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Abstract: This paper pertains to the flat representation of a class of port-Hamiltonian (PH)
systems and advocates the use of bicausality of Bond graphs for finding appropriate flat outputs.
Systems which are differentially flat have several useful properties which can be exploited to
generate, for example, optimal trajectories/profiles which ensure constraints satisfaction. For the
special case of PH systems combining the power preserving property with the flatness properties
leads to effective control strategies for multi-physical systems. Hence, the purpose of this paper
is to explore the implications and features of a particular class of PH systems (which can be
retrieved from a Bond Graph representation) in finding their flat output representation. We
concentrate on the example of an electrical storage system of a DC microgrid to illustrate the
proposed theory.
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1. INTRODUCTION

Differential flatness is a structural property of a class of
nonlinear dynamical systems, i.e., all system variables (the
states and inputs) are written in terms of a set of specific
variables, the flat outputs (equal in number to the number
of inputs), and their derivatives (Levine (2009)).

There is a wide range of works which employ differential
flatness in their control approach. Many researchers use
its properties in motion planning problems (Hervagault
et al., 2019) in order to validate the system’s dynamics
under constraints and generate optimal profiles for ve-
locity, forces and the like. Other works employ B-Splines
parametrization of the flat outputs to ensure continuous-
time constraints validation at the trajectory generation
level Zafeiratou et al. (2018); Pham et al. (2015).

The idea of this paper is inspired by our recent works
(Zafeiratou et al., 2018) where we propose a flatness-based
hierarchical control for power balancing in a meshed DC
microgrid. Firstly, through the PH formulation, the state-
space representation of the microgrid system was explicitly
and structurally described. Next, the differential flatness
was employed to obtain the relations of the states and
control inputs in function of the flat outputs. By using
flatness combined with B-splines parametrization, we were
able to generate optimal profiles for the current and
voltage of the energy storage (ES) system while minimizing
the electricity purchase from the external grid.

However, an important issue is the calculation of the flat
outputs, especially in the case of a complex dynamics
with multiple states and inputs. Franke and Robenack
(2013) proposed an algorithm for calculating the flat
outputs of nonlinear physical systems using illustrative
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examples. This algorithm was implemented in Zafeiratou
et al. (2018) to find a possible flat output set for the ES
PH system. Apart from the algorithm, another method
has been studied in (Richard et al., 2002). It relies upon an
important advantage of the PH systems according to which
their state-space representations can be easily derived from
their Bond graph representation. Therefore, through Bond
graphs and a recently established notion called bicausality,
the inverse dynamics of the PH systems will be studied and
linked to their flat representations.

The contributions of this paper are: i) use of the bicausal
Bond graphs to analyze the flat representation of the
PH systems; ii) development of a method which provides
directly the number of states and inputs that could be
taken into account as possible flat outputs for the PH
system; iii) analysis of the proposed technique over an
electrical storage system.

2. BOND GRAPHS AND BICAUSALITY

Bond graph is a graph-oriented approach and builds upon
the power-preserving interconnections amongst the ele-
ments of a physical system Karnopp et al. (2012). An
important characteristic of the Bond graph is the causality
property which indicates the dependence among the port
elements 1 characterized by pairs of efforts e and flows f as
in Fig. 1. Every element has different causality structure.
In here, we will focus on the storage elements (capacitors
and inductors) which define the states of the electrical sys-
tems mentioned below. There are two types of causalities,
the integral and the differential causality.

Integral causality : The input is integrated to generate the
output (see also Fig. 2a). For the capacitors we have

1 For electrical systems, e is the voltage and f is the current.
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Fig. 1. Causality in the Bond graphs indicated in red.

Fig. 2. (a) Integral causality of the storage elements. (b)
Differential causality of the storage elements.

e =
1

C

∫ t
f dt and for the inductors f =

1

I

∫ t
e dt (where C

is the capacitance and I is the inductance). Concerning the
dissipative elements, R, they obey to a static constitutive
law which provides only algebraic relations between the

effort and flow, e = f · R and f =
e

R
. Fig. 3 depicts

the causal Bond graph of the RLC circuit depicted on the
left. The red dashed lines illustrate the power flow and the
dependence among the port variables.

