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Abstract. The continued advances in artificial intelligence (AI), includ-
ing those in machine learning (ML), raise concerns regarding their de-
ployment in high-risk and safety-critical domains. Motivated by these
concerns, there have been calls for the verification of systems of AI, in-
cluding their explanation. Nevertheless, tools for the verification of sys-
tems of AI are complex, and so error-prone. This paper describes one
initial effort towards the certification of logic-based explainability algo-
rithms, focusing on monotonic classifiers. Concretely, the paper starts by
using the proof assistant Coq to prove the correctness of recently pro-
posed algorithms for explaining monotonic classifiers. Then, the paper
proves that the algorithms devised for monotonic classifiers can be ap-
plied to the larger family of stable classifiers. Finally, confidence code,
extracted from the proofs of correctness, is used for computing expla-
nations that are guaranteed to be correct. The experimental results in-
cluded in the paper show the scalability of the proposed approach for
certifying explanations.

Keywords: Formal Explainability · Certification.

1 Introduction

The ongoing advances in Artificial Intelligence (AI), including in Machine Learn-
ing (ML), raise concerns about whether human decision makers can trust the
decisions made by systems of AI/ML, and even whether they are able to fathom
them. Aiming to address these concerns, the field of eXplainable AI (XAI) [6–8]
has witnessed massive interest [5]. Explainability has also been proposed as a
core component of efforts for the verification of ML models [24].

Unfortunately, most work on XAI offers no guarantees of rigor. Model-agnostic
XAI approaches [14, 22, 23] represent one such example. As a result of the lack
of guarantees of rigor, there is by now comprehensive evidence [9, 10, 13] that
confirms the lack of rigor of non-formal XAI approaches. These results are trou-
blesome, especially in application domains where rigor is paramount. To ad-
dress the limitations of non-formal XAI, there has been work on formal XAI
(FXAI) [16,18]. Formal explanations are logically defined and model-based, and
so guarantee the correctness of computed explanations, as long as (i) the rep-
resentation of the ML model is adequate; and (ii) the implemented algorithms
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are correct. Unfortunately, algorithms can exhibit bugs, as can their implemen-
tations. Hence, besides the need to explain and/or verify AI/ML models, and in
settings that are deemed of high-risk or that are safety-critical, the certification
of computed explanations is bound to become a required step.

This paper represents a first step in the direction of certifying the compu-
tation of explanations. Concretely, we use the Coq proof assistant to prove the
correctness of recently proposed explanation algorithms for monotonic classifiers.
The insights from the proof of correctness also serve to generalize the algorithms
proposed for monotonic classifiers to a more general class of stable classifiers.
Finally, the proofs of correctness are used to generate confidence code, which
can be used for computing explanations that are guaranteed to be correct.

The paper is organized as follows. Section 2 introduces the notation and
definitions used throughout the paper. Section 3 briefly overviews the compu-
tation of explanations in the case of monotonic classifiers [17]. Section 4 details
the approach for the proofs of correctness and demonstrates that the results
can be applied to a broader category of classifiers we named stable. Section 5
provides evidence to the scalability of certified explainers for stable classifiers.
Finally, Section 6 concludes the paper.

2 Preliminaries

We followed the notation and definitions used in earlier work [17].

Classification problems. A classification problem is defined on a set of fea-
tures F = {1, . . . , N} and a set of classes K = {c1, c2, . . . , cM}. Each feature
i ∈ F takes values from a domain Di. Domains are ordinal and bounded, and
each domain can be defined on boolean, integer or real values. If xi ∈ Di, then
λ(i) and µ(i) denote respectively the smallest and largest values that xi can take,
i.e. λ(i) ≤ xi ≤ µ(i). Feature space is defined by F = D1×D2× . . .×DN . The no-
tation x = (x1, . . . , xN ) denotes an arbitrary point in feature space, where each
xi is a variable taking values from Di. Moreover, the notation v = (v1, . . . , vN )
represents a specific point in feature space, where each vi is a constant represent-
ing one concrete value from Di. An instance denotes a pair (v, c), where v ∈ F
and c ∈ K. An ML classifierM is characterized by a non-constant classification
function κ that maps feature space F into the set of classes K, i.e. κ : F→ K.

