original algorithm and findAXp_aux_j that corresponds to the loop. To ease
the proof of termination for Coq, the parameter j that indicates the feature to
analyze is chosen to be strictly decreasing.

The Coq version of algorithm 1 is presented in algorithm 5. A similar trans-
formation has been carried out for findCXp.

An auxiliary function is also needed for FreeAttr. The Coq version of the
original algorithm 3 is given in algorithm 6. Equivalent transformations are also
done for FixAttr.

The Coq formalization of the AXp property (Equation 1) is given in algorithm
7. Equivalent formalization is done for the CXp property (Equation 2).

The formalization of the algorithms and their Coq proof can be found in the
file Coq/AXp_CXp_Stable_nfeatures.v.

4.3 Results

In [18], the authors proposed algorithms and argued for their correctness for
monotonic classifiers. In our paper, we provide a proof of their correctness and
relax the monotonicity constraint on the classifier to a more general class of
classifiers known as stable classifiers.

The AXp finder algorithm is proven correct for stable classifiers.

Theorem 1.

∀k : (list T → Tk), stable k →(

∀v : list T, length v = N

∧ ∀j ∈ [0, N [, λ(j) ≤ vj ≤ µ(j)

→ is_AXp k v (findAXp k v)

)

Proof. Done with Coq.

Certified Explanations for Monotonic Classifiers 7

Algorithm 5 findAXp κ v

1 (* Find the abductive explanation of v *)
2 (* j : (N-j) the feature to check *)
3 (* p : the feature before (N-j) that are part of the explanation *)
4 (* j is decreasing for Coq to proof the termination *)
5 Fixpoint findAXp_aux_j (k: list T → Tk) (j:nat) (v vl vu: list T) (p:list nat)
6 {struct j}: list nat :=
7 match j with
8 | 0 ⇒ p
9 | S jminus1 ⇒

10 let ’(nvl,nvu) := freeAttr (N−j) vl vu in
11 match T_eq_dec (k nvl) (k nvu) with
12 | false ⇒ let ’(nvl,nvu,np) := fixAttr (N−j) v nvl nvu p in
13 findAXp_aux_j k jminus1 v nvl nvu np
14 | true ⇒ findAXp_aux_j k jminus1 v nvl nvu p
15 end
16 end.
17

18 (* Find the abductive explanation of v *)
19 (* i : the feature to check *)
20 (* p : the feature before i that are part of the explanation *)
21 Definition findAXp_aux (k: list T → Tk) (i:nat) (v vl vu: list T) (p:list nat):
22 list nat :=
23 findAXp_aux_j k (N−i) v vl vu p.
24

25 (* Find the abductive explanation of v *)
26 Program Definition findAXp (k: list T → Tk) (v: list T) : list nat :=
27 findAXp_aux k 0 v v v nil.

Algorithm 6 FreeAttr i vl vu

1 (* Replace the i-th elements of the list vl and vu
2 by a value determined by n *)
3 Fixpoint freeAttr_aux (i:nat) (n:nat) (vl:list T) (vu:list T) :=
4 match i,vl,vu with
5 | 0,_:: ql,_:: qu ⇒ ((lambda n)::ql,(mu n):: qu)
6 | _,tl:: ql,tu:: qu ⇒ let (rl,ru) := freeAttr_aux (i−1) n ql qu
7 in (tl:: rl,tu:: ru)
8 | _,_,_ ⇒ (vl,vu)
9 end.

10

11 (* Replace the i-th elements of the lists vl and vu
12 by lambda i and mu i *)
13 Definition freeAttr (i:nat) (vl:list T) (vu:list T) := freeAttr_aux i i vl vu.

8 A. Hurault & J. Marques-Silva

Algorithm 7 is_AXp

1 Definition is_weak_AXp (k : list T → Tk) (v: list T) (p:list nat) : Prop :=
2 forall (x: list T),
3 List.length v = N
4 (* x in feature space *)
5 ∧ List.length x = N
6 (* the values of the features of x are in the bounds *)
7 (* led is the relation order in feature space *)
8 ∧ (forall (j:nat), j>=0 ∧ j< N
9 → (led (lambda j) (get j x) ∧ led (get j x) (mu j)))

10 (* the values of the feature constraints in the explanation
11 are the same in x and v *)
12 ∧ (forall (j:nat), j>=0 ∧ j< N
13 → ((mem j p ∧ get j x = get j v) ∨ (not (mem j p))))
14 → k(x)=k(v).
15

16 Definition is_AXp (k : list T → Tk) (v: list T) (p:list nat) : Prop :=
17 (* satisfy the equation of AXp *)
18 is_weak_AXp k v p
19 ∧ (* no subset satisfies the equation of AXp *)
20 forall (q:list nat), (is_strict_subset q p) → not (is_weak_AXp k v q).

