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Abstract: The definitions of delayed mutual information and multi-information are recalled.
It is shown how the delayed mutual information may be used to reconstruct the interaction
topology resulting from some unknown scale-free graph with its associated local dynamics.
Delayed mutual information is also used to solve the community detection problem. A
probabilistic voter model defined on a scale-free graph is used throughout the paper as an
illustrative example.
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1. INTRODUCTION

In Conant (1976), the author already pointed out the in-
terest of information theoretic approaches for the analysis
of complex dynamical systems. He specifically highlighted
their additive complexity which make them attractive for
large scale systems. These approaches are based on the
computation and analysis of information flows (and losses)
between subsystems and components of the complex sys-
tem. Therefore it seems quite logical to use them for the
analysis of control systems topologies, with applications in
mind to coarse graining or partitioning (decomposition)
problems, for instance. Delayed mutual information was
introduced in Schreiber (2000) - with appropriate condi-
tioning of transition probabilities - to distinguish driving
and responding elements through the analysis of the cor-
relation between two stochastic signals. Introducing the
time delay and detecting asymmetry in the interaction of
subsystems allows one to distinguish information that is
actually exchanged between two subsystems from shared
information due to common history and input signals.

The structural analysis of complex systems dynamics and
input-output properties has a long history. Approaches
have been developed which make use of interconnection
graph or ”inference diagram”, describing the existing
(analytical) relations between a priori given input, state
and output variables (Lin (1974); Siljak (2011). Such ap-
proaches give structural results on controllability and ob-
servability, together with efficient graph algorithms. Some
recent results on structural controllability and observabil-
ity using this approach are presented in Liu et al. (2011,
2013). They require a priori knowledge of the system inter-
connection topology. When trying to isolate the most in-
fluential or measurable nodes in some complex system, this
information is often missing or incomplete. Besides, these

results on controllability and observability only conclude
to some existing causal relation between the considered
sets of variables, but not how much the dynamics of a
node may be measured or controlled from another node.

Therefore we proposed in Toupance (2019) the use of
delayed mutual and multi-informations to analyze the
most influential components in a complex system with
no a priori knowledge on the interconnection topology.
This approach is non-intrusive in the sense that it may be
performed by simply sampling the state dynamics, even
if the underlying dynamics is unknown. We proved - on
the example of the so-called voter model - that the nodes
may be ranked according to their influence (the impact
on the average opinion of the entire group) by monitoring
the time-delayed multi-information and that this ranking
closely relates to controllability/observability grammians
singular values.

In this paper we investigate how this delayed mutual
information approach may be used to reconstruct the in-
terconnection topology (for instance the incidence matrix
when the dynamics is defined on a graph). Our goal is to
develop an approach which is only based on the sampling
of the state dynamics and could be further applied online,
for instance with a moving time frame for the computation
of the mutual information.

In many practical situations, the topological structure
of a complex network is unknown or uncertain and the
topological structure of a complex network plays a pivotal
role in it dynamic, and control. Therefore, exploring the
underlying topology of a complex network is of great
importance. This problem has therefore been studied in
many papers and some articles propose an information
theoretic approach. In neuroscience this approach seems
to be preferred. For example, in the papers Becq et al.
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(2017) and Amblard and Michel (2013), the authors were
interested in constructing the graph of interactions be-
tween the areas of the brain applied to encephalogram
analysis. They identified the topology of this complex
system using the transfer entropy (Schreiber (2000)) and
the Granger causality concept (Granger (1988)). Wilmer
et al. (2012) used a time-delayed mutual information for
detecting nonlinear synchronization in electrophysiological
data.

Ideally the approach should be effective when changes
occur in the topology, making us able to detect theses
changes and reconstruct quickly the new system topology.
We will consider again - as an illustration example - a
probabilistic voter model where the vote dynamics is de-
fined on a scale-free graph representing somehow the influ-
ence between agents in a social network. The quantitative
nature of the mutual information and multi-information
suggests a new way to detect groups or communities in
the complex system, based on the information flux between
these communities. We will show how this partitioning al-
gorithm works on the example of the voter model and will
suggest that it could be an alternative approach either for
coarse graining or partitioning, or for estimation, control
or diagnosis purpose (see for instance Ocampo-Mart́ınez
et al. (2011)).