Monotonic classifiers.
Given two points in feature space a and b, a ≤ b if ai ≤ bi, for all i ∈ {1, . . . , N}.
A set of classes K = {c1, . . . , cM} is ordered if it respects a total order ≼, with
c1 ≼ c2 ≼ . . . ≼ cM . An ML classifier M is fully monotonic if the associated
classification function is monotonic, i.e. a ≤ b⇒ κ(a) ≼ κ(b)3. Throughout the
paper, when referring to a monotonic classifier, this signifies a fully monotonic
classifier. In addition, the interaction with a classifier is restricted to computing
3 The paper adopts the classification of monotonic classifiers proposed in earlier

work [4].
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the value of κ(v), for some point v ∈ F, i.e. the classifier will be viewed as a
black-box.

Intuitively, for a monotonic classifier the relationship between the input fea-
tures and the predicted outcome is always non-decreasing. This property allows
to make strong causal inferences about the impact of the input features on the
predicted outcome. For example, consider a credit scoring model that predicts
the likelihood of a loan being repaid based on the borrower’s credit history. A
monotonic credit scoring model would always assign a higher probability of re-
payment for borrowers with a longer and more stable credit history, all other
factors being equal. This property can be helpful in ensuring fairness and trans-
parency in decision-making, as it allows us to identify and address potential
biases in the model based on certain input features.

Stable classifiers.
An ML classifier M is stable if the associated classification function is stable, i.e.
∀a,b, c ∈ F,a ≤ b ≤ c ∧ κ(a) = κ(c)⇒ κ(a) = κ(b) = κ(c).
As for monotonic classifiers, an order relation is needed on each domain Di.
However, classes do not need to be ordered. All monotonic classifiers are stable.

Intuitively, a stable classifier can be thought of as relaxing the requirement
of monotonicity by not imposing a specific order on the classes. In other words,
if two points in the feature space receive the same prediction from the classifier,
then all points between them should also receive the same prediction.

Non-trivial classifiers.
An ML classifier M is nontrivial if the associated classification function is not
constant, i.e. ∃a,b ∈ F, κ(a) ̸= κ(b).

Logic-based explainability. We now define formal explanations. For brevity,
we only provide a brief introduction to logic-based explainability.

Prime implicant (PI) explanations [25] denote a minimal set of literals (relat-
ing a feature value xi and a constant vi from its domain Di) that are sufficient
for the prediction. 4. Formally, given v = (v1, . . . , vN ) ∈ F with κ(v) = c, an
AXp is any minimal subset X ⊆ F such that,

∀(x ∈ F).
[∧

i∈X
(xi = vi)

]
→(κ(x) = c) (1)

We associate a predicate WAXp with (1), such that any set X ⊆ F for which
WAXp(X ) holds is referred to as a weak AXp. Thus, every AXp is a weak AXp
that is also subset-minimal. AXp’s can be viewed as answering a ’Why?’ question,
i.e. why is some prediction made given some point in feature space. A different
view of explanations is a contrastive explanation [20], which answers a ’Why

4 PI-explanations can be formulated as a problem of logic-based abduction, and so
are also referred to as abductive explanations (AXp) [12]. More recently, AXp’s
have been studied from a knowledge compilation perspective [1].
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Not?’ question, i.e. which features can be changed to change the prediction.
A formal definition of contrastive explanation is proposed in recent work [11].
Given v = (v1, . . . , vN ) ∈ F with κ(v) = c, a CXp is any minimal subset Y ⊆ F
such that,

∃(x ∈ F).
∧

j∈F\Y
(xj = vj) ∧ (κ(x) ̸= c) (2)

Moreover, we associate a predicate WCXp with (2), such that any set Y ⊆ F
for which WCXp(Y) holds is referred to as a weak CXp. Thus, every CXp is
a weak CXp that is also subset-minimal. Building on the results of R. Reiter
in model-based diagnosis [21], [11] proves a minimal hitting set (MHS) duality
relation between AXp’s and CXp’s, i.e. AXp’s are MHSes of CXp’s and vice-
versa. Furthermore, it can be shown that both predicates WAXp and WCXp are
monotone. An important consequence of this observation is that one can then
use efficient oracle-based algorithms for finding AXp’s and/or CXp’s [19]. Thus,
as long as one can devise logic encodings for an ML classifier (and this is possible
for most ML classifiers), then (1) and (2), and access to a suitable reasoner, offer
a solution for computing one AXp/CXp.