The CXp finder algorithm is proved correct for stable and nontrivial classi-
fiers.

Theorem 2.

∀k : (list T → Tk), not_trivial k ∧ stable k →(

∀v : list T, length v = N

∧ ∀j ∈ [0, N [, λ(j) ≤ vj ≤ µ(j)

→ is_CXp k v (findCXp k v)

)

Proof. Done with Coq.

4.4 Proof sketch

Here is the proof sketch for the algorithm computing abductive explanations.
The same structure is used for contrastive explanations.

1. A property R, depending on κ,i,v,vl,vu and p is identified and proven to
be true for the initial values of findAXp_aux ie R(κ, 0,v,v,v, nil) (lemma
R_init_Axp).

2. The property R is proven to be preserved by the two recursive cases of the
algorithm:

Certified Explanations for Monotonic Classifiers 9

(a) R(κ, i,v,vl,vu, p)
∧(nvl,nvu) = freeAttr(i,v,vl,vu, p)
∧(nnvl,nnvu, np) = fixAttr(i,v,nvl,nvu, p)
→ R(κ, i+ 1,v,nnvl,nnvu, np)

(b) R(κ, i,v,vl,vu, p)
∧(nvl,nvu) = freeAttr(i,v,vl,vu, p)
→ R(κ, i+ 1,v,nvl,nvu, p)

R is in fact a conjunction of several sub-properties, each of these Ri proper-
ties is handled by the lemmas preserveRiCas2_AXp and preserveRiCas3_AXp
for case (a) and case (b).

3. A second property E, depending on κ,i,v,vl,vu and p is identified and proven
to be implied by R i.e. R(κ, i,v,vl,vu, p) → E(κ, i,v,vl,vu, p) (lemma
R_implies_E_findAXp).

4. The last step proves that E in the terminal case, i.e. E(κ,N,v,vl,vu, p),
implies that p is an abductive explanation of v for κ (theorem axp_all).

R : The property R is a conjunction of ten or eleven properties that are listed in
Figure 1. These properties are about the size of the lists used for representing an
instance of the feature space (R0) and the bounded properties of the elements
of these lists (R1). R4, R6, R7, and R9 explicitly state the values of vl and
vu depending on i (the current feature), λ, µ, v, and p. R5 and R8 give some
information about p: it is sorted and can only contain features that have been
reviewed. R10 explains the consequences for a feature x of being part of the
explanation p. R2 links the value of κ(v), κ(vl), and κ(vu).

E : The property E is a conjunction of three properties that are listed in figure
2. E1 states that the explanation is a weak explanation. E2 states that the
explanation is sorted and E3 explains the consequences for a feature x of being
part of an explanation. E2 and E3 are necessary to prove that the explanation
is subset-minimal.

Additional lemmas The proof of preservation of R requires lemmas on FreeAttr
and FixAttr, such as the preservation of list size, bounded properties of features,
and modification of only the i-th element. In total, 137 lemmas are necessary to
prove the two correctness theorems for the algorithms.

4.5 Computing explanations that are guaranteed to be correct

Let us recall that the objective of this work is to compute explanations that are
guaranteed to be correct. We have proof that if a classifier is stable, the algo-
rithms generate correct explanations. To have confidence in a tool’s generated
explanations, one must have confidence in the algorithm’s implementation and
in the stability of the classifiers.

