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Fusion of multi-temporal multi-sensor velocities
using temporal closure of fractions of displacements
Laurane Charrier, Student Member, IEEE, Yajing Yan, Member, IEEE, Emmanuel Trouvé, Senior Member, IEEE

Elise Colin Koeniguer, Jérémie Mouginot, and Romain Millan

Abstract—Numerous glacier velocity observations, derived
from spaceborne imagery, are available online, but it remains
difficult to analyze them because they are measured with different
temporal baselines, by various sensors. In this study, we propose a
novel formulation of the temporal closure to fuse multi-temporal
multi-sensor velocity observations without prior information on
the displacement behavior and the data uncertainty. We establish
a system of linear equations between combinations of displace-
ment observations and fractions of estimated displacements.
The proposed approach provides a velocity time-series with a
regular and optimal temporal sampling, the latter representing
a compromise between the temporal resolution and the signal-to-
noise ratio. The proposed approach is first evaluated on synthetic
datasets and second on Sentinel-2 and Venµs velocity observations
over the Fox glacier in New Zealand. The results show the intra-
annual variability of Fox glacier surface velocity with a reduced
uncertainty and complete temporal coverage.

Index Terms—velocity time series, multi-sensor fusion, tempo-
ral inversion, glacier, intra-annual variations

I. INTRODUCTION

WHILE numerous glacier velocity observations are avail-
able online [1]–[4] with a temporal resolution up to

2 days and a spatial sampling up to 50 m [4], [5], intra-
annual variations of glacier velocity remain poorly understood
at regional scales, especially in mountain areas. This is due to
the difficulty to analyze scene-pair velocity observations since
they span different temporal baselines [6], are based on images
from different sensors, and still contain noise, artifacts, and
missing data when outliers have been filtered out. Therefore,
a question arises: how to exploit the amount of available multi-
sensor and multi-temporal glacier velocities in order to study
intra-annual velocity variations with a reasonable uncertainty
at a global scale?

A way to fuse multi-temporal velocity observations is to
use a Temporal Inversion (TI) based on the temporal closure
of the displacement observation networks, inspired from the
Small BAseline Subset (SBAS) in the InSAR community.
Currently, most of the TI approaches consider mono-sensor
datasets [6]–[9] or apply TI separately to each sensor datasets
[10], [11]. A few studies imply multi-sensor datasets inside the
same system of linear equations [12], [13] whereas it could
improve the results by adding more redundancy as stressed
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by [11]. In [12], [13] irregular Leap Frog (LF) time series
(time series of displacements between consecutive dates) are
inverted. This kind of time series are adapted to reconstruct a
Cumulative Displacement (CD) time series afterward. While
CD time series are useful to study slow-moving landslides
or dunes [9], [10], [12], it is more adapted to convert the
LF displacement time series into LF velocity time series for
fast-moving targets with strong seasonality patterns, such as
glaciers [8]. Because velocities correspond to the average of
instantaneous velocity over the temporal baseline, the temporal
sampling of the velocity series should be regular (all the LF
velocities should span the same temporal baseline). Hence, [6]
proposed to include combinations of velocity observations in
the TI to obtain a Regular LF (RLF) with a given temporal
sampling. This approach, which will be referred as Tempo-
ral Inversion using COmbinations of displacements (TICO),
allows obtaining a RLF with a temporal sampling matching
a compromise between temporal resolution and signal-over-
noise ratio.

This study is an extension of [6] in order to obtain a RLF
with an optimal temporal sampling by taking advantage of
every multi-sensor observation, even if outliers have been re-
moved beforehand. For multi-sensor datasets, each sensor does
not acquire images on the same temporal grid: hence, there is
less redundancy and more disconnected subsets of observed
displacements. This is even more true when outliers have
been removed beforehand. Therefore, we introduce fractions
of displacement in the TICO formulation proposed in [6]. This
extension is called Temporal Inversion using COmbinations of
Fractions of displacements (TICOF).

Besides, evaluation of observation uncertainties remain cru-
cial to invert velocity time series [6], [8], [12]. The shape
of the similarity function used in image matching appear to
be a robust estimation of precision for both off- and on-
glacier pixels [6], [12], [14], [15]. However, most of the online
datasets do not provide the full similarity function values
[1]–[4]. Hence, there is a need to get a robust estimation
of uncertainty without any information on surface correlation
values.

