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We investigate experimentally the influence of a background rotation on the energy transfers in

decaying grid turbulence. The anisotropic energy flux density FðrÞ ¼ h�uð�uÞ2i, where �u is the vector

velocity increment over separation r, is determined for the first time by using particle image velocimetry.

We show that rotation induces an anisotropy of the energy flux r � F, which leads to an anisotropy growth
of the energy distribution EðrÞ ¼ hð�uÞ2i, in agreement with the von Kármán–Howarth–Monin equation.

Surprisingly, our results prove that this anisotropy growth is essentially driven by a nearly radial, but

orientation-dependent, energy flux density FðrÞ.
DOI: 10.1103/PhysRevLett.107.024503 PACS numbers: 47.27.�i, 47.32.Ef

The energy cascade from large to small scales and the
associated Kolmogorov 4=5th law are recognized as the
most fundamental results of homogeneous and isotropic
turbulence [1,2]. In the presence of a background rotation,
a situation which is relevant for most geophysical and
astrophysical flows, the scale-to-scale energy transfers
are modified by the Coriolis force, yielding a gradual
columnar structuring of turbulence along the rotation axis
[3–7]. The Taylor-Proudman theorem is often invoked,
however improperly, to justify the resulting quasi-2D na-
ture of turbulence under rotation. Indeed, this theorem is a
purely linear result, which applies only in the limit of a
zero Rossby number (i.e., infinite rotation rate), and is
therefore incompatible with turbulence; it cannot describe
the anisotropic energy transfers responsible for the non-
trivial organization of rotating turbulence which are a
subtle nonlinear effect taking place only at a nonzero
Rossby number. To date, no direct evidence for these
anisotropic energy transfers towards the 2D state in the
physical space has been obtained. In this Letter, we report
for the first time direct measurements of the physical-space
energy transfers in decaying rotating turbulence using
particle image velocimetry (PIV) and provide new insight
into the anisotropy growth of turbulence at a finite, and
hence geophysically relevant, Rossby number.

If homogeneity (but not necessarily isotropy) holds, the
energy distribution and energy flux density in the space of
separations r are described by the fields

Eðr; tÞ ¼ hð�uÞ2i and Fðr; tÞ ¼ h�uð�uÞ2i; (1)

respectively, where uðx; tÞ is the turbulent velocity, �u ¼
uðxþ r; tÞ � uðx; tÞ is the velocity vector increment over r
(Fig. 1), and h�i denotes spatial and ensemble averages.
These key quantities satisfy the von Kármán–Howarth–
Monin (KHM) equation [1,8], which describes the evolu-
tion of the energy distribution in the space of separations,
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r � Fþ �r2R; (2)

where Rðr; tÞ ¼ huðx; tÞ � uðxþ r; tÞi ¼ hu2i � Eðr; tÞ=2
is the two-point velocity correlation and � the kinematic
viscosity. Importantly, this equation is still valid for homo-
geneous anisotropic turbulence [9] and, in particular, for
axisymmetric turbulence in a rotating frame (here axisym-
metry is to be understood in the statistical sense, with
respect to r). For stationary (forced) turbulence, this equa-
tion reduces to r � F ¼ �4� in the inertial range, where �
stands for the rates of injected and dissipated energy. In the
isotropic case, this constant-flux relation yields a purely
radial flux density FðrÞ ¼ �ð4=3Þ�r, describing the usual
energy cascade from large to small scales. This result is
actually identical to the celebrated Kolmogorov’s 4=5th
law, classically expressed in terms of the 3rd-order longi-
tudinal structure function, h�u3Li ¼ �ð4=5Þ�r, where
�uL ¼ �u � r=r is the longitudinal velocity increment.
In decaying rotating homogeneous turbulence, Eq. (2)

shows that, starting from an isotropic initial energy distri-
bution Eðr; 0Þ, an anisotropy growth in Eðr; tÞ is expected if
an anisotropic energy flux r � F is induced by the Coriolis
force. However, the flux density FðrÞ itself has never been

FIG. 1 (color online). (a) Experimental setup. The water-filled
tank is rotating at 0 � � � 1:68 rad s�1. The grid is towed from
the bottom to the top, and PIV measurements are performed in
the vertical plane ðx; zÞ in the rotating frame during the turbu-
lence decay. (b) Definition of the vector velocity increment
�u ¼ uðxþ rÞ � uðxÞ.
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measured, and its precise form, which reveals the funda-
mental action of rotation on turbulence, is so far unknown.
The only experimental attempts to characterize the energy
transfers in rotating turbulence were restricted to measure-
ments of h�u3Li in the plane normal to the rotation axis
[10,11], hence ignoring the anisotropic nature of those
transfers. Recent theoretical efforts have been made to
generalize the 4=5th law, assuming weak anisotropy [12]
or considering the full anisotropic problem but restricted to
the stationary case [9].