10 A. Hurault & J. Marques-Silva

findAXp_aux κ i v vl vu p findCXp_aux κ i v vl vu p

List.length v = N
R0 List.length vl = N idem

List.length vu = N
∀j ∈ [0, N [, λ(j) ≤ vj ≤ µ(j)

R1 ∀j ∈ [0, N [, λ(j) ≤ vlj ≤ µ(j) idem
∀j ∈ [0, N [, λ(j) ≤ vuj ≤ µ(j)

R2 κ(vl) = κ(vu) = κ(v) κ(vl) ̸= κ(vu)
R3 i ≥ 0 idem

∀j ∈ [0, N [,
R4 λ(j) = vlj ∧ µ(j) = vuj not needed

∨ vj = vlj ∧ vj = vuj

R5 ∀j ∈ [0, N [, j ≥ i→ j /∈ p idem
R6 ∀j ∈ [0, N [, j ∈ p→ ∀j ∈ [0, N [, j ∈ p→

vj = vlj ∧ vj = vuj λ(j) = vlj ∧ µ(j) = vuj

R7 ∀j ∈ [0, N [, j < i ∧ j /∈ p→ ∀j ∈ [0, N [, j ≥ i→
λ(j) = vlj ∧ µ(j) = vuj λ(j) = vlj ∧ µ(j) = vuj

R8 is_sorted p idem
R9 ∀j ∈ [0, N [, j ≥ i→ ∀j ∈ [0, N [, j < i ∧ j /∈ p→

vj = vlj ∧ vj = vuj vj = vlj ∧ vj = vuj

∀x, x0, x1, p = x0@(x :: x1)→ ∀x, x0, x1, p = x0@(x :: x1)→
∃nvl, nvu, (∀j ∈ [0, N [, ∃nvl, nvu, (∀j ∈ [0, N [,
((p ∈ x1 ∨ j > x)∧ ((p ∈ x1 ∨ j > x)∧

R10 vj = nvlj ∧ vj = nvuj) λ(j) = nvlj ∧ µ(j) = nvuj)
∨ ∨

(¬(p ∈ x1 ∨ j > x)∧ (¬(p ∈ x1 ∨ j > x)∧
λ(j) = nvlj ∧ µ(j) = nvuj)) vj = nvlj ∧ vj = nvuj))

∧ ∧
κ(nvl) ̸= κ(nvu) κ(nvl) = κ(nvu)

Fig. 1: Invariants

Certified Explanations for Monotonic Classifiers 11

findAXp_aux κ i v vl vu p

E1 is_weak_AXp κ v (findAXp_aux κ i v vl vu p)
E2 is_sorted (findAXp_aux κ i v vl vu p)
∀x, x0, x1, p, (findAXp_aux κ i v vl vu p) = x0@(x :: x1)→ ∃nvl, nvu :

E3 (∀j ∈ [0, N [, ((p ∈ x1 ∨ j > x) ∧ vj = nvlj ∧ vj = nvuj)
∨(¬(p ∈ x1 ∨ j > x) ∧ λ(j) = nvlj ∧ µ(j) = nvuj))

∧ κ(nvl) ̸= κ(nvu)

findCXp_aux κ i v vl vu p

E1 is_weak_CXp κ v (findCXp_aux κ i v vl vu p)
E2 is_sorted (findCXp_aux κ i v vl vu p)
∀x, x0, x1, p, (findCXp_aux κ i v vl vu p) = x0@(x :: x1)→ ∃nvl, nvu :

E3 (∀j ∈ [0, N [, ((p ∈ x1 ∨ j > x) ∧ λ(j) = nvlj ∧ µ(j) = nvuj)
∨(¬(p ∈ x1 ∨ j > x) ∧ vj = nvlj ∧ vj = nvuj))

∧ κ(nvl) = κ(nvu)

Fig. 2: Post conditions

Confidence on the implementation Coq is used to extract OCaml code
that is certified as correct, i.e. it validates proven properties. We can provide a
certified tool that computes correct explanations.

The generated OCaml code is not modified, but it is reorganized. The .mli
file generated by Coq is converted into a signature module (with some addi-
tional functions), while the .ml file generated by Coq is converted into a functor
that conforms with the signature module and is parameterized by a dataset
(file OCaml/explain.ml). For each dataset, the axioms (N , T , Tk, Tk_eq_dec,
λ, and µ) need to be realized (file OCaml/dataset.ml). k is implemented using
the pyml library6, which allows for an efficient binding between the OCaml
generated by Coq and the Python used to generate and run classifiers (file
Ocaml/runAXpCXp.ml).

Confidence on the stablity of the classifiers The literature commonly em-
ploys the monotonicity constraint more frequently than the stability constraint.
As far as we are aware, no tool exists that guarantees model stability while sev-
eral tools offer ways to force monotony : XGBoost7 [3], COMET8 [27], Deep
Lattice Network (DLN)9 [28] or Certified Monotonic Neural Networks10 [15].

