Temporal pattern recognition in retinal ganglion cells is mediated by dynamical inhibitory synapses

Simone Ebert, Thomas Buffet, Semihchan Sermet, Olivier Marre, Bruno Cessac

07.02.2023 Complex Days 2023 Nice

Outline

- Visual information processing in the Retina
- Anticipation and Surprise in the Retina
- A computational Model with Dynamic Inhibitory Coupling

Outline

- Visual information processing in the Retina
- Anticipation and Surprise in the Retina
- A computational Model with Dynamic Inhibitory Coupling

Outline

- Visual information processing in the Retina
- Anticipation and Surprise in the Retina
- A computational model with dynamic inhibitory coupling

• Transforms visual inputs into neuronal responses

- Transforms visual inputs into neuronal responses
- Multi-layered dynamical system

- Transforms visual inputs into neuronal responses
- Multi-layered dynamical system
- Complex Network of excitatory and inhibitory cells that extracts relevant information

Prediction and Surprise in the Retina

• The retina does not encode the visual scene *per se*

Prediction and Surprise in the Retina

- The retina does not encode the visual scene *per se*
- but forms predictions about future stimuli

Prediction and surprise in the Retina

- The retina does not encode the visual scene *per se*
- but forms predictions about future stimuli
- and signalling surprise about unpredicted inputs (= error signal)

Prediction and surprise in the Retina

- The retina do the visual sce
- but forms pr future stimul

How can the retina recognize temporal patterns, form predictions and signal surprise ?

 and signalling carpine discut unpredicted inputs (= error signal)

Surprise Response in the Retina

Surprise Response in the Retina

Response latency shifts with stimulus period

Response latency shifts with stimulus period

Inhibition is necessary for latency scaling

1. Convolution of stimulus and temporal kernel

24

$$F_X(t) = S_X[\alpha_X * s](t)$$

1. Convolution of stimulus and temporal kernel

$$F_X(t) = S_X[\alpha_X * s](t)$$

2. Intermediate units integrate the signal

$$\frac{dV_X}{dt} = -\frac{V_X}{\tau_X} + F_X(t)$$

1. Convolution of stimulus and temporal kernel

$$F_X(t) = S_X[\alpha_X * s](t)$$

2. Intermediate units integrate the signal

$$\frac{dV_X}{dt} = -\frac{V_X}{\tau_X} + F_X(t)$$

1. Convolution of stimulus and temporal kernel

$$F_X(t) = S_X[\alpha_X * s](t)$$

2. Intermediate units integrate the signal

$$\frac{dV_X}{dt} = -\frac{V_X}{\tau_X} + F_X(t)$$

3. RGCs pool over network

$$\frac{dV_G}{dt} = -\frac{V_G}{\tau_G} + \sum_{X=1}^N w_X p(V_X(t), \theta_X)$$

1. Convolution of stimulus and temporal kernel

$$F_X(t) = S_X[\alpha_X * s](t)$$

2. Intermediate units integrate the signal

$$\frac{dV_X}{dt} = -\frac{V_X}{\tau_X} + F_X(t)$$

3. RGCs pool over network

$$\frac{dV_G}{dt} = -\frac{V_G}{\tau_G} + \sum_{X=1}^N w_X p(V_X(t), \theta_X)$$

Input-dependent Adaptive Coupling via Shortterm Depression

1. The variable n adapts dynamically to the input

$$\frac{dn}{dt} = (1-n)k_{rec} - \beta k_{rel} p(V_{I_{Gly}^{OFF}}, \theta_{I_{gly}^{OFF}})n$$

Input-dependent Adaptive Coupling via Shortterm Depression

1. The variable n adapts dynamically to the input

$$\frac{dn}{dt} = (1-n)k_{rec} - \beta k_{rel} p(V_{I_{Gly}^{OFF}}, \theta_{I_{gly}^{OFF}})n$$

2. The synaptic weight is scales by n

 $w(t) = \bar{w} n(t)$

Model

time [s]

....

0.5

slope 1

data

80 100 120 period [ms]

1.

170

0.0

0

Relative response latency [ms]

60

Surprise adapts to the stimulus via synaptic plasticity

Model produces **error signal** via excitation and slower inhibition

 dV_G

Surprise adapts to the stimulus via synaptic plasticity

Model produces **error signal** via ON excitation and slower inhibition

Additional inhibition increases the latency

 dV_G

 $-\frac{V_G}{\tau}$

Surprise adapts to the stimulus via synaptic plasticity

 dV_G

dt

Conclusion

 Retina forms predictions about it future inputs and signals surprise when they are violated

Conclusion

- Retina forms predictions about it future inputs and signals surprise when they are violated
- We show how this may be implemented via dynamic synaptic adaptation

Conclusion

- Retina forms predictions about it future inputs and signals surprise when they are violated
- We show how this may be implemented via dynamic synaptic adaptation
- How is surprise to more complex stimulus motion with sudden changes in trajectories shaped

Thank you !

Bruno Cessac Pierre Kornprobst Hui-Yin Wu Johanna Delachambre Franz Franco Gallo Alexandre Bonlarron Jerome Emonet Florent Robert Clement Bergmann Jeremy Termoz-Masson **Olivier Marre Thomas Buffet B.** Semihchan Sermet

Ebert et al., 2023, submitted to *Nature Neuroscience*