Recent years witnessed a rapid development of logic-based explainability,
with practically efficient solutions devised for a growing number of ML models.
Overviews of these results are available [16,18].

3 Explanations for Monotonic Classifiers

In [17] the authors have proposed algorithms for the computation of explana-
tion of black-box monotonic classifier. The algorithm 1 (resp. 2) compute the
abductive (resp. contrastive) explanations of the prediction of a feature v, for a
classifier κ with a set a features F. For all features i ∈ F the value vi must be
bounded between λ(i) and ν(i).

Algorithm 1 findAXp F v

1 vl ← (v1, ...,vN )
2 vu ← (v1, ...,vN )
3 (C,D, P )← (F, ∅, ∅)
4 for all i ∈ F do
5 (vl,vu, C,D)← FreeAttr(i,v,vl,vu, C,D)
6 if κ(vl) ̸= κ(vu) then
7 (vl,vu, D, P )← FixAttr(i,v,vl,vu, C,D)
8 endif
9 endfor

10 return P
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Algorithm 2 findCXp F v

1 vl ← (λ(1), ..., λ(N))
2 vu ← (ν(1), ..., ν(N))
3 (C,D, P )← (F, ∅, ∅)
4 for all i ∈ F do
5 (vl,vu, C,D)← FixAttr(i, v,vl,vu, C,D)
6 if κ(vl) = k(vu) then
7 (vl,vu, D, P )← FreeAttr(i,v,vl,vu, C,D)
8 endif
9 endfor

10 return P

Algorithm 3 FreeAttr i v vl vu A B

1 vl ← (vl1, ...λ(i), ...,vlN )
2 vl ← (vu1, ...ν(i), ...,vuN )
3 (A,B)← (A \ {i}, B ∪ {i})
4 return (vl, vu, A,B)

Algorithm 4 FixAttr i v vl vu A B

1 vl ← (vl1, ...vi, ...,vlN )
2 vl ← (vu1, ...vi, ...,vuN )
3 (A,B)← (A \ {i}, B ∪ {i})
4 return (vl,vu, A,B)
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The idea is to go through the features one by one to see if they had an
impact on the decision. For abductive explanation, two points in feature space
are tested with min and max values on the tested feature. If the classifications
are different, this feature has an impact on the answer and therefore answers the
question "Why?" (so is kept in the explanation). For contrastive explanation,
two points in feature space are tested with min and max values on all features
except the tested feature. If the classification is the same and since the classifier
is not trivial, it has to be changed to change the classification value and thus
answers the question "Why not?" (so is kept in the explanation). For pedagogical
reasons, this explanation is simplified : the two points in feature space tested take
into account the responses for the features previously tested.

4 Proofs

The aim of the work is threefold:

– prove that the algorithms are correct
– extract confidence code from the proof of correctness
– check if the monotonicity constraint of the classifiers can be relaxed

To achieve these objectives we use a proof assistant that allows code extrac-
tion: Coq 5.

4.1 Coq

Coq is a proof assistant that is built on a programming language called Gallina
that allows for the expression of mathematical theorems and software specifica-
tions. This language combines higher-order logic and functional programming.
Coq provides a command language for defining functions and predicates, stat-
ing theorems and specifications, and developing formal proofs interactively. The
proofs can then be checked by a small certification "kernel". Additionally, Coq
allows for the extraction of certified programs into languages such as OCaml,
Haskell, or Scheme.

4.2 The Coq formalization

To be Coq compatible, it is necessary to alter the method used to encode the
original algorithms (algorithms 1, 2 3 and 4) while ensuring that the writing
facilitated the proof of termination and correction and the code generation.