The paper is organized as follows : section 2 introduces
the voter model which will be used throughout the paper
(subsection 2.1) and the metrics from the theory of
information that we will use (subsection 2.2), together
with a summary of results previously obtained when using
these metrics to measure the relative influence of the
agents in the voter model. Our main contributions are
presented in section 3 where it is shown that time-delayed
multi-information and mutual information allow us to
reconstruct the interconnection topology of a complex
system (subsection 3.1) and partition the graph into
communities which are defined from the information flows
(subsection 3.2).

2. THE VOTER MODEL

2.1 Description of the model

Simple models that abstracts the process of opinion forma-
tion have been proposed by many researchers Castellano
et al. (2009); Galam et al. (1998). The version we con-
sider here is an agent-based model defined on a graph of
arbitrary topology, whether directed or not.

A binary agent occupies each node of the network. The
dynamics is specified by assuming that each agent i looks
at every other agent in its neighborhood, and counts the
percentage ρi of those which are in the state +1 (in case
an agent is linked to itself, it obviously belongs to its
own neighborhood). A function f is specified such that
0 ≤ f(ρi) ≤ 1 gives the probability for agent i to be in
state +1 at the next iteration. For instance, if f would
be chosen as f(ρ) = ρ, an agent for which all neighbors
are in state +1 will turn into state +1 with certainty. The
update is performed synchronously over all n agents.

Formally, the dynamics of the voter model can be express
as

Fig. 1. Time evolution of the density of opinion 1 with noise
ε = 0, 001 and n = 200 agents connected through a
scale-free network.

si(t+ 1) =

{
1 with probability f(ρi(t))
0 with probability 1− f(ρi(t))

(1)

where si(t) ∈ {0, 1} is the state of agent i at iteration t,
and

ρi(t) =
1

|Ni|
∑
j∈Ni

sj(t). (2)

The set Ni is the set of agents j that are neighbors of agent
i, as specified by the network topology.

The global density of all n agents with opinion 1 is
obviously obtained as

ρ(t) =
1

n

n∑
i=1

si(t) (3)

In what follows, we will use a particular function f ,

f(ρ) = (1− ε)ρ+ ε(1− ρ) = (1− 2ε)ρ+ ε (4)

The quantity 0 ≤ ε ≤ 1/2 is called the noise. It reflects the
probability to take a decision different from that of the
neighborhood.

To illustrate the behavior of this model, we consider a
random scale-free graph G, as simple instance of a social
network (Barabási et al. (2000)). We use the algorithm of
Béla Bollobás (Bollobás and Riordan (2003)) to generate
this graph.

Figure 1 shows the corresponding density of agents with
opinion 1, as a function of time. We can see that there is
a lot of fluctuations due to the fact that states “all 0’s” or
“all 1’s” are no longer absorbing states when ε 6= 0.

2.2 Delayed Mutual and multi-information

Let us consider a set of random variables Xi(t) associated
with each agent i, taking their values in a set A. For
instance, Xi(t) = si(t) would be the opinion of agent i
at iteration t.

Since we want to assess the temporal causality, we measure
the influence of the vote of agent i at time t on the vote



of agent j at time t + τ , we define the τ -delayed mutual
information wi,j as

ωi,j(t, τ) = I(Xi(t), Xj(t+ τ)) (5)

=
∑

(x,y)∈A2

pxy log

(
pxy
pxpy

)
(6)

with pxy = P(Xi(t) = x,Xj(t+ τ) = y) and
px = P(Xi(t) = x) and py = P(Xj(t+ τ) = y)

We also define the τ -delayed multi-information wi as a
measure of the influence of agent i on all the others

ωi(t, τ) = I(Xi(t), Yi(t+ τ)) (7)

Yi(t+ τ) =
∑
k 6=i

Xk(t+ τ) (8)

These information metrics can be computed by sampling.
In the sequel we will consider N = 105 instances of the
system in order to perform an ensemble average. At the
begining of each simulation, the probabilities at time zeros
are reset, and the random seed is changed. For example
to compute an approximation of the joint probability of
(Xi(t), Xj(t + τ)), we count among these N simulations
the number of couple (k, l) ∈ {0, 1}2 that we obtained.

According to the central limit theorem, we know that,
with this number of instances, we obtain a precision of
3 × 10−2 with a risk of 5% for the approximate values of
the probabilities that we compute.

