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Abstract. In this paper, we show that the theory of information offers
some tools to detect changes in the interaction topology of a dynamical
system defined on a graph. As an illustrative example, the system we
consider is a probabilistic voter model defined on a scale-free network.
We show that, using time-delayed mutual-information, the interaction
topology of an unknown graph can be reconstructed to some level. We
apply this approach on a sliding time window to detect possible changes
in the interaction topology over time.
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1 Introduction

The knowledge of the interconnection topology of a complex network is impor-
tant in order to have results on structural observability and controllability, as
discussed in [1,2].

In this paper we consider the concept of causality as a way to obtain the
interaction topology among the variables of complex dynamical systems. For
probabilistic models, the theory of information proposed by Shannon in 1948
([3]) offers tools to define causality, for example the transfer entropy introduced
by Schreiber [4], as a measure of directed (time-asymmetric) information transfer
between joint processes.

In [5] we use the time-delayed mutual- and multi-information, defined in the
section 2.2, to analyze the most influential components of a complex system
with no a priori knowledge of the interconnection topology. This approach is
non-intrusive in the sense that it may be performed by a simple sampling of
the system state, even if the underlying dynamics is unknown. We proved –
on the example of the so-called voter model– that the nodes (voters) may be
ranked according to their influence (the impact of their opinion on the average
opinion of the entire group) by monitoring the time-delayed multi-information.
This ranking closely relates to controllability/observability Grammians singular
values, as defined in classical system theory (see [6]). Furthermore, by sampling



the state of the dynamical system, we showed [7] that time-delayed mutual- and
multi-information can be used to reconstruct the interaction topology.

In this paper, the problem of a change of the interaction topology during
time is investigated. The goal is to detect structural modifications in a dynamical
system defined on a graph, by simply observing its state variables. To this end,
we compute the delayed mutual-information on sliding time-windows and study
whether this quantity can alert us of a change in the structure of the system.

The paper is organized as follows: section 2 introduces the voter model which
will be used throughout the paper as an example. The metrics from information
theory that we will use are recalled. An overview of results previously obtained
to measure the relative influence of the agents is presented. Then we present how
we used our approach to reconstruct the interconnection topology of a complex
system. Our main new contributions are presented in section 4 where we discuss
how the delayed mutual-information can be measured in a time sliding-window
and how this leads to the identification of dynamical topology changes.

2 Dynamical system and mutual information

2.1 Voter Model

As an illustration of our approach we consider a voter model as a representative
dynamical system on a graph. Various versions of voter models have been stud-
ied. For example Castellano et al. [8] have defined a q-voter model in which an
agent votes like its neighbors if the opinion is unanimous; otherwise the vote is
random. This model has been used by Nycska et al. [9]. Our model is closer to
those used by Mobilia et al. [10], Masuda [11] or Galam [12]: it is a model where
the vote of an agent depends on the average vote of its neighbors. The version
we consider here is a time synchronous agent-based model defined on a graph of
arbitrary topology, whether directed or not.

Our model can be described in the following way. Each node i of the network
represents an agent whose opinion is either si = 0 or si = 1. The dynamics
is specified by assuming that each agent i looks at every other agents in its
neighborhood, and counts the fraction ρi of those neighbors which are in state
+1. In case an agent is linked to itself, it belongs to its own neighborhood. A
function f is specified such that 0 ≤ f(ρi) ≤ 1 gives the probability for agent
i to be in state +1 at the next iteration. For instance, if f would be chosen as
f(ρ) = ρ, an agent for which all neighbors are in state +1 would turn into state
+1 with certainty. The update is performed synchronously over all n agents.

Formally, the dynamics of our voter model can be express as

si(t+ 1) =

{
1 with probability f(ρi(t))
0 with probability 1− f(ρi(t))

(1)

where si(t) ∈ {0, 1} is the state of agent i at iteration t, and

ρi(t) =
1

|Ni|
∑
j∈Ni

sj(t) (2)



The set Ni is the set of agents j that are neighbors of agent i, as specified by
the network topology.