As in Coq the data structures are homogeneous, all the features should have
the same type T ie for all i in F : Di = T . This type T need a total order
relation. This may seem restrictive, but all digital types, for example, fulfill
these constraints. A point in feature space is represented by a list of elements of
type T . The return of the classifier is of type Tk. The only requirement on Tk

5 https://coq.inria.fr

https://coq.inria.fr
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is the existence of a decidable equality (Tk_eq_dec). C and D are not used and
are dropped, while P is coded by a list of naturals (indexes of the features).

The original iterative way of coding the algorithms is replaced by a recur-
sive version more in line with the Coq environment. For abductive (resp. con-
trastive) explanation, two auxiliary functions are required: findAXp_aux which
add parameters that corresponds to the variables of the original algorithm and
findAXp_aux_j that corresponds to the loop. To ease the proof termination for
Coq, the parameter j that indicates the feature to analyze, is chosen to be strictly
decreasing.

The Coq version of the algorithm 1 is given in algorithm 5. An equivalent
transformation is done for findCXp.

Algorithm 5 findAXp κ v

1 (* Find the abductive explanation of v *)
2 (* j : (N-j) the feature to check *)
3 (* p : the feature before (N-j) that are part of the explanation *)
4 (* j is decreasing for Coq to proof the termination *)
5 Fixpoint findAXp_aux_j (k: list T → Tk) (j:nat) (v vl vu: list T) (p:list nat)
6 {struct j}: list nat :=
7 match j with
8 | 0 ⇒ p
9 | S jminus1 ⇒

10 let ’( nvl,nvu) := freeAttr (N−j) vl vu in
11 match T_eq_dec (k nvl) (k nvu) with
12 | false ⇒ let ’(nvl,nvu,np) := fixAttr (N−j) v nvl nvu p in
13 findAXp_aux_j k jminus1 v nvl nvu np
14 | true ⇒ findAXp_aux_j k jminus1 v nvl nvu p
15 end
16 end.
17

18 (* Find the abductive explanation of v *)
19 (* i : the feature to check *)
20 (* p : the feature before i that are part of the explanation *)
21 Definition findAXp_aux (k: list T → Tk) (i:nat) (v vl vu: list T) (p:list nat):
22 list nat :=
23 findAXp_aux_j k (N−i) v vl vu p.
24

25 (* Find the abductive explanation of v *)
26 Program Definition findAXp (k: list T → Tk) (v: list T) : list nat :=
27 findAXp_aux k 0 v v v nil.

For FreeAttr an auxiliary function is also needed. Coq version of the algorithm
3 is given in algorithm 6. Equivalent transformation are done for FixAttr.

The Coq formalization of the AXp property (Equation 1) is given in algorithm
7. Equivalent formalization are done for CXp property (Equation 2).
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Algorithm 6 FreeAttr i vl vu

1 (* Replace the i-th elements of the list vl and vu
2 by a value determined by n *)
3 Fixpoint freeAttr_aux (i:nat) (n:nat) (vl:list T) (vu:list T) :=
4 match i,vl,vu with
5 | 0,_:: ql,_:: qu ⇒ ((lambda n)::ql,(nu n):: qu)
6 | _,tl:: ql,tu:: qu ⇒ let (rl,ru) := freeAttr_aux (i−1) n ql qu
7 in (tl:: rl,tu:: ru)
8 | _,_,_ ⇒ (vl,vu)
9 end.

10

11 (* Replace the i-th elements of the lists vl and vu
12 by lambda i and nu i *)
13 Definition freeAttr (i:nat) (vl:list T) (vu:list T) := freeAttr_aux i i vl vu.