The τ -delayed multi-information can be used as a measure
of the influence of opinion of each node i on the vote of
the other agents. For instance, Fig. 2 shows ωi(τ = 2)
in a steady state, where the origin of time is arbitrary.
We observe that some agents i exhibit a more pronounced
peak of multi-information towards the rest of the system,
suggesting that the opinion of these agents may affect
the global opinion of all agents. Note that this results is
obtained only by probing the systems, without modifying
any of its components. For this reason, we describe this
approach as “non-intrusive”.

2.3 Controllability and information theoretical

In the paper “Controllability of the Voter Model : an
information theoretic approach” (Toupance (2019)), we
showed that the delayed multi-information is indeed a
good metrics to identify the influential agents of the
system. To illustrate this result we compared wi(τ) with
the impact of forcing the vote of agent i to 1 at all time.
As a result of this forcing, the density of vote

ρ(t) =
1

n

n∑
j=1

sj(t) (9)

oscillates around a value different from that observed when
agent i is free. This variation of the average value of ρ is
defined as the influence of agent i on the whole system.
This measure of influence is “intrusive” as it is the result
of an action on the system.

The two metrics (intrusive and non-intrusive) are shown
in Fig. 3, with a color representations, for the given scale-
free graph. It shows that the multi-information (right

Fig. 2. τ -delayed multi-information wi(τ) as a function of
i, for a test graph G, similar but not identical to the
graph shown in Fig. 3. The case show here has n = 50
agents and a noise level ε = 0.001 and τ -delayed multi-
information is computed at initial state.

panel) detects correctly the influence of the nodes (left
panel) since the variation of gray levels are similar in both
cases. In this way we can then identify, by non-intrusive
observations, which agents are those whose control will be
the most influential to the system when their vote is forced.

The strong correlation that exists between influence and
the delayed multi-information can be proven rigorously in
the case of a 1D unidirectional voting model. In Toupance
(2019) it is shown that the probability πi that agent i votes
1 when the system is stationary, is

πi =
1

2
+

1

2
exp

[
− i

`c

]
(10)

where `c is defined as

`c =
1

ln
(

1+2ε
1−2ε

) (11)

We have also shown that delayed mutual information
decreases exponentially with the distance between two
agents and the noise. By simulation, we obtained that the
multi-information between agents i and j (where j > i)
with a delay τ = j − i is

ωi,j(j − i) = αi exp (−λi(j − i))
where λi depends on the noise level, ε. Figure 2.3 shows
that λi is proportional to 1/`c, confirming the strong link
between our concept of influence and that of time-delayed
multi-information.

3. TOPOLOGY OF THE SYSTEM

3.1 1-delayed mutual information and adjacency matrix

After the results presented in the previous section about
the link between controllability and information theory,
we are interested here in the identification of topology of
a system. The aim is to us our information metrics to
construct the interaction topology of the unknown graph
underlying the dynamics of a complex system.
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Fig. 3. Scale free graph colored as a function of the values of the influence (left) and the τ -delayed multi-information
(right), for τ = 4. The value of τ is chosen so as to match the diameter of the graph. In this case, the multi-
information is computed in the transient regime that follows the initial state.

Figure 4 shows the values of 1-delayed mutual information
ωi,j(1) between agent i and all the others in the system.
These values were calculated by sampling, when the sys-
tem has reached its steady state. In this case, the highest
values of ωi,j(1) are obtained for the neighbors of agent i.
For i = 42 we observed a peak for agents 15, 36, 42, 44
(the agent is neighbor of itself).

Thus, we can use the 1-Delayed Mutual information to get
the edges of a graph. For each agent i, we fixed a threshold
Ti for ωi,j(1) that indicates that j is a neighbor of i. This
threshold is defined as

Ti = µi + aiσi
where µi is the mean of the values of the 1-delayed mutual
information between agent i and the others agents, and σi
is the standard deviation of these values.

There are two possible values for ai according to the
following criteria

ai =

{
0.2 if wi(t, τ) > α+

1

2
β

0.7 otherwise
(12)

Fig. 4. 1 Delayed mutual information between agent i = 42
and the rest of the system. Peaks are visible for the
neighbors of i.

where wi(t, τ) is agent i’s τ−delayed multi-information at
time t, as defined in eq. (7). The value of t is chosen to be
in the initial regime and τ is taken large enough to capture
the influence over the rest of the system. The values α and
β are respectively the average and the standard deviation
of wi(t, τ) over i. In the first case (ai = 0.2), the agent i is
considered as very influential.
The estimation of the adjacency matrix, denoted M =
(mi,j)16i,j6N , is defined by :

mi,j =

{
1 if ωi,j(1) > Ti or ωj,i(1) > Tj
0 otherwise

In other words, when ωi,j(1) > Ti or ωj,i(1) > Tj , it is
assumed that agents i and j are neighbors.