Therefore, this study has two objectives: 1) to take into
account that velocity observations have different uncertainties
which are not necessarily provided by the authors 2) to
propose a new system to invert a RLF time series with an
optimal temporal sampling from multi-sensor datasets, which
can present missing data. We apply the proposed TICOF
approach to Sentinel-2 and Venµs velocity observations over
the Fox glacier located in the Southern Alps of New Zealand.
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II. STUDY AREA AND DATA

The study focuses on the Fox glacier, in the Southern Alps
of New Zealand. This glacier is a fast-flowing glacier with a
strong seasonality [4], [16], situated under a maritime climate
(Fig. S1). The considered velocity observations are obtained
from Sentinel-2 and Venµs optical images. Sentinel-2 has a
repeat cycle of 5 days and Venµs 2 days. Displacement offsets
have been computed by [4] using a modified version of the
cross-correlation algorithm AMPCOR from ROI PAC [4], [5].
Outliers have been removed by rejecting offsets that deviate
more than three pixels from the median offset computed over
a spatial window of 9 × 9 pixels [4]. Velocity observations
span temporal baselines from 5 to 100 days and from 330 to
400 days. The spatial sampling of both Sentinel-2 and Venµs
velocity maps is 50 m. The central dates of Sentinel-2 velocity
observations range from July 21, 2016 to October 16, 2018,
whereas those of Venµs velocity observations cover the period
of January 26, 2018 to May 21, 2019. The mean percentage of
remaining values after outliers removal is 26 % for Sentinel-2
and 14 % for Venµs as illustrated in Fig. S2.

III. METHOD

A. Data quality indicators

In many cases, uncertainties are not provided with velocity
observations. In order to quantify the quality of velocity
observations without any information given by the authors,
two criteria are defined. The first one relies on the spatio-
temporal coherence of velocity directions, the second on the
spatio-temporal coherence of respectively x- and y- velocity
component values [17]:

1) The cosine of the angle between each displacement vector
and the spatio-temporal median [14] vector, called Median
Angle (MA) here, is defined as:

cos(u⃗i,j,t, v⃗
w
i,j) =

u⃗i,j,t · v⃗wi,j
∥u⃗i,j,t∥ ∥v⃗wi,j∥

(1)

where u⃗i,j,t is the displacement vector at the pixel (i, j) and
time t and v⃗wi,j is the median vector in time over a spatial
window w, here set to 3×3 pixels, centered on the pixel (i, j).
If the two vectors are co-linear, as expected, this criterion will
be equal to 1. The negative values are set to 0 to penalize
vectors which have a direction from 90◦ to 180◦ away from
the median direction.

2) The modified z-score, a standardized and robust score,
measuring the outlier strength [18], is computed respectively
for the x and y component of the velocity vector as:

MZscore =
xi,j,t − x̃w

i,j

1.483MAD
(2)

where xi,j,t stands for the x or y component of the velocity
at the pixel (i, j) and time t, x̃w

i,j is the median of the x or y
component of the velocity in time over a spatial window w,
here set to 3×3 pixels, centered on the pixel (i, j). MAD is the
Median Absolute Deviation defined as: median|xi,j,t − x̃w

i,j |.
Note that the MZscore considers a robust estimate of the

dispersion: 1.483MAD, unlike the standard deviation which
is not robust to outliers [1], [4].

The final confidence value of the two velocity components is
the same for a given pixel and a couple of dates. It is computed
as the multiplication of the three criteria scaled between 0
and 1: the scaled MZscore for x and y components of the
velocity and the MA. This confidence value will be used in
the inversion as an initial weight since it indicates data quality.

B. Temporal Inversion using COmbinations of Fractions of
displacement (TICOF)

Fig. 1. Illustration of a) the traditional TI formulation b) the proposed TICOF
formulation. The displacement observations from satellite 1 is in blue while
the displacement observations from satellite 2 is in orange.