Differential causality : The input’s time derivative equals
to the ratio of the output (see also Fig. 2b). For the

capacitors wa have
de

dt
=
f

C
and for the inductors

df

dt
=
e

I
.

Differential causality is used in the inverse Bond graphs,
else called bicausal Bond graphs, as in Fig. 5.

Fig. 3. Electrical RLC circuit and its causal Bond graph.

Bicausality : It is an extended version of causality which
allows the interpretation of the inverse dynamics (Richard
et al., 2002). In order to design a bicausal Bond graph,
supplementary elements are taken into account which
enable the decoupling of e − f pairs and facilitate the
calculation of further quantitative variables (Fig. 4). The
SS (source-sensor) elements are added, which contain the
inputs and the outputs of the system (e.g., the effort
sources, Se, the flow sources, Sf , the effort detectors,
De , the flow detectors, Df ). The sources elements have
specific assignment , which is the opposite assignment from
the case of the causal Bond graph, indicating the inverse
dynamics. Similarly, for the storing elements as in Fig.
2b(Ngwompo and Gawthrop, 1999).

Bicausality of a RLC circuit : The bicausal Bond graph of
the RLC circuit is introduced in Fig. 5. From the bicausal
Bond graph, the following relations are obtained from the
0 and 1 junctions (keep in mind that p is the magnetic flux

Fig. 4. Relation among the e− f elements in the bicausal
Bond graphs.

of the inductor and q is the charge of the capacitor) 2 :

e1 = e3 + e4,

f2 = f3 = f4,

e4 = e5 = e6,

f4 = f5 + f6,

e6 = e7,

f6 = f7,

f5 = C
de5
dt

= q̇, e5 =
1

C

∫ t

f5dt =
q

C
,

e7 = I
df7
dt

= ṗ, f7 =
1

I

∫ t

e7dt =
p

I
,

eR = fRR = (f5 + f6)R = (q̇ +
p

I
)R.

(1)

Fig. 5. Bicausal Bond graph of the electrical RLC circuit.

3. BICAUSALITY AND DIFFERENTIAL FLATNESS

Hereinafter, the connection between bicausality and differ-
ential flatness will be analyzed.

Taking into account the definition of differential flatness
(see Levine (2009)), we show that the flatness property can
be derived from the bicausal Bond graph representation of
an electrical circuit detailed in Section 2.

Proposition 3.1. Let us consider the state vector x(t) ∈ R2

and inputs u(t) ∈ R derived by the bicausal Bond graph
of the RLC circuit. The state and input resulted by the
bicausal Bond graph is considered to be equivalent to the
flat representation of the system (see Levine (2009)).

Proof : From (1), the states and inputs are derived for the
bicausal Bond graph in Fig. 5:

p = If7 = I(q̇ +
p

I
− q̇), (2a)

q = Ce5 = Cṗ, (2b)

u = vs = (q̇ +
p

I
)R+ ṗ, (2c)

where vs is the input voltage supplied by the source.

The state vector of the system is x = [p q]
> ∈ R2×1

and the input vector is u = vs ∈ R1×1. Regarding the
relations above, (2a)-(2c), provided through the bicausal
Bond graph, a physical representation is obtained similar
to the flat representation of the system, considering the flat
outputs in function of the states (see definition of flatness).
According to Levine (2009), the number of flat outputs
must be equal to the number of control inputs. The RLC
system (2a-2c) has one control input, u = vs. Therefore,

2 Wherever it is straightforward implied by the text, we will discard
the time dependence.



one flat output is necessary. Note that from the bicausal
Bond graph (Fig. 5), we retrieve the state p and obtain
(2a), which shows that p cannot be written in function
of the other variables of the RLC circuit, the state q and
the input vs. Consequently, a straightforward choice is the
state p as a possible flat output for the system, z = p.
Therefore, we obtained a flat representation of the system
through its bicausal Bond graph. 2

4. FROM BICAUSAL BOND GRAPHS TO DIRAC
STRUCTURES

In this section, we go further and analyze the connection
between bicausal Bond graphs of electrical circuits and
their PH formulation. Then going back, we can actually
retrieve the flat representation of a PH system.