Algorithm 7 is_AXp

1 Definition is_weak_AXp (k : list T → Tk) (v: list T) (p:list nat) : Prop :=
2 forall (x: list T),
3 List.length v = N
4 (* x in feature space *)
5 ∧ List.length x = N
6 (* the values of the features of x are in the bounds *)
7 ∧ (forall (j:nat), j>=0 ∧ j< N
8 → (led (lambda j) (get j x) ∧ led (get j x) (nu j)))
9 (* the values of the feature constraints in the explanation

10 are the same in x and v *)
11 ∧ (forall (j:nat), j>=0 ∧ j< N
12 → ((mem j p ∧ get j x = get j v) ∨ (not (mem j p))))
13 → k(x)=k(v).
14

15 Definition is_AXp (k : list T → Tk) (v: list T) (p:list nat) : Prop :=
16 (* satisfy the equation of AXp *)
17 is_weak_AXp k v p
18 ∧ (* no subset satisfies the equation of AXp *)
19 forall (q:list nat), (is_strict_subset q p) → not (is_weak_AXp k v q).
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4.3 Results

In [17] the algorithms were supposed correct for monotonic classifiers. The con-
straints on the classifier is relaxed for a more general class of classifiers : the
stable classifiers.

The AXp finder algorithm is proved correct for stable classifiers.

Theorem 1.

∀k : (list T → Tk), stable k →(

∀v : list T, length v = N

∧ ∀j ∈ [0, N [, λ(j) ≤ vj ≤ ν(j)

→ is_AXp k v (findAXp k v)

)

Proof. Done with Coq.

The CXp finder algorithm is proved correct for stable and nontrivial classi-
fiers.

Theorem 2.

∀k : (list T → Tk), not_trivial k ∧ stable k →(

∀v : list T, length v = N

∧ ∀j ∈ [0, N [, λ(j) ≤ vj ≤ ν(j)

→ is_CXp v (findCXp v)

)

Proof. Done with Coq.

4.4 Proof sketch

For each algorithm, ten invariants are identified (figure 1). Each of the invariants
is proven true at the start (lemmas pre_post_findAXp et pre_post_findCXp).
Each of the invariants is proven preserved by the two recursive cases of the
two algorithms (forty lemmas preserveRXCasY_AXp and preserveRXCasY_CXp).
Lemmas pre_post_findAXp_aux and pre_post_findCXp_aux proves that the
ten invariants implies three post-conditions (figure 2). Eventually, axp_all and
cxp_all proves that the three post-conditions in the terminal case implies the
AXp and CXp properties.

The forty lemma of preservation of the invariant need lemmas on FreeAttr and
FixAttr like preservation of the list size, preservation of the bounded properties
of the features, only the i-th element is modify,. . . At the end 137 lemmas are
needed to prove the two theorems of correctness of the algorithms.
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findAXp_aux κ i v vl vu p findCXp_aux κ i v vl vu p

∀j ∈ [0, N [, λ(j) ≤ vj ≤ ν(j)
R1 ∀j ∈ [0, N [, λ(j) ≤ vlj ≤ ν(j) idem

∀j ∈ [0, N [, λ(j) ≤ vuj ≤ ν(j)
R1 κ vl = κ vu = κ v κ vl ̸= κ vu

R3 i ≥ 0 idem
R4 ∀j ∈ [0, N [, λ(j) = vlj ∧ ν(j) = vuj not needed

∨vj = vlj ∧ vj = vuj

R5 ∀j ∈ [0, N [, j ≥ i→ j /∈ p idem
R6 ∀j ∈ [0, N [, j ∈ p→ vj = vlj ∧ vj = vuj ∀j ∈ [0, N [, j ∈ p→ λ(j) = vlj ∧ ν(j) = vuj

R7 ∀j ∈ [0, N [, j < i ∧ j /∈ p→ λ(j) = vlj ∧ ν(j) = vuj ∀j ∈ [0, N [, j ≥ i→ λ(j) = vlj ∧ ν(j) = vuj

R8 is_sorted p idem
R9 ∀j ∈ [0, N [, j ≥ i→ vj = vlj ∧ vj = vuj ∀j ∈ [0, N [, j < i ∧ j /∈ p→ vj = vlj ∧ vj = vuj

∀x, x0, x1, p = x0@(x :: x1)→ ∃nvl, nvu, ∀x, x0, x1, p = x0@(x :: x1)→ ∃nvl, nvu,
(∀j ∈ [0, N [, (∀j ∈ [0, N [,