Experiments.—The experimental setup is similar to the
one described in Ref. [13] and is briefly recalled here
[Fig. 1(a)]. Turbulence is generated by towing a square
grid at a velocity Vg ¼ 1:0 m s�1 from the bottom to the

top of a cubic glass tank, of height 60 cm, filled with 52 cm
of water. The grid consists in 8 mm thick bars with a mesh
size M ¼ 40 mm. The whole setup is mounted on a preci-
sion rotating turntable 2 m in diameter. Runs for three
rotation rates, � ¼ 0:42, 0.84, and 1:68 rad s�1 (4, 8, and
16 rpm, respectively), as well as a reference run without
rotation, have been carried out. The initial Reynolds num-
ber based on the grid mesh is Reg ¼ VgM=� ¼ 40 000,

and the initial Rossby number Rog ¼ Vg=2 �M ranges

from 7.4 to 30, indicating that the flow in the close wake
of the grid is fully turbulent and weakly affected by rota-
tion. During the turbulence decay, the instantaneous

Rossby number RoðtÞ ¼ hu2i1=2=2 �M decreases with
time down to 10�2, spanning a range in which influence
of rotation is expected. An important concern about grid
turbulence experiments in a confined rotating domain is the
excitation of reproducible inertial modes [14]. Here, we
use the modified grid introduced in Ref. [13], which was
shown to significantly reduce the generation of these
modes. Consequently, turbulence can be considered here
as almost freely decaying and homogeneous, a necessary
condition for the validity of the KHM equation (2).

Velocity measurements are performed in the rotating
frame by using a corotating PIV system. Two velocity
components (ux and uz) are measured, in a vertical
16� 16 cm2 field of view, where z is the rotation axis.
During the decay of turbulence, 60 image pairs are ac-
quired by a double-frame 20482-pixel camera, at a rate of
1 pair per second. The PIV resolution 1.3 mm is sufficient
to resolve the inertial range but fails to resolve the dis-
sipative scale (the Kolmogorov scale is of the order of
0.2 mm right after the grid translation [11]).

Only surrogates of EðrÞ and FðrÞ (1) can be computed
from the measured 2D velocity fields. These surrogate
quantities are defined as

~EðrÞ¼ h�u2xþ�u2zix;z; ~FðrÞ¼ h�uð�u2xþ�u2zÞix;z; (3)

where the spatial average is restricted to the measurement
plane and r ¼ rxex þ rzez. For each time after the grid
translation, these quantities are computed for all separa-
tions r in the PIV field of view and are ensemble-averaged
over 600 realizations of the turbulence decay. The fields

~EðrÞ and ~FðrÞ are remapped on a spherical coordinate
system ðr; �; �Þ, where r ¼ jrj and � is the polar angle
between ez and r; the invariance with respect to the (non-
measured) azimuthal angle � is assumed by axisymmetry.
Although relations between the surrogates (3) and the exact
3-component quantities (1) can be derived for isotropic
turbulence, no general relation holds in the anisotropic
case, so we do not apply any correction weight in ~E and
~F. Since only the surrogates are considered in this Letter,
we simply drop the tildes ~� in the following.
The convergence of the statistics from experimental

measurements is very delicate to achieve, in particular,
for the computation of FðrÞ, which is a 3rd-order moment
of a zero-mean velocity increment. We found that, by using
a set of 600 realizations of the turbulence decay, a con-
vergence better than 5% at small scales, and of the order of
20% at scales r ’ M, could be achieved for FðrÞ. The
convergence for EðrÞ is better than 1% for all scales up
to r ’ M.
Energy distribution.—The map of energy distribution

EðrÞ for separations r in the vertical plane is plotted in
Fig. 2, at a time tVg=M ¼ 400 after the grid translation.