None of those tools is certified as correct, so we have developed a Python
program, using XGBoost, that check the stability (file XGBoost/verif_stable.py)

6 https://github.com/thierry-martinez/pyml
7 https://xgboost.readthedocs.io/en/stable/tutorials/monotonic.html
8 https://github.com/AishwaryaSivaraman/COMET
9 https://www.tensorflow.org/lattice/overview

10 https://github.com/gnobitab/CertifiedMonotonicNetwork

https://github.com/thierry-martinez/pyml
https://xgboost.readthedocs.io/en/stable/tutorials/monotonic.html
https://github.com/AishwaryaSivaraman/COMET
https://www.tensorflow.org/lattice/overview
https://github.com/gnobitab/CertifiedMonotonicNetwork

12 A. Hurault & J. Marques-Silva

and monotonicity (file XGBoost/verif_mono.py) of a classifier through exhaus-
tive testing on the predictions of the training and testing datatsets. In the next
section, it will be shown that three out of the four models used are monotonic,
but one is not. However, since the predictions are stable, the model can still be
used.

5 Experiments

In this section, we present a series of experiments aimed at demonstrating the
feasibility and scalability of our approach. Through these experiments, we illus-
trate how our method can address the challenges we have identified and provide
tangible evidence of its potential benefits.

5.1 Datasets

Four datasets are used from https://www.kaggle.com and can be found in the
XGBoost/dataset repository:
– Car Evaluation Data Set 11

– Heart Failure Prediction 12

– Placement data full class 13

– The Complete Pokemon Dataset 14

Some modifications, such as feature digitization, removal of non-digital features,
removal of incomplete instances, and modification of some output features for
certain instances, are done to make the datasets monotonic.

Name nb instances nb features nb classes
Heart 299 11 2
Car 1728 6 4

Placement 148 7 4
Pokemon 800 31 2

Fig. 3: Properties of the datasets

A summary of the properties of the datasets is presented in Figure 3.

5.2 Models

XGBoost15 [3] is used to create models that exhibit monotonicity. The Python
code can be found in the file XGBoost/build_mono.py. As explain previously,
11 https://www.kaggle.com/datasets/elikplim/car-evaluation-data-set
12 https://www.kaggle.com/datasets/andrewmvd/heart-failure-clinical-data
13 https://www.kaggle.com/datasets/barkhaverma/placement-data-full-class
14 https://www.kaggle.com/datasets/rounakbanik/pokemon
15 https://xgboost.readthedocs.io/en/stable/

https://www.kaggle.com
https://www.kaggle.com/datasets/elikplim/car-evaluation-data-set
https://www.kaggle.com/datasets/andrewmvd/heart-failure-clinical-data
https://www.kaggle.com/datasets/barkhaverma/placement-data-full-class
https://www.kaggle.com/datasets/rounakbanik/pokemon
https://xgboost.readthedocs.io/en/stable/

Certified Explanations for Monotonic Classifiers 13

after generating the model, a Python program is used to perform a test to
ensure that its predictions on the dataset adhere to both the monotonicity and
stability constraints.

Name Accuracy Monotonic ? Stable ? Size of the json file
Heart 71.72% No Yes 59.9Kio
Car 99.12% Yes Yes 650.9Kio

Placement 63.27% Yes Yes 19.0 Kio
Pokemon 98.86% Yes Yes 48.1 Kio

Fig. 4: Properties of the models generated by XGBoost

A summary of the properties of the models is presented in Figure 4.

5.3 Computing explanations

To use the certified code (see section 4.5), the axioms N , T , Tk, Tk_eq_dec,
λ, and µ need to be implemented for each dataset. The N axiom is provided
in figure 3. For the four datasets T = float, Tk = int, and Tk_eq_dec is the
equality on int. λ and µ are extracted from the datasets.

The experiment are run in a Dell Inc. Latitude 7400 with 32Gio RAM and
8 Intel® Core™ i7-8665U CPU @ 1.90GHz. The operating system is Ubuntu
22.04.2 LTS (64 bits). The execution time is compute using the Linux time
command.