The global density of all n agents with opinion 1 is

ρ(t) =
1

n

n∑
i=1

si(t) (3)

In the present case, we consider a voter model in which agent can vote differently
than the majority of their neighbors. According to the total probability formula,
the probability pi that agent i votes +1 is

pi(t+ 1) = (1− ε)pVi
(t)) + ε(1− pVi

(t))

= (1− 2ε)pVi
(t) + ε

where ε is the probability to take a decision different from that of the neighbor-
hood and pVi

(t) is the probability that the majority of neighbors of agent i votes
1 at time t. Thus, we defined f(ρ) as

f(ρ) = (1− ε)ρ+ ε(1− ρ) = (1− 2ε)ρ+ ε (4)

From now on, the quantity ε will be called the noise. We limit the noise in
the range 0 ≤ ε ≤ 1/2. The upper value ε = 1/2 corresponds to a blind vote, i.e
a probability 1/2 for each outcome.

To illustrate the behavior of this model, we consider a random scale-free
graph G [13] which is considered as some instance of a social network [14]. In a
scale-free network, a small number of particular nodes have many connections.
These nodes, often referred to as hubs, are the leaders of the social network.
Most other nodes have very few connections. The majority of voters are in this
situation. The scale free graph structure is based on communities built around
a leader, as discussed for instance in Wu et al. [15]. We use the algorithm of
Bollobás and Riordan [16] to generate the random scale free graphs throughout
this paper.

2.2 Delayed mutual- and multi-information

Let us consider a set of random variables Xi(t) associated with each agent i,
taking their values in a set A. For instance, Xi(t) = si(t) would be the opinion
of agent i at iteration t.

To measure the influence of an agents i on j, we define the τ -delayed mutual
information wi,j as

wi,j(t, τ) = I(Xi(t), Xj(t+ τ)) (5)

=
∑

(x,y)∈A2

pxy log

(
pxy
pxpy

)
(6)

with
pxy = P(Xi(t) = x,Xj(t+ τ) = y)



px = P(Xi(t) = x) and py = P(Xj(t+ τ) = y)

We also defined the τ -delayed multi-information wi to measure the influence
of one agent i on all the others

wi(t, τ) = I(Xi(t), Yi(t+ τ)) (7)

Yi(t+ τ) =
∑
k 6=i

Xk(t+ τ) (8)

2.3 Controllability and information theory

In our recent paper [5] entitled “Controllability of the Voter Model: an infor-
mation theoretic approach”, we define the influence of an agent in two different
ways. The so-called intrusive approach consists in forcing (or controlling) the
opinion of an agent and to measure the impact on the global density of opinions
1 in the system. More specifically we average ρ as given by eq. (3) over a large
number N of independent realizations (ensemble average). This gives a quantity
〈ρ(t)〉i, where subscript i indicates which agent has been forced to 1. For large
enough t, 〈ρ〉i no longer depends on t and provides a measure of the influence of
agent i on the system.

A second way to define the influence of agent i is to use the delayed multi-
information introduced in eq. (7). The quantity wi(t, τ) provides a non-intrusive
measure (no forcing is required) of the influence of agent i. Here the time delay
τ is taken as the diameter of the network, so that the influence of an agent can
propagate to all the vertices of the graph.

We showed in [5] that the intrusive and non-intrusive measurements are very
similar, as illustrated in Fig. 1. The gray scale representation for the nodes
shows the intensities of the multi-information wi(t, τ) or the influence 〈ρ〉i of the
corresponding agent i. The multi-information gives also indication about the
controllability of the system as it clearly identifies the agents that are best to
control the system when their vote is forced.

3 Topology of the system

3.1 1-delayed mutual information and adjacency matrix

After these first results about the controllability, we were interested in the topol-
ogy of the system. The aim was to use information theory, to reconstruct the
graph of interaction, assuming it was not known beforehand. In the following
sections we present the results we have obtained in [7].

In Figure 2, we can see the values of the 1−delayed mutual information,
wi,j(1), between one agent i and any other agent j in the system. These values
were calculated by sampling the system when it has reached its steady state.
The peaks that we observe in wi,j(1) for some values of j ∈ {1, . . . , 50} suggest
that node i is a direct neighbor of this node j, as there is a causal effect after
one time step.



0

1

2

3

4

5

6

7

8

9

10

11
12

13

14
15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36
37

38

39

40

41

42

43

44

45

46

47

48

49

Intensity of influence

Initial regime

0

1

2

3

4

5

6

7

8

9

10

11
12

13

14
15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36
37

38

39

40

41

42

43

44

45

46

47

48

49

Intensity of delayed multi-info (tau=4) 

Fig. 1. Scale free graph colored as a function of the values of the influence (left) and
the τ -delayed multi-information (right), for τ = 4. In this case, the multi-information
is computed in the transient initial regime.