The iso-E curves are found to be nearly circular for� ¼ 0
[Fig. 2(a)], showing the good level of isotropy of our grid
turbulence without rotation. On the other hand, they are
highly anisotropic at the same time for � ¼ 16 rpm (cor-
responding to 4.3 tank rotations), with a strong depletion of
EðrÞ along the rotation axis z [Fig. 2(b)]. The depletion of
EðrÞ corresponds to an enhanced velocity correlation RðrÞ
along the rotation axis, reflecting the classical trend
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FIG. 2 (color online). Energy distribution EðrÞ at time
tVg=M ¼ 400 after the grid translation, for (a) � ¼ 0 and

(b)� ¼ 1:68 rad s�1 (16 rpm). (c) Horizontal-to-vertical energy
ratio as a function of time at scale r ¼ 10 mm for various �;
�, additional curve at r ¼ 30 mm for � ¼ 16 rpm. Stars in-
dicate integer numbers of tank rotations.
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towards a 2D flow invariant along z. Importantly, an iso-
tropic energy distribution is found in the 3 rotating cases
just after the grid translation, as demonstrated in Fig. 2(c),
where the time evolution of the horizontal-to-vertical
energy ratio Eð� ¼ 0Þ=Eð� ¼ �=2Þ is plotted for an
inertial-range separation r ¼ 10 mm. This confirms that
the initial grid turbulence is isotropic even when � � 0
and that the subsequent anisotropy growth is a pure effect
of the background rotation. Figure 2(c) also shows that the
anisotropy growth rate is essentially proportional to �
[5,7]. Interestingly, the anisotropy is found to be more
pronounced at small scales, as shown by the lower anisot-
ropy ratio plotted for r ¼ 30 mm. It is worth noting that
this stronger anisotropy at small scales is in contradiction
with the naive assumption that large scales, having a slower
dynamics, are more affected by rotation than the faster and
supposedly still 3D small scales.

Energy transfers: Isotropic case.—We now turn to the
energy flux density, and we first present in Fig. 3(b) mea-
surements of FðrÞ for � ¼ 0, at the same time tVg=M ¼
400. This vector field is found to be remarkably radial,
pointing towards the origin, giving direct evidence of the
isotropic energy cascade in the physical space, from the
large to the small scales, in the nonrotating case. Finer
assessment of the isotropy of F can be achieved by intro-
ducing the following three scalar quantities: the deviation
angle �ðrÞ from the radial direction [Fig. 3(d)], the magni-
tude jFj [Fig. 3(a)], and the energy flux r � F [Fig. 3(c)].

The very weak angle measured for r � M, �ðrÞ’2��2�,
confirms the almost purely radial nature of F. The isotropy
of the flux density magnitude is not as good: The iso-jFj are
nearly circular up to r ’ 30 mm but show slight departure
from isotropy at larger r, suggesting that this quantity is
very sensitive to a residual anisotropy of the large-scale
flow. However, the iso-r � F remain remarkably circular up
to r ’ M, showing that the residual large-scale anisotropy
has indeed a weak influence on the energy flux for r � M.
The energy flux r � F shows a broad negative minimum in
an annular region spanning over r ’ 5–20 mm, providing
an indication of the extent of the inertial range (we recall
that, in the inertial range, r � F ¼ �4�), and decreases to
zero at both small and large scales.
Energy transfers: Rotating case.—We consider now the

energy transfers in the rotating case, shown in Fig. 4 at the
same time tVg=M ¼ 400. Interestingly, the flux density F

is found to remain nearly radial for all separations, in
qualitative agreement with recent predictions [9], except
at the smallest scales, for r < 10 mm, where a marked
deflection towards the rotation axis is observed. Such a
horizontally tilted F is indeed consistent with an asymp-
totic 2D flow, for which F must be a strictly horizontal
vector and a function of the horizontal component of the
separation only. This small-scale anisotropy is best appre-
ciated from the map of the deviation angle � [Fig. 4(d)],
showing a region of nonzero � at small scale only. Note
that a horizontally tilted F exists only for intermediate
angle � since axisymmetry requires a radial F for � ¼ 0
and �=2. The 2D trend is remarkably weak in terms of the
orientation of FðrÞ in the inertial range, compared to the
strong anisotropy observed for the energy distribution EðrÞ
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FIG. 3 (color online). Energy flux density FðrÞ in the non-
rotating case, at time tVg=M ¼ 400 after the grid translation.

