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Université Clermont Auvergne, CNRS/LPC, F-63000, Clermont-Ferrand, France

{aime-cedric.muhoza, emmanuel.bergeret, corinne.brdys, francis.gary} @uca.fr

Context and Objectives

In the context of chronic pain management, there is a need for a secure, autonomous, non-invasive wearable device able to collect sedentary data and monitor
patients daily.

1. Detect and quantify sedentary and physical activity levels for patients with chronic pain.
2. Patient surveillance and evaluation of medical intervention efficiency.
3. Detailed result interpretation based on quantitative data.
4. Provide a learning tool that can be used to detect similar physiological patterns, characteristic behaviour or bio-markers from different subjects.

Methods and Materials

▶ Physical activity detection and data
collection:

▷ Activity detection using an Inertial
Measurement Unit (IMU)

▶ Data processing and analysis:
▷ An ARM-based (Cortex-M family)

Micro-controller processes data and
runs them through an embedded
deep learning model for activity
classification.

Figure 1:Body Area Network

▶ Data transmission:
▷ The model output is transmitted to a sink using a low energy module.

i.e Bluetooth Low Energy (BLE), LoRa

Deep learning

The first model was built using a public dataset of data collected on
smartphone with different subjects [1]

▶ Characteristics:
▷ Multiple sensor data (Accelerometer, Gyroscope and Magnetometer)
▷ Multiple positions (pockets, belt, upper-arm and wrist)
▷ Collected at a frequency of 50Hz

▶ Feature Engineering and Extraction:
▷ Data preparation and train-test split (80% - 20 % respectively )
▷ Model training and accuracy evaluation using a DCNN Model (Deeep

Convolutional Neural Network).[2]
▶ Deployment:

▷ Model conversion to a C++ library using TensflowLite [3]
▷ Inference run directly on Micro-controller

Figure 2:Model structure

Results: Model Features

▶ Feature selection:
Acc(x,y,z) ∥Acc∥ Gyr(x,y,z) ∥Gyr∥ Results

• • • • ✗

• • ✗

• • ✓

Table 1:Feature selection
*The use of magnetometer data in combination with accelerometer based data does not
necessarily improve classification accuracy.

▶ Model performance on a single position:
Position Pockets Belt Upper-arm Wrist
Accuracy 98.8% 95.7% 90.3% 94.6%

Table 2:Model accuracy on different positions

Results: Model Evaluation

Figure 3:Inferences on test data

Data Collection

After a successful inference run using the model generated from public
dataset, we conducted multiple data acquisition sessions on different
participants performing complex daily activities.

▶ Data Collected:
▷ Accelerometer data on 3 positions (Belt, Wrist and ankle)
▷ High-Resolution video, Optical Motion data (Qualisys Track Manager)

Conclusion

▶ We proved that deep-learning algorithms can be used for human activity
recognition even on resource constrained embedded systems whith good
accuracy.

▶ Power consumption reduction by 10% using Embedded-AI versus Remote AI
▶ Creation of a custom dataset with complex gestures and multiple nodes,

this dataset will be used in future studies.
▶ Future Work:

▷ Defining an energy consumption model.
▷ Generating a deep learning model with our data.
▷ Use of distributed DCNN model on multiple sensors forming a BAN (Body

Area Network)
▷ Designing and building a custom device with optimized memory and enrgy

consumption
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