R10 ((p ∈ x1 ∨ j > x) ∧ vj = nvlj ∧ vj = nvuj) ((p ∈ x1 ∨ j > x) ∧ λ(j) = nvlj ∧ ν(j) = nvuj)
∨(¬(p ∈ x1 ∨ j > x) ∧ λ(j) = nvlj ∧ ν(j) = nvuj)) ∨(¬(p ∈ x1 ∨ j > x) ∧ vj = nvlj ∧ vj = nvuj))

∧κ nvl ̸= κ nvu ∧κ nvl = κ nvu

Fig. 1: Invariants

findAXp_aux κ i v vl vu p findCXp_aux κ i v vl vu p

E1 is_weak_AXp κ v (findAXp_aux κ i v vl vu p) is_weak_CXp κ v (findCXp_aux κ i v vl vu p)
E2 is_sorted (findAXp_aux κ i v vl vu p) idem

∀x, x0, x1, p, ∀x, x0, x1, p,
(findAXp_aux κ i v vl vu p) = x0@(x :: x1) (findCXp_aux κ i v vl vu p) = x0@(x :: x1)

E3 → ∃nvl, nvu : (∀j ∈ [0, N [, → ∃nvl, nvu : (∀j ∈ [0, N [,
((p ∈ x1 ∨ j > x) ∧ vj = nvlj ∧ vj = nvuj) ((p ∈ x1 ∨ j > x) ∧ λ(j) = nvlj ∧ ν(j) = nvuj)

∨(¬(p ∈ x1 ∨ j > x) ∧ λ(j) = nvlj ∧ ν(j) = nvuj)) ∨(¬(p ∈ x1 ∨ j > x) ∧ vj = nvlj ∧ vj = nvuj))
∧κ nvl ̸= κ nvu ∧κ nvl = κ nvu

Fig. 2: Post conditions
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4.5 Computing explanations that are guaranteed to be correct

Let’s recall that the objective of the work is to compute explanations that are
guaranteed to be correct. Coq is used to extract OCaml code that is certified
correct, i.e. it validates proven properties. We can provide a certified tool that
computes correct explanations.

The generated OCaml code is not modified, it is just reorganized. The .mli
file generated by Coq is converted into a signature module (with some additional
functions). The .ml file generated by Coq is converted into a functor (conformed
with the signature module) parameterized by a dataset. For each dataset the
axioms (N , T , Tk, Tk_eq_dec, λ and ν) need to be realized. k is implemented
using the pyml librairy 6 which allow to make an efficient binding between the
OCaml generated by Coq and the Python used to generated and run classifiers.

5 Experiments

In this section, we will present a series of experiments aimed at demonstrating
the feasibility and scalability of our approach. Through these experiments, we
will illustrate how our method can address the challenges we have identified and
provide tangible evidence of its potential benefits.

Monotonic vs stable The literature commonly employs the monotonicity con-
straint more frequently than the stability constraint. However, even for mono-
tonicity, it is challenging to locate tools that generate models that ensure this
property. As far as we are aware, no tool exists that guarantees model stability.
As a result, our experiments are conducted on models that are (supposedly)
monotonic.

5.1 Dataset

Four dataset are used from https://www.kaggle.com :

– Car Evaluation Data Set 7

– Heart Failure Prediction 8

– Placement data full class 9

– The Complete Pokemon Dataset 10

Some modifications (feature digitization, remove non digital features, remove in-
complete instances, modification of some features of output for some instances,. . . )
are needed to make the datasets monotonic.