The classical TI formulation is AX = Y , where Y is a vec-
tor of dimension n containing the displacement observations
dti,tj between dates ti and tj , X is a vector of dimension
p representing the LF displacement estimation d̂τk,τk+∆τ

be-
tween dates τk and τk+∆τ . ∆τ days is the temporal sampling
which is identical for every LF displacement. A is the design
matrix of dimension n×p which links the vectors X and Y . As
shown in [6], the classical TI does not enable the user to obtain
a LF time series using all available displacement observations
if the temporal sampling ∆τ is larger than the minimal time
interval between two observed dates. For example, in Fig. 1,
the minimal time interval between two observed dates is 1 day.
For a temporal sampling of ∆τ = 5 days, dt0,t2 , dt2,t4 , dt2,t10
and dt6,t10 (in orange) cannot be written as any combinations
of d̂τk,τk+∆τ

.
However, it can be established that d̂t0,t5+d̂t5,t10 = dt0,t2+

dt2,t10 . Therefore, [6] proposed a novel TI formulation, namely
Temporal Inversion using COmbinations of displacement ob-
servations (TICO), to include combinations of displacement
observations. The TICO is formulated as BY = A′X where
B is a design matrix of dimension n′×n and A′ is the design
matrix of dimension n′×p, with n′ the number of displacement
combinations as specified in [6].

The TICO formulation is adapted when a high amount of
observed dates in Y match the dates τk or τk+∆τ because
it makes possible to link a combination of d̂τk,τk+∆τ

with a
combination of dti,tj . However, when the displacement obser-
vations are based on different sensors, the observed dates may
not be on the same temporal grid. The dates where acquisitions
of both satellites exist depend on the common multiples of the
repeat cycles of satellites 1 and 2, here ∆t1 and ∆t2. There



JOURNAL OF LATEX CLASS FILES 3

are even less common acquisition dates between sensors when
missing data exist due to outliers removal.

Therefore, we propose an extension of TICO [6] for datasets
containing multi-sensor displacements and missing data. When
a displacement observation can not be included in the TICO
formulation, a linear relation between dti,tj and a fraction
of displacements d̂τk,τk+∆τ

is established, assuming linear
displacement in the considered temporal interval. For example,
in Fig. 1, 2

5 d̂t0,t5 = dt2,t4 . In a more general form, dti,tj is
written as:

dti,tj =
∑
k

wkd̂τk,τk+∆τ
(3)

with wk =



0, if τk+∆τ < ti

0, if τk > tj

1, if τk ≥ ti ∧ τk+∆τ ≤ tj
τk+∆τ−ti
τk+∆τ−τk

, if τk < ti < τk+∆τ ∧ τk+∆τ < tj
tj−τk

τk+∆τ−τk
, if τk < tj < τk+∆τ ∧ ti < τk

tj−ti
τk+∆τ−τk

, if ti > τk ∧ tj < τk+∆τ

The TICOF formulation is: BY = A′X where A′ is filled,
in consequence, with 0, 1 and/or fractions (equation S.1). Since
the velocity observations have different but not necessarily
known uncertainties, the inversion of BY = A′X is obtained
by an Iterative Reweighted Least Square (IRLS) using the
Tukey’s biweight function and a Tikhonov regularization [6].
The weight at the first iteration corresponds to the confidence
indicators presented in section III-A.

The use of fractions of displacements is also found in [19]
to adjust the first and last date of descending and ascending
displacements. This idea assumes a constant velocity over
the relevant temporal sampling. For large temporal sampling
and/or non-linear displacement behavior, a bias may be in-
troduced in the final estimation of the LF time series. To our
knowledge, this bias has never been discussed in the literature.

IV. SYNTHETIC DATASET

To assess the bias introduced by the use of fraction in the
case of non-linear displacements (e.g. seasonal variation), syn-
thetic simulations are performed. The synthetic instantaneous
velocity is taken as: v(t) = a + b sin( 2πT t) + c cos( 2πT t) with
T = 365.25 as in [20]. N1 displacements based on Sentinel-
2 repeat cycle and N2 displacements based on Venµs repeat
cycle are simulated. To make sure that the coefficients a, b and
c represent well the data, instead of an arbitrary choice, these
coefficients are estimated by an IRLS inversion by adding a
regularization term corresponding to a displacement model
with the coefficients a, b and c as parameters as performed
in [21]. The corresponding system of equations is given in
equation S.2. The system is solved for Sentinel-2 data on the
point represented in blue in Fig S1. The coefficients are found
to be: a = −0.49, b = −0.0788 and c = 0.018.