The values of ai were determined by an empirical method.
We have tested all possible values of a from 0 to 1 with



Fig. 5. Graph built with 1-delayed mutual information
calculated when the system is in a steady state. The
dashed red edges are the ones that have not been
found, and the solid pink edges are those that were
wrongly added.

a step of 0.1 over several scale free graphs, and we have
chosen the values in order to minimize the error rate r
between this matrix and the actual adjacency matrix A.

The error rate is defined by r = ∆(M,A)
n2 , where ∆(M,A) is

the Hamming distance, namely the number of values that
differ between M and A. n is the number of agents in the
graph.

For example, Fig. 5, shows the graph that is reconstructed
by this procedure, and compares it to the original graph.
In this case, the error rate is r = 1.3%. An even better
result is obtained when 1-delayed mutual information is
computed during the initial transient regime (see Fig. 6).
The error rate is now r = 0.24%. In the transient regime
the results are probably better because it really probes
the direct influences. In order to provoke such a transient
regime, one may disrupt the system by temporarily in-
creasing the noise, while calculating the mutual informa-
tion. This method has been tested by randomly generating
20 scale free graphs. The average error rate obtained is
0.9% and the standard deviation is 0.0026.

3.2 Community detection

The existence and structures of communities in a graph is
an important concept in the analysis of social networks.
Communities are sub-graph with dense internal connec-
tions and sparse connections between these sub-graphs. In
our case, partitioning the agents in communities should
allow us to better control the network. In (Papadopoulos
et al. (2012)) the author presents different method to
determine communities. In our case, we will rather use
the delayed mutual information. In a scale free graph, we
expect a seed-centric approaches for community detection
(see Kanawati (2014)). In the voter model these seeds are
the most influential nodes, each of them characterizing a
different community. In the first part of this paper, we
showed that the delayed multi-information can determine

Fig. 6. Graph built with the 1-delayed mutual information
computed when the system evolves from its initial
state. The red edges are the ones that have not been
found.

these seeds : if we want to partition into k communities, to
find the seeds, we determine the k largest values of multi-
information.

Then, to build the corresponding community, we define
the proximity p(i, j) between two agents i and j as

p(i, j) =
1

r

r∑
τ=1

ωi,j(τ) (13)

where r is an approximation of radius of the graph.
Bollobás and Riordan (2004) proved that the diameter of a

scale-free random graph is asymptotically log(n)
log(log(n)) where

n is the size of the graph. We can choose

r = b1
2

log(n)

log(log(n))
c

this value is approximately the radius of the graph.

Each agent j is associated with the community of the seed
agent i, where i is obtained as

i = arg max
i∈I

p(i, j) (14)

where I is the set of seed agents.

The communities obtained with this algorithm are shown
in Figs. 7.

To evaluate the quality of the partitioning, we compute
their modularity Q (see Newman (2006)) defined by :

Q =
1

2m

∑
i,j

(
Ai,j −

qiqj
2m

)
δ(ci, cj) (15)

where m is the number of edges of the graph, Ai,j is the
coefficient (i, j) of the adjacency matrix, qi is the degree
of agent i, ci is the community of agent i, and δ is the
Kronecker symbol, we have

δ(ci, cj) =

{
1 if i and j are in the same community

0 otherwise



Fig. 7. Partition of the graph in 3, 4 and 6 communities.

Table 1. Modularity for different partitioning.

Number of communities 3 4 6

Q 0.3607 0.4208 0.4382

For our example, the coefficients of modularity are shown
in table 3.2. This indicates a good assortativity of the
proposed communities.

4. CONCLUSION

In this paper we showed that information theory is related
to control theory and further that is offers efficient tools
to determine the unknown interaction topology of a com-
plex dynamical system. The results are obtained using a
sampling approach on a voter model defined on a scale
free graph. The key information-theoretic quantities in-
troduced in this work is the τ -delayed mutual information
and multi-information. In addition to reconstructing the
graph topology, it can be used to determine communities
that partition the graph.

In a future work we plan to extend the present results in
three directions: (1) to detect possible changes in the graph
topology over time. This will be obtained by computing
the information metrics over sliding time windows; (2) To
used the detected communities to apply different control
strategies; (3) to use community as a way to reduce the
complexity of the full system (model reduction).
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