Rethinking inflation in an ABM model

L Ciambezi^{1 4} M Guerini² M Napoletano^{1 3} A Roventini⁴

¹Universitè Côte d'Azur, Nice

²Università di Brescia

³OFCE, Observatoire Français des Conjonctures Économiques, Paris

⁴Scuola Superiore Sant'Anna, Pisa

Inflation: this time is different

- Over the last couple of years, the world has experienced the highest levels of inflation in more than four decades.
- Determining the causes of inflation whether it's a result of excessive aggregate demand or largely supply-driven is important to tailor the appropriate policy response
- There is evidence that corporate profits and mark-ups have increased with prices, leaving real wages behind (Andler et al., 2022; Konczal, 2022)
- Meanwhile, personal consumption and total real aggregate demand have been consistently below trend since the beginning of 2020 (Stiglitz, Regmi, 2022)
- We build an Agent Based Macroeconomic model which tries to shed light on the relationship between market power, profits and inflation

An algorithmic approach to modeling economic phenomena

- Agent Based Modeling: "the computational study of economic processes modelled as dynamic systems of interacting agents" (Tetsfatsion, 2006). The economy is an evolving complex system.
- In the real world agents are heterogeneous in beliefs, strategies, endowments etc. They interact locally via complex networks, and through sequential out-of-equilibrium states
- There is no isomorphism between the micro- and macroeconomic levels of aggregation: macroeconomic phenomena are explained as emergent properties of disequilibrium interactions at the micro level

Building Blocks (builds on Guerini et al. 2018)

Imperfect matching in the product market

 customers will sort firms according to their current size on the market and will decide whether to queue-up or not in a firm according to a Binomial trial with probability p^{GM}_{ft}.

$$\Phi^{LM}_{h,t} = egin{cases} 0 & \textit{with probability } 1 - p^{GM}_{f,t} & \textit{not queue up} \ 1 & \textit{with probability } p^{GM}_{f,t} & \textit{queue up} \end{cases}$$

 The probability of queuing is proportional to the price posted by the firm relative to the market average

$$\mathcal{P}_{f,t}^{GM} = rac{1}{arrho^{GM}} [1 - \gamma^{GM} (rac{P_{f,t} - ar{P}_t}{ar{P}_t})]$$

- lower values of ρ^{GM} imply higher probability of matching for any given price, capturing higher incumbent advantage
- higher values of γ^{GM} imply higher (lower) probability of matching for lower (higher) prices, capturing the degree of "price selection" in the model

Market structure and inflation

- We analyze two alternative scenarios with respect to market characteristics:
- Scenario 1 (baseline): a strongly competitive market with low incumbent advantage and strong price selection (ρ^{GM} = 20, γ^{GM} = 20)
- Scenario 2 (concentration): a less competitive market with high incumbent advantage and low price selection (ρ^{GM} = 1, γ^{GM} = 1)
- While in Scenario 1 concentration stays close to the initial level throughout the simulation, In Scenario 2 market structure departs from the initial symmetric one and gradually transitions towards more concentration.
- Note that in these simulations labor productivity is homogeneous: the market protocol itself gives rise to a concentrated market structure merely by rewarding random success with more visibility on the market

Market structure and inflation 2

Figure 1: Scenario 2 gives rise to higher and more volatile market concentration, while in Scenario 1 concentration remains close to initial levels.

Figure 2: Year-over-year inflation is positive on average and much larger in the concentration scenario

Gre

Market structure and inflation: Main aggregate variables

Table 1: Main variables of interest between the two scenarios. Simulation for the last 1000 weeks. Absolute value of the simulation t-statistic of H0: "no difference between the two scenarios" in parentheses.

Output is standardized with respect to Baseline

Scenario	Output	Inflation	Unemployment	Wage share	Markup	HHI
Baseline	1.000	0.89%	0.83%	85.3%	17.1%	3.1%
Concentration	0.883	2.7%	6.16%	60.1%	66.6%	27.8%
Rel. Variation	- 11.7%	+ 203%	+ 642 %	- 29 %	+ 289 %	+ 796 %
(ttest)	(41.102)	(38.644)	(85.566)	(85.971)	(62.116)	(60.359)
pvalue	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001

Gre

How does the system react to aggregate shocks?

Summing up

- We have built an Agent Based Macroeconomic Model with a decentralized interaction protocol and relatively simple behavioural rules.
- We characterize two scenarios: In Scenario 1 consumers consistently buy from the cheapest supplier, while in Scenario 2 the market leader has a "visibility advantage"
- This leads to radically different economic environments: while market structure in Scenario 1 stays dispersed, in Scenario 2 two or three firms end up dominating the market
- This in turn has implications for the aggregate level of markup, aggregate demand and wage and price dynamics