In Fig 2, LF time series obtained from a moving average
of ∆τ days (Fig. 2b), the traditional TI (Fig. 2c) and the
TICOF formulation (Fig. 2d) are presented. The moving
average corresponds to the average of all the velocities which

overlap each period of ∆τ days. The results are represented
for a temporal sampling of 20 days. Because velocities are
the average of the instantaneous velocity over the temporal
baseline, long temporal baseline velocities tend to pull the
moving average results toward the annual averaged velocity,
here equal to a ∗ 365.25 = −178.85 m/y. In addition, because
no displacement observations can be included in the traditional
TI when only Venµs data are available, the LF displacements
in Fig. 2d) are equal to 0 after October 2018.

Moreover, the Root Mean Square Error (RMSE) between
the synthesised and the estimated velocities is more than 80
m/y lower with the TICOF formulation than with the TI or
TICO formulation, and about 20 m/y with TICOF than with
the moving average, for different temporal sampling (Fig.
3). However, the mean residual of the inversion (the mean
difference between AX and Y or A′X and BY ) characterizes
the bias introduced by the assumption of a constant velocity
over the considered temporal sampling. For a synthetic dataset
without noise, the residual of the inversion should be null. This
is the case for the traditional TI or TICO (Fig. S3). On the
contrary, the increase of the TICOF residual which ranges from
0 to 3 m/y, for 0 to 120 days temporal sampling, is caused
by the bias introduced by the fractions. This bias is around
25 times lower than the benefit of using TICOF rather than
TICO, in case of multi-sensor datasets (Fig. 3). The use of
TICOF is advantageous: 1) for multi-sensor datasets and/or 2)
datasets with a lot of missing data and/or 3) when the temporal
sampling is not a multiple of the satellite repeat cycle (Fig.
3 and S4). In the absence of any of these conditions, Fig. S4
illustrates that the RMSE from TICO is up to 5 m/y better
than the one from TICOF. This error also corresponds to the
bias introduced by the fractions.

V. REAL DATASET

A. Uncertainty of the results for different temporal samplings

To analyze the uncertainty of the LF time series according to
their temporal sampling, the RMSE is computed over the study
area delimited by the orange square in Fig. S1, assuming that
the true velocity magnitude is null over the stable areas. RMSE
is performed over ice-free areas according to the Randolph
Glacier Inventory (RGI) V6.0.

Fig. 4 reveals that the RMSE is lower after inversion than
before inversion for a temporal sampling ranging from 5 to
20 days (the RMSE is 68% lower for a 5-days temporal
sampling to 13 % lower for a 20 days temporal sampling) and
remains slightly higher with larger temporal sampling (around
12 m/y higher). According to the RMSE, the performance of
the TICOF inversion is degraded with a temporal sampling
larger than 20 days. It may be caused by the validity of the
assumption beyond the use of fractions, which increases with
the temporal sampling. Hence, the use of TICOF inversion
appears beneficial for temporal samplings, here, lower than
20 days. From 5 to 20 days, the lowest RMSE is reached for
a temporal sampling of 20 days, hence 20 days is selected
to match a compromise between uncertainty and temporal
resolution.
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Fig. 2. a) Synthetic velocities spanning a given temporal baseline are represented by blue and orange bars, for velocities based on Sentinel-2 and Venµs images
respectively. These velocities correspond to the average of the instantaneous velocity (represented by a black curve) over the considered temporal baseline.
Hence, small temporal baseline velocities are closer to the instantaneous velocity than long temporal baseline velocities. The dots represent the central date of
each velocity. RLF time series obtained using the b) moving average c) traditional TI formulation d) TICOF formulation, with a 20-day temporal sampling.
The velocities are about 0 using the TI formulation after October 2018 because the velocity observation based on Venµs cannot be included inside the system.

Fig. 3. RMSE between the synthetic multi-sensor velocities and the estimated
velocities over different temporal baselines using the traditional TI formulation
(in red), the TICOF formulation (in blue), the TICO formulation (in green)
and the moving average (in gold).

Fig. 4. RMSE over stable ground for different temporal samplings before (in
gold) and after TICOF inversion (in blue).