Name Average
size AXp

Average
size CXp

Time for the entire
dataset

Time for 100 instances
(proportion)

Heart 2.45 1.61 user 0m24.991s 0m8.358s
sys 0m0.909s 0m0.304s

Car 2.39 1.27 user 6m1.489s 0m20.919s
sys 0m1.704s 0m0.098s

Placement 2.14 1.51 user 0m8.493s 0m8.739s
sys 0m0.864s 0m0.584s

Pokemon 1.71 2.76 user 2m47.066s 0m20.883
sys 0m1.600s 0m0.200s

Fig. 5: Properties of the explanations

A summary of the explanation properties is given in Figure 5. As can be
observed, the explanation sizes are generally small, which confirms the interest
in computing AXp and CXp explanations and helps to explain the model.

14 A. Hurault & J. Marques-Silva

The algorithm makes 2 ∗ N calls to κ, which is linear in the number of
features. This enables the code to scale effectively with larger feature sets. The
number of features explains the difference in computation times for the different
models and in particular why the execution time, reduced to 100 instances, is
more important for the pokemon dataset which has three times more features
than the others. Even if the car model has only six features, the execution
time is higher than expected. We assume that this is due to the size of the
generated model. Despite this, the computation time for calculating explanations
of several hundred instances is reasonable considering that the code is written
for certification rather than optimization.

As an example, Figure 6 shows the distribution of features in the explanations
for the heart dataset and model.

Fig. 6: Probability for a feature to be in the explanations

Our analysis reveals that, certain features are found to only contribute to
the abductive explanations (platelets), while others are only relevant to the con-
trastive explanations (diabetes). This highlights the importance of distinguishing
between these types of explanations when interpreting the classifier’s behavior.

5.4 Comparison with direct mono-language implementation

To evaluate the effectiveness of the certified code, the algorithms were coded in
Python (file XGBoost/find_xp.py) and run on the same models and dataset as
the certified code. The comparison of the execution time is presented in the table
in Figure 7.

Except for the model car, we can notice that the code generated by Coq
takes around 25% more user time and 5% more system time. The difference in

Certified Explanations for Monotonic Classifiers 15

Name OCaml generated code Python code Additional time
Heart user 0m24.991s 0m19.672s 27%

sys 0m0.909s 0m0.880s 3%
Car user 6m1.489s 1m2.110s 482%

sys 0m1.704s 0m1.115s 52%
Placement user 0m8.493s 0m6.712s 26.5%

sys 0m0.864s 0m0.792s 9%
Pokemon user 2m47.066s 2m15.932s 22.9%

sys 0m1.600s 0m1.516s 5.5%

Fig. 7: Execution time comparison between the OCaml generated code and a Python
code

execution time is due to the fact that the code was written to facilitate proof,
not efficiency, and calls to classifiers are cross-language. However, despite this,
the execution times are still reasonable and demonstrate the dual benefits of the
work: proving that the algorithm is correct and providing a proof of concept for
the use of certified correct code.

6 Conclusions

Explainability is posed to prove instrumental in delivering trustworthy AI, in-
cluding in high-risk and safety-critical application domains. Unfortunately, in-
formal XAI approaches offer no guarantees of rigor, and so their use in high-risk
and safety-critical domains could be disastrous. There has been recent work on
formal explainability, which offers guarantees of rigor in computed explanations.
However, implemented algorithms (and some times their description) may not
be correct.

This paper takes a first step towards delivering certified explanations. The
paper considers monotonic classifiers, proves the correctness of proposed algo-
rithms, and extracts confidence code from the proofs of correctness. The exper-
imental results validate the scalability of the work.

Future work will extend the certification of formal explainability algorithms
to classifiers more complex than the monotonic case. For tractable explainabil-
ity problems, we envision adopting an approach similar to the one described in
this paper. For more complex explainability problems, e.g. when the decision
problems are (co-)NP-complete or even ΣP

2 /ΠP
2 -hard, we envision adopting so-

lutions similar to those used in the case of automated reasoners, especially SAT
solvers [2, 4].