A summary of the dataset properties is given in figure 3.
6 https://github.com/thierry-martinez/pyml
7 https://www.kaggle.com/datasets/elikplim/car-evaluation-data-set
8 https://www.kaggle.com/datasets/andrewmvd/heart-failure-clinical-data
9 https://www.kaggle.com/datasets/barkhaverma/placement-data-full-class

10 https://www.kaggle.com/datasets/rounakbanik/pokemon

https://www.kaggle.com
https://github.com/thierry-martinez/pyml
https://www.kaggle.com/datasets/elikplim/car-evaluation-data-set
https://www.kaggle.com/datasets/andrewmvd/heart-failure-clinical-data
https://www.kaggle.com/datasets/barkhaverma/placement-data-full-class
https://www.kaggle.com/datasets/rounakbanik/pokemon
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Name nb instances nb features nb classes
Heart 299 11 2
Car 1728 6 4

Placement 148 7 4
Pokemon 800 31 2

Fig. 3: Properties of the datasets

5.2 Models

XGBoost11 [3] is utilized to create models that exhibit monotonicity. After gen-
erating the model, a Python program is used to perform a test to ensure that its
predictions on the dataset adhere to both the monotonicity and stability con-
straints. Although XGBoost claims to ensure monotonicity, it may not hold true
for certain datasets. However, since the predictions are stable, the models can
still be used to benchmark the code generated by Coq.

Name accuracy monotonic ? stable ? size of the json file
Heart 71.72% No Yes 59.9Kio
Car 99.12% Yes Yes 650.9Kio

Placement 63.27% Yes Yes 19.0 Kio
Pokemon 98.86% Yes Yes 48.1 Kio

Fig. 4: Properties of the models generated by XGBoost

A summary of the model’s properties is given in figure 4.

5.3 Computing explanations

For using the certified code (see section 4.5), for each of the dataset, the axioms
N , T , Tk, Tk_eq_dec, λ and ν need to be realized. N is givent in figure 3. For
the four dataset T and Tk are float and Tk_eq_dec the equality on float. λ
and ν are extracted from the dataset.

The experiment are run in a Dell Inc. Latitude 7400 with 32Gio RAM and
8 Intel® Core™ i7-8665U CPU @ 1.90GHz. The operating system is Ubuntu
22.04.2 LTS (64 bits). A summary of the explanations properties is given in
figure 5.

As can be observed, the explanation sizes are in general small, which confirms
the interest of computing AXp and CXp explanation and helps to explain the
model.
11 https://xgboost.readthedocs.io/en/stable/

https://xgboost.readthedocs.io/en/stable/
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Name overage size AXp overage size CXp time to compute
AXp and CXp
in the entire
dataset

Heart 2.45 1.61 real 0m3,665s
user 0m24,991s
sys 0m0,909s

Car 2.39 1.27 real 0m54,383s
user 6m1,489s
sys 0m1,704s

Placement 2.14 1.51 real 0m1,603s
user 0m8,493s
sys 0m0,864s

Pokemon 1.71 2.76 real 0m21,740s
user 2m47,066s
sys 0m1,600s

Fig. 5: Properties of the explanations

The algorithm makes 2∗N calls to κ, which is linear in the number of features.
This enables the code to scale effectively with larger feature sets. The number
of feature explain the difference of computation times for the different models.
Even if the car models has only six features, the execution time is higher than
expected. We assume that it is due to the size of the generated model. Despite
this, the (real) computation time for calculating explanations of several hundred
instances does not exceed one minute, which is reasonable considering that the
code is written for certification rather than optimization.

5.4 Comparison with Shap

Shap [15] is a model-agnostic approaches who’s goal is to explain the output of
any machine learning model. There are recent negative results on the tractability
of exact SHAP learning [2] and on the adequacy of Shapley values for explain-
ability [9].

As our explanations are guaranteed to be correct, any discrepancies between
our results and those of Shap will favor theses negative results.

For the car dataset, Shap highlights the features that are the more used in
the explanations generated by the certified tool (see figure 6).

For the heart dataset, Shap does not highlith the ejection fraction feature,
that is used in which is present in almost 30% of AXp (see figure 7).

Conversely, for the placement and pokemon dataset, Shap highlith some fea-
ture that are hardly present in the explanations generated by the certified tool.
For example the mba_p feature for the placement dataset (see figure 8).
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(a) Shap (b) Certified algorithm

Fig. 6: Car model and dataset

(a) Shap (b) Certified algorithm

Fig. 7: Heart model and dataset

(a) Shap (b) Certified algorithm

Fig. 8: Placement model and dataset
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6 Conclusions

TO DO
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