B. Spatio-temporal analysis of the results

The spatio-temporal evolution of the velocity magnitude is
computed over a longitudinal profile defined in Fig. S1. The
results from the TICOF formulation using a 20-days temporal
sampling are compared with the results from a 20-days moving
average. It can be seen in Fig. 5 that there are no available
velocity observations from April 2017 to November 2017 at

the center part of the glacier tongue.
After inversion, there are visually fewer outliers (e.g. there

is no more velocity with a zero value at 3.8 km). Moreover,
even if TICOF is pixel-wise, the LF time series seems to be
spatially coherent: the velocity field is smooth through the
period. A seasonal trend can also be observed: the velocities
increase between the two periods September to November
2017 and April to June 2018 with a median increase of
40% along the longitudinal profile. From April/June 2018
to September/November 2018, the velocities decrease with a
median decrease of 30%. By using all the available velocity
observations, TICOF recovers a seasonal trend when TI or
TICO fails because only few velocity observations could have
been included in TI or TICO in this case (Fig. S5).

VI. CONCLUSION

The proposed approach enables the fusion of glacier veloc-
ity observations from different temporal baselines and sensors
without prior information on the glacier dynamics and the
data uncertainties. It relies on a new formulation of the
Temporal Inversion (TI) based on the temporal closure of
the displacement observations network. This new formulation
establishes linear equations between combinations of displace-
ment observations and fractions of LF displacements and is
named TICOF (Temporal Inversion using COmbinations and
Fractions of displacements). The inversion is solved using
an Iterative Reweighted Least Square inversion where the
initial weights are based on a combination of two statistical
criteria: the Median Angle and the modified z-score. The use
of displacement fractions assumes a constant velocity over the
considered time interval. The bias caused by the validity of this
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Fig. 5. Spatio-temporal evolution of velocity magnitude along a longitudinal profile defined in Fig. S1. The left-hand figure correspond the results from a
20-days moving average, the results on the right corresponds to the results of the TICOF inversion.

assumption is evaluated on synthetic data. For a sinusoidal
signal with a period of 1 year, the bias introduced is below
0.1 m/y for a temporal sampling of 5 to 20 days. This is
compared to the improvement in velocity uncertainty obtained
after TICOF. For time sampling less than 20 days, the use
of TICOF is still beneficial (the uncertainty is reduced by
13%). The 20-day LF velocity time series makes it possible to
highlight the strong seasonality of the Fox glacier with lower
uncertainty, fewer outliers, and no more gaps. The fluctuation
of Fox surface velocities is on average 35 % between spring
and autumn from 2017 to 2018. Since this approach does not
require prior information, it can be applied to any kind of
available velocity datasets computed by any research team.
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recent short-term glacier velocity evolution over southern alaska and
the yukon from a large collection of landsat data,” The Cryosphere,
vol. 13, no. 3, pp. 795–814, 2019.

[9] P. Lacroix, G. Araujo, J. Hollingsworth, and E. Taipe, “Self-entrainment
motion of a slow-moving landslide inferred from landsat-8 time series,”
Journal of Geophysical Research: Earth Surface, vol. 124, no. 5, pp.
1201–1216, 2019.

[10] C. Ding, L. Zhang, M. Liao, G. Feng, J. Dong, M. Ao, and Y. Yu,
“Quantifying the spatio-temporal patterns of dune migration near minqin
oasis in northwestern china with time series of landsat-8 and sentinel-
2 observations,” Remote Sensing of Environment, vol. 236, p. 111498,
2020.

[11] A. Dille, F. Kervyn, A. L. Handwerger, N. d’Oreye, D. Derauw, T. M.
Bibentyo, S. Samsonov, J.-P. Malet, M. Kervyn, and O. Dewitte, “When
image correlation is needed: Unravelling the complex dynamics of a
slow-moving landslide in the tropics with dense radar and optical time
series,” Remote Sensing of Environment, vol. 258, p. 112402, 2021.

[12] N. Bontemps, P. Lacroix, and M.-P. Doin, “Inversion of deformation
fields time-series from optical images, and application to the long term
kinematics of slow-moving landslides in peru,” Remote Sensing of
Environment, vol. 210, pp. 144–158, 2018.

[13] A. Pepe, M. Bonano, Q. Zhao, T. Yang, and H. Wang, “The use of
c-/x-band time-gapped sar data and geotechnical models for the study
of shanghai’s ocean-reclaimed lands through the sbas-dinsar technique,”
Remote Sensing, vol. 8, no. 11, p. 911, 2016.

[14] E. W. Burgess, R. R. Forster, and C. F. Larsen, “Flow velocities of
alaskan glaciers,” Nature communications, vol. 4, no. 1, pp. 1–8, 2013.
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Fig. S1. Fox glacier in the Southern Alps of New Zealand. The red dotes
are spaced 1 km apart. The background image is an optical image from the
Google Earth collection.