In general, PH systems are determined by the intercon-
nections among the elements included in a physical system
through a Dirac Structure (DS) (see definition in (van der
Schaft et al., 2014)). The DS connects all the port variables
together and obeys to the power conservation among the
elements (van der Schaft et al., 2014).

Proposition 4.1. (Link between bicausal Bond graphs and
Dirac structures): If the bicausal Bond graph admits a
kernel representation (see definition in (van der Schaft
et al., 2014)), then it is a Dirac structure, hence a PH
system. As a consequence, in the case of the electrical
circuits, the flat representation of their PH models can
be analyzed through their bicausal Bond graphs.

Proof : The proof is given over a particular example of an
ES system (see the circuit in Fig. 6) which includes the
KiBaM battery 3 and the Split-Pi converter.

Let us represent in Fig. 7 the causal Bond graph of the
KiBaM battery, part of the ES electrical circuit presented
in Fig. 6. Its corresponding state-space representation in
PH form derived by its causal Bond graph has been already
presented in Zafeiratou et al. (2018). Developing, next,
the inverse dynamics of the battery’s system through its
bicausal Bond graph (Fig. 8), we will derive the possible
flat outputs of the battery.

Fig. 6. Electrical circuit of the ES system composed by the
Split-Pi converter and the KiBaM battery.

Fig. 8 presents the bicausal Bond graph of the battery
composed by two storing elements, the capacitors C1b and
C2b of the battery with their differential causalities, one
effort source, Se, which is the input (the voltage of the
Split-Pi converter, vsc), and one flow detector, Df , which
is the output (the current of the Split-Pi converter, isc).
Therefore, the state and input of the system are give:

3 KiBaM stands for the kinetic battery model.

Fig. 7. Causal Bond graph of the KiBaM battery.

q1b = q̇2bR2bC1b +
C1b

C2b
q2b, (3a)

q2b = vscC2b − q̇1bR1bC2b − q̇2bR1bC2b − q̇2bR2bC2b, (3b)

vsc = q̇1bR1b + q̇2bR1b + q̇2bR2b +
q2b
C2b

. (3c)

Fig. 8. Bicausal bond graph of the KiBaM battery.

According to Proposition 4.1, if the aforementioned system
can be written in kernel representation, it composes a DS.
Therefore, the kernel representation of the bicausal Bond
graph in Fig. 8 is presented below:

1 −1 0 1 0
−1 0 1 0 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


︸ ︷︷ ︸

E


vq1b
vq2b
vR1b

vR2b

vsc


︸ ︷︷ ︸

e

+


0 0 0 0 0
0 0 0 0 0
1 1 0 0 1
0 0 1 0 −1
0 1 0 1 0


︸ ︷︷ ︸

F


iq1b
iq2b
iR1b

iR2b

is


︸ ︷︷ ︸

f

=


0
0
0
0
0

 ,

(4)
Hence, the bicausal Bond graph of the battery is a PH
system. Indeed, by isolating the derivatives of the states
on the left side in (3a)-(3c), we conclude to the PH state-
space representation presented in Zafeiratou et al. (2018).
Afterwards, all the possible relations among the efforts and
flows, derived from the 0 and 1 junctions of the bicausal
Bond graph (Fig. 8), are presented below:

q1b
q1b
q2b
q2b
vsc
vsc

 =



0 0
C1b

C2b
R2bC1b 0

0 −R1bC1b 0 −R1bC1b C1b

0 0 1 0 0
0 0 1 0 0

0 R1b
1

C2b
R1b +R2b 0

0 0 0 0 1




q1b
q̇1b
q2b
q̇2b
vsc

 . (5)