In order to infer the edges of the interaction graph and build its adjacency
matrix M , we used the 1-delayed mutual-information in the following way. For
each agent i, we fixed a threshold Ti on the value of wi,j(1) to decide whether
or not i is a neighbor of j. The value of Ti was determined empirically as

Ti = µi + aiσi

where µi is the mean value of the 1-delayed mutual-information between agent i
and the other agents, and σi its standard deviation. We chose two different values
for the coefficient ai, to reflect the different nature of the agents (influential
agents have more neighbors). We propose the following values for ai:

ai =

0.2 if wi(t, τ) > α+
1

2
β (then agent i is considered as very influential)

0.7 otherwise

(9)
where wi(t, τ) is agent i’s τ−delayed multi-information at time t, as defined in
eq. (7). The value of t is chosen to be in the initial regime and τ is taken large
enough to capture the influence over the rest of the system. The values α and β
are respectively the average and the standard deviation of wi(t, τ) over i.

The elements of the adjacency matrix, M = (mij)1≤i,j≤n, are computed as

mij =

{
1 if wij(1) > Ti or wj,i(1) > Tj

0 otherwise
(10)

When wij(1) > Ti or wji(1) > Tj then it is assumed that agents i and j are
neighbors and interact symmetrically. One could of course also defined a criterion
for non-symmetrical graphs.



Fig. 2. 1-delayed mutual information of agent 32 with every other agent.

The values of ai have been chosen in order to minimize the error rate r
between the reconstructed matrix M and the actual graph adjacency matrix A.
We have considered several scale-free graphs, by testing all values of a from 0 to

1 with a step of 0.1. The error rate is defined as r = ∆(M,A)
n2 , where ∆(M,A) is

the number of different values between M and A and n2 the number of elements
in M , n being the number of nodes.

The left panel of Fig. 3 shows the graph G1 we obtain with an error rate
r = 1.3%. To have a better result, we computed the 1-delayed mutual information
when the system is in its initial regime, as shown in the right side of Fig. 3
(graph G2). There, the error rate dropped down to r = 0.24%. This suggests
that the results are better in a transient mode than in the steady state. Such a
transient regime can be created artificially by disrupting the system temporarily
by increasing the noise, when calculating the mutual information. This method
has been tested by randomly generating 20 scale-free graphs. The average error
rate was found to be r = 0.9% with a standard deviation 0.0026.

3.2 Comparison of system behavior between the original and
reconstructed graph

To compare the vote dynamics of the original system associated with graph
G, with the one associated with graph G1 (obtained with the 1-delayed mutual
information computed in the steady state, see Fig. 3), we look at the evolution of
the fraction of voters in state 1, starting with the same initial state and making
use of the same noise history (i.e. same seed for the random generator). In the
left side of Fig. 4, we can see that the behaviors of G and G1 are similar whereas
the evolution of the fraction of vote 1 looks in general very different for another
arbitrarily chosen graph, such as it is illustrated in the right side of Fig. 4. This
suggests that our method of reconstructing the topology in the steady state



Fig. 3. (Left:) Graph G1 built with the 1-delayed mutual information calculated when
the system is in steady state. (Right:) Graph G2 built with the 1-delayed mutual
information computed when the system is in the initial transient regime. Red lines are
the errors we got on the edges during reconstructions : the dashed line for the extra
links and thick line for the missing links

selects the most important edges from the point of view of their influence on the
dynamical evolution.

Fig. 4. Left: Plot of the time evolution of the density of opinion 1 with noise ε = 0.01
for graph G (blue curve) and for the reconstructed graph G1 (red curve). Right: the
same quantity as produced by G (blue curve) and another, non-related graph (red
curve).

4 Delayed mutual-information to detect topology changes

In this section, we assume that the topology of the dynamical system changes
over time. Our goal is the real time detection of such changes through online



analysis of the 1-delayed mutual information wij(t, τ) between the two corre-
sponding vertices i and j.