Fig. S2. Temporal baselines of the velocity observations according to their
central date for Sentinel-2 velocities in blue and Venµs velocities in orange.
The colormap which ranges from light to dark blue or orange indicates the
percentage of non-masked data for each temporal baseline and central date.

Fig. S3. Residual of the inversion on synthetic data with the traditional TI
formulation (in red) and the TICOF formulation (in blue).

Fig. S4. RMSE between the synthetic mono-sensor velocities and the
estimated velocities over different temporal samplings using the traditional TI
formulation (in red), the TICOF formulation (in blue), the TICO formulation
(in green) and the moving average (in gold). The vertical grey lines correspond
to the temporal samplings which are a multiple of the satellite repeat cycle,
here 2 days. For these temporal sampling, TICO is more advantageous than
TICOF. For other temporal sampling, TICOF performs better. Note that, for
some temporal sampling, it is not possible to include any observations inside
the TI system, therefore there is no corresponding value of RMSE.
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The system of equations corresponding to the TICOF is:


1 0 0 . . . 0 0
0 1 1 . . . 0 0
...

...
...

...
...

0 0 0 . . . 1 0
0 0 0 . . . 0 1





dτ1,τ1+2∆τ

d̂τ1,τ1+ 3
2
∆τ

d̂τ
1+ 3

2
∆τ

,τ1+3∆τ

...
d̂τ1+(n−2)∆τ ,τ

1+(n− 1
2
)∆τ

d̂τ1+(n−1)∆τ ,τ1+n∆τ


=



1 1 0 . . . 0
1 1 1 . . . 0
...

...
...

...
...

0 0 0 . . . 1 1
2

0 0 0 . . . 0 1
λ
∆τ

− λ
∆τ

0 . . . 0 0

0 λ
∆τ

− λ
∆τ

. . . 0 0
...

...
...

...
...

0 0 0 . . . λ
∆τ

− λ
∆τ

0 0 0 . . . 0 0




dτ1,τ1+∆τ

dτ1+∆τ ,τ1+2∆τ

...
dτ1+(n−2)∆τ ,τ1+(n−1)∆τ

dτ1+(n−1)∆τ ,τ1+n∆τ

 (S.1)

where λ corresponds to the damping factor of the regularization. ∆τ is the temporal sampling of the LF time series [d̂τ1,τ1+∆τ , ..., d̂τ1+(n−1)∆τ ,τ1+n∆τ ].
[dτ1,τ1+2∆τ , ..., dτ1+(n−1)∆τ ,τ1+n∆τ ] stands for the displacement observations.

The system of equations including a model based regularization used to determine simulation parameters in section IV is:

1 1 0 . . . 0 0 0 0 0
...

...
...

...
...

...
...

...
...

0 0 0 . . . 1 0 0 0 0

λ 0 0 . . . 0 −[τ1+∆τ − τ1] − T
2π

[sin( 2π
T

τ1+∆τ )− sin( 2π
T

τ1)] − T
2π

[cos( 2π
T

τ1+∆τ )− cos( 2π
T

τ1)] 1
...

...
...

...
...

...
...

...
...

0 0 0 . . . λ −[τ1+n∆τ − τ1+(n−1)∆τ ] − T
2π

[sin( 2π
T

τ1+n∆τ )− sin( 2π
T

τ1+(n−1)∆τ )] − T
2π

[cos( 2π
T

τ1+n∆τ )− cos( 2π
T

τ1+(n−1)∆τ )] 1





d̂τ1,τ1+∆τ

...
d̂τ1+(n−1)∆τ ,τ1+n∆τ

a
b
c
d

 =



dτ1,τ1+2∆τ

...
dτ1+(n−1)∆τ ,τ1+n∆τ

0
...
0


(S.2)

where T is the period of the sinusoidal signal. a, b, c, d are the coefficients of the model.

Fig. S5. Spatio-temporal evolution of velocity magnitude along a longitudinal profile defined in Fig. S1. The results are from the TI (left) and TICO (right)
inversion, with a temporal sampling of 20 days. Because the velocity observations are multi-sensor, with missing data due to outlier removal, all the velocity
observations cannot be included inside the system. Therefore, the estimations are either not possible (from 2.4 to 5.1 km with TI) or mainly constrained by
the Tikhonov regularization. This results in very smooth variations, incoherent with the observations.