From the latter matrix representation, in the left part the
states and the inputs are illustrated, which, regarding the
definition of flatness, can be written in function of the flat
outputs and their derivatives. Since we have one control
input, vsc, we expect only one flat output (Levine, 2009).
Furthermore, taking into account that the flat output can
be written in function of the states, from (5) we can assume
that the only possible flat output for the battery’s system



is z = q2b. This conclusion comes from the fact that it is
the only state not written in function of the other states or
their derivatives. To look more carefully at the result, we
separate the matrices, extracting the circuit parameters,
C1b, C2b, and the dissipation, R1b, R2b:

q1b
q1b
C1bq2b
C2bq2b
C2b
us
us


=




0 0 1 0 0
0 0 0 0 1
0 0 1 0 0
0 0 1 0 0
0 0 1 0 0
0 0 0 0 1


︸ ︷︷ ︸

V

+


0 0 0 R2b 0
0 −R1b 0 −R1b 0
0 0 0 0 0
0 0 0 0 0
0 R1b 0 R1b +R2b 0
0 0 0 0 0


︸ ︷︷ ︸

W


·

·
[ q1b
C1b

q̇1b
q2b
C2b

q̇2b vsc
]>

. (6a)

Therefore, from matrix V we can derive the states and
control inputs which are structurally required for the flat
representation. The state q2b is included, in function of
which q1b and vsc can be derived (third column of matrix
V ). We notice also that in the last row of matrix V the

control input vsc appears. In W matrix, the dissipative
elements are presented and are involved only with the
derivatives of the states, which are not taken into consider-
ation in the flat outputs selection. The flat representation
of the battery is written below from (3a)-(3c):

q1b = R2bC1bż +
C1b

C2b
z, (7a)

q2b = z, (7b)

vsc = R2bR1bC1bz̈ + (R1b
C1b

C2b
+R1b +R2b)ż +

1

C2b
z.

(7c)

Following the same steps, we continue with the Split-
Pi converter. Firstly, its PH state-space representation is
considered (see Fig. 7) as already presented in Zafeiratou
et al. (2018). As aforementioned, since we have four control
inputs at this case, we have to find four flat outputs.
Developing the inverse dynamics of the system through
its bicausal Bond graph, we will generate the four states
or inputs which can be considered as flat outputs.



p1sc
p1sc
p2sc
p2sc
q1sc
q1sc
q2sc
q3sc
q3sc
q3sc
vs
ib



>

=



1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 − I1sc
C1scR1sc

−I1sc 0 0 0
I1sc
R1sc

0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 I2sc 0 I2sc 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0

0 C1sc 0 0 0 0
C1sc

C2sc
0 0 0 0 −C1sc 0

0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 −C3sc 0 0
C3sc

C2sc
0 0 0 0 0 −C3sc

0 0 0 0 0 0 0 0 0 0 C3scR 0 0
R1sc

I1sc
0 0 0

1

C1sc
R1sc 0 0 0 0 0 0 0

0 0 0 0 0 0 0
1

C1scR
0 0 0 0 0





p1sc
ṗ1sc
p2sc
ṗ2sc
q1sc
q̇1sc
q2sc
q3sc
q̇3sc
vs
ib
d1sc
d2sc



>

(8)

Fig. 10 presents the bicausal Bond graph of the Split-Pi
converter, composed by five storing elements, the capac-
itors C1sc, C2sc, C3sc and the inductors I1sc, I2sc with
their differential causalities, one effort source, Se, and the
resistor R which contain the inputs (the voltage of the
source, vs, and the current of the resistor R, iR), one
flow detector, Df , which is the first output (current of
the source, is) and one effort detector, De, which is the
second output (voltage of the resistor R) of the system.
Furthermore, the duty cycles, d1sc and d2sc, correspond to
the activity of the switches, Sw1sc, Sw2sc, Sw3sc, Sw4sc.
Therefore, the states are derived below:

p1sc = I1sc

(
us
R1sc

− q1sc
C1scR1sc

− q̇1sc
)
, (9a)

p2sc = I2sc [q̇3sc + iR] , (9b)

q1sc = C1sc

[
ṗ1sc +

q2sc
C2sc

(1− d1sc)
]
, (9c)

q2sc = q2sc, (9d)

q3sc = C3sc

[
q2sc
C2sc

(1− d2sc)− ṗ2sc
]
. (9e)