(a) Flux density magnitude jFj. (b) Raw vector field F.
(c) Energy flux r � F. (d) Deviation angle �ðrÞ, defined as
sin�ðrÞ ¼ ey � ðer � FÞ=jFj; isoangle lines are separated by 5�.
The dashed line in (c) shows the ‘‘crest line,’’ following the local
maximum of �r � F.

−40

−30

−20

−10

0

10

20

30

40

0 10 20 30 40−40 −30 −20 −10
−40

−30

−20

−10

0

10

20

30

40

1.5

FIG. 4 (color online). Energy flux density FðrÞ in the rotating
case (� ¼ 16 rpm), at time tVg=M ¼ 400 after the grid trans-

lation. The same layout as for Fig. 3 is used.
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at comparable scales: � is only in the range 0–10� in the
inertial range and increases up to 25� � 5� for r ! 0, with
no significant dependence with �.

If we focus on the flux density magnitude jFj, which is
essentially given by the radial component�Fr ¼ �F � er,
a clear anisotropy is now found at all scales. This suggests
that the anisotropy of the energy transfers is mostly driven
by the � dependence of Fr and not by the growth of a
nonzero polar component F� ¼ F � e�. The maximum of
jFj is systematically encountered near the rotation axis, at
rather large scales, centered around 50–80 mm [outside the
range shown in Fig. 4(a)]. The local maximum of jFj on the
horizontal axis is encountered at smaller scales, as evi-
denced by the crest line in Fig. 4(a).

The flux map r � F [Fig. 4(c)] shows an overall aniso-
tropic structure similar to that of jFj but essentially shifted
towards smaller scales. The inertial range, where the flux
r � F is negative and approximately constant, becomes
vertically elongated as time proceeds. Actually, although
jFj is maximum along the rotation axis, it is spread over a
wider range of scales, leading to a weaker flux r � F along
z than along x and hence a less intense vertical energy
cascade. Here again, this is consistent with a 2D trend,
which should yield a vanishing energy flux along the
rotation axis. The horizontal-to-vertical flux ratio in
Fig. 5 illustrates this vanishing vertical energy cascade as
time proceeds, an effect which is clearly enhanced as the
rotation rate is increased.

It must be noted that the spatial structure of the flux
r � F is in good qualitative agreement with the KHM
equation (2). Indeed, by neglecting the viscous term, the
vertically elongated region where r � F< 0 induces a
stronger reduction of the velocity correlation R along x
than along z, resulting in a relative growth of the vertical

correlation along z and hence a vertical depletion of the
energy distribution E ¼ 2ðhu2i � RÞ. We can conclude
that the measured flux density F contains, through its
divergence, a spatial structure consistent with the anisot-
ropy growth of E observed in Fig. 2. Interestingly, in line
with the stronger anisotropy of EðrÞ found at smaller
scales, the flux is also found to be more anisotropic at
smaller scales. This is clearly demonstrated by the spatio-
temporal diagram in Fig. 5(a), showing that the anisotropy
first appears at small scales and then propagates towards
larger scales as time proceeds.
Conclusion.—We report the first direct measurements of

the energy flux density F in the physical space in a decay-
ing rotating turbulence experiment. Although the alterna-
tive description of the energy transfers in the spectral space
is more natural for theory or numerics [2–4,6], the direct
use of the KHM equation (2) in the physical space, which is
better suited for experiments, reveals here new and unex-
pected behaviors. The spatial structure of the measured
energy distribution and energy fluxr � F are found to be in
good qualitative agreement with the KHM equation which,
to our knowledge, has never been assessed experimentally.
Surprisingly, the anisotropy growth of the energy distribu-
tion is primarily driven by an almost radial, but orientation-
dependent, flux density F, except at small scales where F
shows a horizontal tilt, compatible with a trend towards a
2D state. It is also demonstrated that the anisotropy is
paradoxically stronger at small scales and propagates to-
wards larger scales as time proceeds, an unexpected result
which should motivate new theoretical efforts.
We acknowledge S. Galtier, J.-P. Hulin, and M. Rabaud

for fruitful discussions and Triangle de la Physique for
funding of the ‘‘Gyroflow’’ platform.
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FIG. 5 (color online). (a) Spatiotemporal diagram of the
horizontal-to-vertical energy flux ratio r � Fð� ¼ �=2Þ=
r � Fð� ¼ 0Þ, showing the anisotropy growing from small to
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