References

1. Audemard, G., Koriche, F., Marquis, P.: On tractable XAI queries based on com-
piled representations. In: KR. pp. 838–849 (2020)

16 A. Hurault & J. Marques-Silva

2. Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satis-
fiability - Second Edition, Frontiers in Artificial Intelligence and Applications,
vol. 336. IOS Press (2021). https://doi.org/10.3233/FAIA336, https://doi.
org/10.3233/FAIA336

3. Chen, T., Guestrin, C.: XGBoost: A scalable tree boosting system. In: Proceed-
ings of the 22nd ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining. pp. 785–794. KDD ’16, ACM, New York, NY, USA
(2016). https://doi.org/10.1145/2939672.2939785, http://doi.acm.org/10.
1145/2939672.2939785

4. Cruz-Filipe, L., Marques-Silva, J., Schneider-Kamp, P.: Formally verifying the so-
lution to the boolean pythagorean triples problem. J. Autom. Reason. 63(3), 695–
722 (2019). https://doi.org/10.1007/s10817-018-9490-4, https://doi.org/
10.1007/s10817-018-9490-4

5. Daniels, H., Velikova, M.: Monotone and partially monotone neural networks. IEEE
Trans. Neural Networks 21(6), 906–917 (2010)

6. Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Giannotti, F., Pedreschi, D.:
A survey of methods for explaining black box models. ACM Comput. Surv. 51(5),
93:1–93:42 (2019)

7. Gunning, D.: Explainable artificial intelligence (xai). https://www.darpa.mil/
attachments/DARPA-BAA-16-53.pdf (2016), dARPA-BAA-16-53

8. Gunning, D., Aha, D.W.: Darpa’s explainable artificial intelligence (XAI) pro-
gram. AI Mag. 40(2), 44–58 (2019). https://doi.org/10.1609/aimag.v40i2.
2850, https://doi.org/10.1609/aimag.v40i2.2850

9. Gunning, D., Stefik, M., Choi, J., Miller, T., Stumpf, S., Yang, G.: XAI - explain-
able artificial intelligence. Sci. Robotics 4(37) (2019). https://doi.org/10.1126/
scirobotics.aay7120, https://doi.org/10.1126/scirobotics.aay7120

10. Huang, X., Marques-Silva, J.: The inadequacy of shapley values for explainability.
CoRR abs/2302.08160 (2023). https://doi.org/10.48550/arXiv.2302.08160,
https://doi.org/10.48550/arXiv.2302.08160

11. Ignatiev, A.: Towards trustable explainable AI. In: IJCAI. pp. 5154–5158 (2020)
12. Ignatiev, A., Narodytska, N., Asher, N., Marques-Silva, J.: From contrastive to

abductive explanations and back again. In: AIxIA. pp. 335–355 (2020)
13. Ignatiev, A., Narodytska, N., Marques-Silva, J.: Abduction-based explanations for

machine learning models. In: AAAI. pp. 1511–1519 (2019)
14. Ignatiev, A., Narodytska, N., Marques-Silva, J.: On validating, repairing and re-

fining heuristic ML explanations. CoRR abs/1907.02509 (2019), http://arxiv.
org/abs/1907.02509

15. Liu, X., Han, X., Zhang, N., Liu, Q.: Certified monotonic neural networks. Ad-
vances in Neural Information Processing Systems 33 (2020)

16. Lundberg, S.M., Lee, S.: A unified approach to interpreting model predictions. In:
NeurIPS. pp. 4765–4774 (2017)

17. Marques-Silva, J.: Logic-based explainability in machine learning. CoRR
abs/2211.00541 (2022). https://doi.org/10.48550/arXiv.2211.00541,
https://doi.org/10.48550/arXiv.2211.00541

18. Marques-Silva, J., Gerspacher, T., Cooper, M.C., Ignatiev, A., Narodytska, N.:
Explanations for monotonic classifiers. In: ICML. pp. 7469–7479 (2021)

19. Marques-Silva, J., Ignatiev, A.: Delivering trustworthy AI through formal XAI. In:
AAAI. pp. 12342–12350 (2022)

20. Marques-Silva, J., Janota, M., Mencía, C.: Minimal sets on propositional formulae.
problems and reductions. Artif. Intell. 252, 22–50 (2017), https://doi.org/10.
1016/j.artint.2017.07.005