Moreover, the control inputs can be deduced also in
function of the states and their derivatives from the

bicausal Bond graph as follows:

vs =

(
p1sc
I1sc

+
q1sc

C1scR1sc
+ q̇1sc

)
R1sc, (10a)

iR =
q3sc
C3scR

, (10b)

d1sc =
C2sc

q2sc

(
ṗ1sc −

q1sc
C1sc

+
q2sc
C2sc

)
, (10c)

d2sc =
C2sc

q2sc

(
−ṗ2sc +

q2sc
C2sc

− q3sc
C3sc

)
. (10d)

Next, the kernel representation of the bicausal Bond graph
of the Split-Pi converter is presented, which proves that it
composes a DS:

−1 0 −1 1− d1sc 0 0 0 0
0 1 0 1− d2sc −1 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 −1 0 0 −1 0 1
0 0 0 0 −1 0 −1 0
0 0 0 0 0 0 0 0


︸ ︷︷ ︸

E



ep1sc

ep2sc

eq1sc
eq2sc
eq3sc
eR1sc

eR
vs


︸ ︷︷ ︸

e

+ (11a)



Fig. 9. Causal bond graph of the Split-Pi converter.

Fig. 10. Bicausal bond graph of the Split-Pi converter.

+



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
−1 0 1 0 0 0 0 1

1− d1sc −(1− d2sc) 0 1 0 0 0 0
0 −1 0 0 −1 0 1 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 1


︸ ︷︷ ︸

F



fp1sc

fp2sc

fq1sc
fq2sc
fq3sc
fR1sc

fR
is


︸ ︷︷ ︸

f

=



0
0
0
0
0
0
0
0


,

Hence, the bicausal Bond graph of the Split-Pi converter
is also a PH system. By placing the state derivatives
on the left side in (9a)-(9e) (considering also the control
inputs in (10a)-(10d)) leads to the primary PH state-space
representation as in Zafeiratou et al. (2018).

Subsequently, all the relations among the flow and the
effort variables from the 0 and 1 junctions (Fig. 10) are
introduced below in (8). At this point, four additional
relations are obtained for the states p1sc, p2sc and q2sc
concerning the duty cycles, d1sc and d2sc, of the converter:

p1sc
I1sc

d1sc =
p1sc
I1sc
− q̇2sc −

p2sc
I2sc

(1− d2sc), (12a)

p2sc
I2sc

d2sc =
p2sc
I2sc
− q̇2sc −

p1sc
I1sc

(1− d1sc), (12b)

q2sc
C2sc

d1sc =
q2sc
C2sc

− q1sc
C1sc

+ ṗ1sc, (12c)

q2sc
C2sc

d2sc =
q2sc
C2sc

− q3sc
C3sc

− ṗ2sc. (12d)

These four equations will be also considered in the analysis
of the flat outputs. During the operation of the converter
the states p1sc, p2sc, q2sc are different from 0. Contrariwise,
the duty cycles, d1sc and d2sc, can be equal to 0. Therefore,
the duty cycles cannot be placed in the denominator’s
position in the fractions appearing in (12a)-(12d) and
cannot be included in the flat outputs selection.

The circuit’s parameters and the dissipative elements are
divided into two matrices as in (6a), hence (8) becomes:

[
p1sc

p1sc
I1sc

p2sc
p2sc
I2sc

q1sc
q1sc
C1sc

q2sc q3sc
q3sc
C3sc

q3sc
C3sc

vs ib

]>
= (V +W )

[
p1sc ṗ1sc p2sc ṗ2sc q1sc q̇1sc q2sc

q3sc q̇3sc vs ib d1sc d2sc

]>
, (13)

where matrices V and W are developed as before, extract-
ing the dissipative elements and placing them in W .