Therefore, we compute wij(t, τ) at time t = t0 by sampling si(t − τ) and
sj(t) on a sliding window t ∈ [t0 − ∆ − 1, t0] with width ∆t. During this time
interval, we record the pairs (si(t− τ), sj(t) of the states of vertices i and j with
a time delay τ = 1. This leads to the following quantities:

N00
i,j(t0) =

∆t∑
k=0

s̄i(t0 − k − 1) × s̄j(t0 − k) N01
i,j(t0) =

∆t∑
k=0

s̄i(t0 − k − 1) × sj(t0 − k)

N10
i,j(t0) =

∆t∑
k=0

si(t0 − k − 1) × s̄j(t0 − k) N11
i,j(t0) =

∆t∑
k=0

si(t0 − k − 1) × sj(t0 − k)

with s̄i(t) = 1− si(t).
According to eq. (6) the estimation of the mutual information on the time

interval [t0 −∆− 1, t0] is given by

wi,j =
N00
i,j

∆t
log
( (∆t) ×N00

i,j

(N00
i,j +N01

i,j)(N
00
i,j +N10

i,j)

)
+
N01
i,j

∆t
log
( (∆t) ×N01

i,j

(N01
i,j +N00

i,j)(N
01
i,j +N11

i,j)

)
+
N10
i,j

∆t
log
( (∆t) ×N10

i,j

(N10
i,j +N11

i,j)(N
10
i,j +N00

i,j)

)
+
N11
i,j

∆t
log
( (∆t) ×N11

i,j

(N11
i,j +N10

i,j)(N
11
i,j +N01

i,j)

)

We now consider a graph of size n = 500 whose topology is modified over time
in a prescribed way. The 1-delayed mutual information was computed using a
sliding-window with ∆ = 300. Fig. 5 shows the time evolution of wij(t) between
two selected vertices of low degree on one side and between two selected hubs
(vertices of high degree) on the other side. Between these pairs of vertices an edge
was alternatively added and removed every 2000 time steps. In the case of low
degree vertices, we see that the value of wij informs us of this change of topology.
On the other hand, when the changes occur between the two hubs, wij(t) does
not detect them. However, in this case, it was found that the corresponding edge
does not have a great influence on the system dynamics, using a similar analysis
as the one reported in section 3.2.

If the link is modified between a vertex i of low degree and a hub j, wij hardly
detects this change, as seen in Fig. 6 (right). This is expected as a terminal node
does not influence a hub. But this change can be detected by measuring the
opposite delayed mutual-information, wji, (see Fig 6, left panel), reflecting the
fact that the hub does influence a neighboring vertex.

As mentioned before, the 1-delayed mutual information computed on a sliding
window seems to be a good metric to detect when the link between two nodes
appears or disappears. This is confirmed by simulations in which the graph
topology changes randomly over time. At each iteration, a change can occur
with probability p. A change corresponds to choosing randomly a pair of nodes
and adding an edge between them (if none is present) or removing the existing
one. For example, with a scale free graph with n = 500 nodes and a probability of
change p = 0.01, 54 changes were observed over 6000 iterations. In this simulation
all changes were detected because no changes between two hubs occured. For



Fig. 5. Plots of the 1-delayed mutual information between two vertices of low degree
(left) and between two hubs (right). The parameters of the simulation are ε = 0.01,
n = 500, ∆t = 300.

Fig. 6. Left: plot of the 1-delayed mutual information between a hub and a low degree
vertex. Right: plot of the 1-delayed mutual information between the low degree vertex
and the hub. The parameters of the simulation are ε = 0.01, n = 500, ∆t = 300.

each pair of nodes i and j, we computed wi,j and wj,i, the 1−delayed mutual
information on a sliding window of size 100. When these two values exceed and
remain above a threshold, we assume that a new edge has appeared. And when
these values become lower than this same threshold, we assume that an edge
has disappeared. With this method, the average time to detect changes is 160
iteration, with a standard deviation of 110.

5 Conclusions

In this paper, we have described a way to detect topology changes in a dynami-
cal system on a graph, such as the voter model. Detecting structural changes is
important as it can provide an early warning of tipping points. We expect that
our approach can be applied to many other complex systems. The 1-delayed mu-
tual information computed on a sliding-window was used to identify the possible



changes of connectivity. We saw that this quantity allows us to detect whether
an edge is added or removed between two vertices of low degree, or between a
hub and a vertex of low degree. Between two hubs this method is not effective,
but the actual presence or absence of a link between them does not affect much
the global behavior of the system.

Delayed mutual- and multi-information can also be used to determine com-
munities in a graph, as discussed in [7]. In a forthcoming study we will investigate,
using the approach developed here, how a change of community can be detected
in a dynamic system, thus indicating a possible loss of controllability.
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