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Framework
Notations

•X ∈ Mn,p(R) matrix containing the p covariates for n samples

• y ∈ R
n response variable, ǫ random noise

• β∗ ∈ R
p containing k non-zero elements. Note S∗ = {j|β∗

j 6= 0} the support of β∗.

Model: y = Xβ∗ + ǫ

Objective
Find the k relevant covariates.

Background
Variable selection in the presence of correlated covariates.

Lasso [5]:

•Performs variable selection

•Consistency selection under some as-
sumptions

•Problems in presence of correlation

Group-Lasso [6]:

•Performs group selection

•Requires one predefined partition of
variables (the number of groups must
be chosen before)

Proposed Method
1) Hierarchical Clustering [3]

Perform hierarchical clustering with n
2 samples.

Result: set of partitions with different numbers of groups.

2) Overlap Group-Lasso [2]

Perform a Group-lasso with the full set of partitions and the n
2

remaining samples.

Contrary to the usual Group-Lasso, it enables to select groups from
different partitions.

3) Choice of optimal groups

For a value of λ, some selected groups can be included in other selected ones.
To select non-overlapping groups, apply a hierarchical testing procedure
with Family-Wise Error Rate (FWER) control.

4) Choice of λ

Choose the λ value for which the number of rejections is maximal.

Overlap Group-Lasso

Given G = {G1, . . . ,GS} a set of different par-
titions of {1, . . . , p}, X̃ = [XG1

, . . . , XGS
].

β̂Gλ = argmin
β
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with λ ≥ 0 a regularization parameter, wg

the weight associated with g and ρs the weight
associated with the quality of partition Gs.

Choice of parameter ρs
•hs: the criterion value at which 2
groups join

• ls = hs−1− hs: difference of criteria
between two successive levels

Highest jump rule: A large value
of ls indicates the aggregation of dis-
tant groups to form the partition Gs−1.
In this case, Gs is a better choice thanGs−1.

Choice of ρs

ρs =
1√
ls

Hierarchical clustering

Figure 1: Dendrogram of Hierarchical Clustering
performed on the iris data.

Optimal groups

Let Sλ the selected groups for a specific
value of λ. For each value of λ:

1. For each g ∈ Sλ, compute the principal
component X̌g of X̃g to summarize the
groups.

2. For groups forming a hierarchy, apply a
hierarchical testing procedure [4] for con-
trolling FWER.

3. For other groups, apply the Bonferroni
multiple testing procedure.

4. Keep groups with an adjusted p-value un-
der a chosen threshold.

Application (I)
Design
•X1, . . . , Xn ∼ N (0,Σρ)

• Σρ covariance matrix with blocks structure

• β∗ containing K non-zero elements, each in a
different block

• y = Xβ∗ + ǫ with ǫ a gaussian noise
Results

Figure 2: Number of selected true groups with re-
gards to the number of false groups selected. In
black, the proposed method (hierarchical cluster-
ing + group-lasso), in red, group-lasso on the best
partition. The curve is the average of 100 trials.

Our method provides a better solution
path than group-lasso on the best parti-
tion. For an equivalent number of true
groups selected, our method selects less
false groups.

Figure 3: Selected groups after the testing proce-
dure. The dotted vertical line corresponds to the
λ value with the maximal number of rejections.

Selected groups for λ = λ̂:

True groups False groups
Before testing 4.28 6.12
After testing 2.84 0.09

Application (II)
Data & design [1]

Data set about riboflavin (vitamin B2) production by bacillus subtilis. The covariates
are measurements of the logarithmic expression level of p = 1000 genes for n = 71
samples.

Response variable is generated as follows: y = Xβ∗ + ǫ. The support S∗ is chosen as a
randomly selected variable i and the 9 covariates with the highest absolute correlation
to this variable.

Results

Figure 4: Plot of the frequency of true variables
selected versus the size of the selected active set
Ŝ. In black, the proposed method (HC + group-
lasso), in red, group-lasso on the best partition, in
blue the Cluster Representative Lasso. The curve
is the average of 100 trials.

For group-lasso and Cluster Representa-
tive Lasso [1], the partition used is the
one selected by the highest jump rule.
A correlation-based distance is used for
generating the dendrogram. It results in
a partition with a few groups and a very
large cluster.

Methods used in [1] with this partition
achieve a good rate of true variable selec-
tion with a larger number of variables.

The possibility to use different partitions
enables our method to select more effi-
ciently.

Conclusion & Perspectives
•New method combining Group-lasso and Hierarchical Clustering

•Choice of optimal λ and optimal groups

•Kernel Hierarchical Clustering
•Supervised clustering methods
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