From (8), we can assume that a possible set of flat outputs
for the Split-Pi converter system contains the states p1sc,
p2sc, q1sc, q2sc, q3sc. Concerning the state q2sc, it must be
regarded as one of the flat outputs (seventh row of matrix
V ). Since it cannot be expressed in function of the other
states and inputs, it is necessary for the flat representation.
Additionally, because of (12a)-(12d), it is indispensable
to consider the states p1sc, p2sc, q2sc as part of the flat
outputs since they are linked with the switching activity
of the converter (12a-12d). Moreover, the d1sc and d2sc are
given only from (12a)-(12d) and they cannot be taken into
account. The control inputs, vs and ib, similarly cannot be
taken into account, since they are written in function of
the states and their derivatives, but not vice-versa.

To decide the proper set of flat outputs, we must consider
that the number of flat outputs derivatives in the flat
representation can influence the signal response and create
oscillations. Thereupon, we need to select which states are
appropriate from (13) and (8) (less derivatives create less
deviations among the reference and the actual values), so
that the less possible derivatives appear in the flat repre-
sentation. If we look into (8), the state q1sc is in function
of more than one derivatives, while the state q3sc can be
replaced from an equation with no derivatives included.
However, neither can be excluded and the decision on the
appropriate flat output depends on the kind of problem
to solve as referred below. Therefore, we conclude to the
following possible flat outputs:

z1 = [p1sc p2sc q2sc q1sc]
>
, (14)

z2 = [p1sc p2sc q2sc q3sc]
>
. (15)



The flat representation of the Split-Pi converter can be
written, substituting in (9a)-(9e) and (10a)-(10d), each one
of (14) and (15).

In Fig. 12 and Fig. 11, the control inputs from (10a)-(10d)
are written in function of the two sets of flat outputs (14-
15) and, after implementing the Split-Pi model in Mat-
lab/Simulink both in PH form and in flat representation,
the simulation results are obtained. The reference values
of the control inputs are considered as vs = 400 V , d1sc =
0.6, d2sc = 0.4 and ib (the input current of the battery),
which varies (blue line in the last simulation of Fig. 12
and Fig. 11). Analyzing the two figures, Fig. 12 and Fig.
11, we observe that with (14) we obtain more stable and
less noise-affected results for vs. Contrariwise, ib signal
contains more noise-affected data. In the duty cycles, slight
disturbances appear for both cases. In general, both sets
of flat outputs, (14) and (15), can be considered for the
flat representation of the Split-Pi converter. The flat
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Fig. 11. Actual control inputs in function of the flat
outputs set of (14). vs, d1sc and d1sc are considered as
constant in the reference PH system, while ib varies.

representation in our case is further combined with the B-
spline parametrization, strongly dependent on the number
of derivatives included. To simplify the calculations (see
also (10a)), the first set of flat outputs (14) would be
the appropriate choice, because writing vs in function of
this set leads to a simpler differential equation with less
derivatives.

5. CONCLUSION

The concept of bicausality and bicausal Bond graphs was
presented. We attempted to link bicausality and Dirac
structure of port-Hamiltonian systems through kernel rep-
resentation. Every possible relations among the states and
the control inputs were found from their bicausal Bond
graphs. The idea was to find a method which provides the
possible states, candidates for the flat representation of
the PH systems. This method will be further extended for
other port-Hamitonian physical systems.
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Fig. 12. Control inputs in function of the second set of flat
outputs of (15). vs, d1sc and d1sc and ib have the same
values as in the previous simulations (Fig. 11).
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planning for usvs with communication guarantees: an
experimental setup. In 2019 18th European Control
Conference (ECC), 3984–3989. IEEE.

Karnopp, D.C., Margolis, D.L., and Rosenberg, R.C.
(2012). System dynamics: modeling, simulation, and
control of mechatronic systems. John Wiley & Sons.

Levine, J. (2009). Analysis and control of nonlinear
systems: A flatness-based approach. Springer Science &
Business Media.

Ngwompo, R.F. and Gawthrop, P.J. (1999). Bond graph-
based simulation of non-linear inverse systems using
physical performance specifications. Journal of the
Franklin Institute, 336(8), 1225–1247.

Pham, T.H., Prodan, I., Genon-Catalot, D., and Lefèvre,
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