https://doi.org/10.3233/FAIA336
https://doi.org/10.3233/FAIA336
https://doi.org/10.3233/FAIA336
https://doi.org/10.3233/FAIA336
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1145/2939672.2939785
http://doi.acm.org/10.1145/2939672.2939785
http://doi.acm.org/10.1145/2939672.2939785
https://doi.org/10.1007/s10817-018-9490-4
https://doi.org/10.1007/s10817-018-9490-4
https://doi.org/10.1007/s10817-018-9490-4
https://doi.org/10.1007/s10817-018-9490-4
https://www.darpa.mil/attachments/DARPA-BAA-16-53.pdf
https://www.darpa.mil/attachments/DARPA-BAA-16-53.pdf
https://doi.org/10.1609/aimag.v40i2.2850
https://doi.org/10.1609/aimag.v40i2.2850
https://doi.org/10.1609/aimag.v40i2.2850
https://doi.org/10.1609/aimag.v40i2.2850
https://doi.org/10.1609/aimag.v40i2.2850
https://doi.org/10.1126/scirobotics.aay7120
https://doi.org/10.1126/scirobotics.aay7120
https://doi.org/10.1126/scirobotics.aay7120
https://doi.org/10.1126/scirobotics.aay7120
https://doi.org/10.1126/scirobotics.aay7120
https://doi.org/10.48550/arXiv.2302.08160
https://doi.org/10.48550/arXiv.2302.08160
https://doi.org/10.48550/arXiv.2302.08160
http://arxiv.org/abs/1907.02509
http://arxiv.org/abs/1907.02509
https://doi.org/10.48550/arXiv.2211.00541
https://doi.org/10.48550/arXiv.2211.00541
https://doi.org/10.48550/arXiv.2211.00541
https://doi.org/10.1016/j.artint.2017.07.005
https://doi.org/10.1016/j.artint.2017.07.005

Certified Explanations for Monotonic Classifiers 17

21. Miller, T.: Explanation in artificial intelligence: Insights from the social sciences.
Artif. Intell. 267, 1–38 (2019)

22. Reiter, R.: A theory of diagnosis from first principles. Artif. Intell. 32(1), 57–95
(1987)

23. Ribeiro, M.T., Singh, S., Guestrin, C.: "why should I trust you?": Explaining the
predictions of any classifier. In: KDD. pp. 1135–1144 (2016)

24. Ribeiro, M.T., Singh, S., Guestrin, C.: Anchors: High-precision model-agnostic
explanations. In: AAAI. pp. 1527–1535 (2018)

25. Seshia, S.A., Sadigh, D., Sastry, S.S.: Toward verified artificial intelligence. Com-
mun. ACM 65(7), 46–55 (2022). https://doi.org/10.1145/3503914, https://
doi.org/10.1145/3503914

26. Shih, A., Choi, A., Darwiche, A.: A symbolic approach to explaining bayesian
network classifiers. In: IJCAI. pp. 5103–5111 (2018)

27. Sivaraman, A., Farnadi, G., Millstein, T.D., den Broeck, G.V.: Counterexample-
guided learning of monotonic neural networks. In: Larochelle, H., Ran-
zato, M., Hadsell, R., Balcan, M., Lin, H. (eds.) Advances in Neu-
ral Information Processing Systems 33: Annual Conference on Neural
Information Processing Systems 2020, NeurIPS 2020, December 6-12,
2020, virtual (2020), https://proceedings.neurips.cc/paper/2020/hash/
8ab70731b1553f17c11a3bbc87e0b605-Abstract.html

28. You, S., Ding, D., Canini, K.R., Pfeifer, J., Gupta, M.R.: Deep lattice net-
works and partial monotonic functions. In: Guyon, I., von Luxburg, U., Ben-
gio, S., Wallach, H.M., Fergus, R., Vishwanathan, S.V.N., Garnett, R. (eds.)
Advances in Neural Information Processing Systems 30: Annual Conference on
Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach,
CA, USA. pp. 2981–2989 (2017), https://proceedings.neurips.cc/paper/2017/
hash/464d828b85b0bed98e80ade0a5c43b0f-Abstract.html

https://doi.org/10.1145/3503914
https://doi.org/10.1145/3503914
https://doi.org/10.1145/3503914
https://doi.org/10.1145/3503914
https://proceedings.neurips.cc/paper/2020/hash/8ab70731b1553f17c11a3bbc87e0b605-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/8ab70731b1553f17c11a3bbc87e0b605-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/464d828b85b0bed98e80ade0a5c43b0f-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/464d828b85b0bed98e80ade0a5c43b0f-Abstract.html

	Certified Logic-Based Explainable AI – The Case of Monotonic Classifiers

